Optimization and Machine Learning

Chih-Jen Lin Department of Computer Science National Taiwan University

Talk at TWSIAM Annual Meeting, July 24, 2020

- 2 Empirical risk minimization
- Optimization techniques for machine learning
- Discussion and conclusions

Outline

- 2 Empirical risk minimization
- Optimization techniques for machine learning
- Discussion and conclusions

What is Machine Learning

- Extract knowledge from data
- Representative tasks: classification, clustering, and others

Data Classification

• Given training data in different classes (labels known)

Predict test data (labels unknown)

- Classic example
 - 1. Find a patient's blood pressure, weight, etc.
 - 2. After several years, know if he/she recovers
 - 3. Build a machine learning model
 - 4. New patient: find blood pressure, weight, etc
 - 5. Prediction
- Two main stages: training and testing

Why Is Optimization Used?

- Usually the goal of classification is to minimize the number of errors
- Therefore, many classification methods solve optimization problems
- We will discuss a topic called empirical risk minimization that can connect many classification methods

Outline

2 Empirical risk minimization

Optimization techniques for machine learning

Discussion and conclusions

Minimizing Training Errors

• Basically a classification method starts with minimizing the training errors

- That is, all or most training data with labels should be correctly classified by our model
- A model can be a decision tree, a neural network, etc.

- For simplicity, let's consider the model to be a vector *w*
- That is, the decision function is

 $sgn(w^T x)$

• For any data, x, the predicted label is

$$egin{cases} 1 & ext{if } oldsymbol{w}^{ op} oldsymbol{x} \geq 0 \ -1 & ext{otherwise} \end{cases}$$

• The two-dimensional situation

• This seems to be quite restricted, but practically *x* is in a much higher dimensional space

- To characterize the training error, we need a loss function ξ(w; x, y) for each instance (x, y)
- Ideally we should use 0-1 training loss:

$$\xi(\boldsymbol{w}; \boldsymbol{x}, \boldsymbol{y}) = \begin{cases} 1 & \text{if } \boldsymbol{y} \boldsymbol{w}^{\mathsf{T}} \boldsymbol{x} < 0, \\ 0 & \text{otherwise} \end{cases}$$

• However, this function is discontinuous. The optimization problem becomes difficult

• We can do continuous approximations

Common Loss Functions

• Hinge loss (I1 loss)

$$\xi_{L1}(\boldsymbol{w};\boldsymbol{x},\boldsymbol{y}) \equiv \max(0,1-\boldsymbol{y}\boldsymbol{w}^T\boldsymbol{x}) \qquad (1)$$

Logistic loss

$$\xi_{\rm LR}(\boldsymbol{w};\boldsymbol{x},\boldsymbol{y}) \equiv \log(1+e^{-\boldsymbol{y}\boldsymbol{w}^{T}\boldsymbol{x}}) \tag{2}$$

- Support vector machines (SVM): Eq. (1). Logistic regression (LR): (2)
- SVM and LR are two very fundamental classification methods

Empirical risk minimization

Common Loss Functions (Cont'd)

Logistic regression is very related to SVM
Their performance is usually similar

Common Loss Functions (Cont'd)

- However, minimizing training losses may not give a good model for future prediction
- Overfitting occurs

Overfitting

- See the illustration in the next slide
- For classification,
 - You can easily achieve 100% training accuracy
- This is useless
- When training a data set, we should Avoid underfitting: small training error Avoid overfitting: small testing error

Empirical risk minimization

• and \blacktriangle : training; \bigcirc and \triangle : testing

Regularization

- To minimize the training error we manipulate the *w* vector so that it fits the data
- To avoid overfitting we need a way to make *w*'s values less extreme.
- One idea is to make *w* values closer to zero
- We can add, for example,

$$\frac{\boldsymbol{w}^{T}\boldsymbol{w}}{2}$$
 or $\|\boldsymbol{w}\|_{1}$

to the function that is minimized

General Form of Linear Classification

Training data {y_i, x_i}, x_i ∈ Rⁿ, i = 1,..., l, y_i = ±1
 I: # of data, n: # of features

$$\min_{\boldsymbol{w}} f(\boldsymbol{w}), \quad f(\boldsymbol{w}) \equiv \frac{\boldsymbol{w}^{T} \boldsymbol{w}}{2} + C \sum_{i=1}^{l} \xi(\boldsymbol{w}; \boldsymbol{x}_{i}, y_{i})$$

- $w^T w/2$: regularization term
- $\xi(w; x, y)$: loss function
- C: regularization parameter (chosen by users)

Neural Networks

- We all know that recently deep learning (i.e., deep neural networks) is very hot.
- We will explain neural networks using the the same empirical risk minimization framework
- Among various types of networks, we consider fully-connected feed-forward networks

for

multi-class classification

- Our training set includes (y_i, x_i) , $i = 1, \ldots, I$.
- $x_i \in R^{n_1}$ is the feature vector.
- $y_i \in R^K$ is the label vector.
- K: # of classes
- If x_i is in class k, then

$$\mathbf{y}_i = [\underbrace{0,\ldots,0}_{k-1}, 1, 0, \ldots, 0]^T \in R^K$$

- A neural network maps each feature vector to one of the class labels by the connection of nodes
- Between two layers a weight matrix maps input to output

• The weight matrix W^m at the *m*th layer is

$$W^{m} = \begin{bmatrix} w_{11}^{m} & w_{12}^{m} & \cdots & w_{1n_{m}}^{m} \\ w_{21}^{m} & w_{22}^{m} & \cdots & w_{2n_{m}}^{m} \\ \vdots & \vdots & \vdots & \vdots \\ w_{n_{m+1}1}^{m} & w_{n_{m+1}2}^{m} & \cdots & w_{n_{m+1}n_{m}}^{m} \end{bmatrix}_{n_{m+1} \times n_{m}}$$

- n_m : # input features at layer m
- n_{m+1}: # output features at layer m, or # input features at layer m + 1
- L: number of layers

•
$$n_1 = \#$$
 of features, $n_{L+1} = \#$ of classes

Let z^m be the input of the *m*th layer, $z^1 = x$ and z^{L+1} be the output

From *m*th layer to (m+1)th layer

$$egin{aligned} oldsymbol{s}^m &= oldsymbol{\mathcal{W}}^moldsymbol{z}^m,\ oldsymbol{z}_j^{m+1} &= \sigma(oldsymbol{s}_j^m),\ j = 1,\ldots, oldsymbol{n}_{m+1}, \end{aligned}$$

 $\sigma(\cdot)$ is the activation function. We collect all variables:

$$oldsymbol{ heta} = egin{bmatrix} \mathsf{vec}(\mathcal{W}^1) \ dots \ \mathsf{vec}(\mathcal{W}^L) \end{bmatrix} egin{array}{c} n : \mathsf{total} \ \# \mathsf{variables} \ dots \ (n_L+1)n_2 + \cdots + (n_L+1)n_{L+2} \ (m_L+1)n_L + vec(\mathcal{W}^L) \end{bmatrix}$$

• We solve the following optimization problem,

 $\min_{\boldsymbol{\theta}} f(\boldsymbol{\theta}),$

where

$$f(\boldsymbol{\theta}) = \frac{1}{2}\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{\theta} + C \sum_{i=1}^{l} \xi(\boldsymbol{z}^{L+1,i}(\boldsymbol{\theta}); \boldsymbol{x}_{i}, \boldsymbol{y}_{i}).$$

C: regularization parameter

- $z^{L+1}(\theta) \in R^{n_{L+1}}$: last-layer output vector of x.
- $\xi(z^{L+1}; x, y)$: loss function. Example:

$$\xi(z^{L+1}; x, y) = ||z^{L+1} - y||^2$$

- The formulation is as before, but loss function is more complicated
- Note that we discussed the simplest type of networks
- Nowadays people use much more complicated networks
- The optimization problem is non-convex

Discussion

- We have seen that many classification methods are under the empirical risk minimization framework
- We also see that optimization problems must be solved

Outline

Introduction

2 Empirical risk minimization

Optimization techniques for machine learning

Discussion and conclusions

Optimization Techniques for Machine Learning

- Standard optimization packages may be directly applied to machine learning applications
- However, efficiency and scalability are issues
- Many optimization researchers want to do machine learning
- Some are more successful, but some are not
- Very often properties from machine learning side must be considered
- I will illustrate this point by some examples

Differences between Optimization and Machine Learning

- The two topics may have different focuses. We give the following example
- Recall that the optimization problem for empirical risk minimization is

$$\frac{1}{2}\boldsymbol{w}^{T}\boldsymbol{w} + C(\text{sum of training losses})$$

- A large C means to fit training data
- The optimization problem becomes more difficult

• In contrast, if $C \rightarrow 0$,

$$\min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^{T} \mathbf{w}$$

is easy

- Optimization researchers may rush to solve difficult cases of large *C*
- It turns out that C should not be too large
- A large C causes severe overfitting and bad accuracy
- Thus knowing what is useful and what is not on the machine learning side is very important

Stochastic Gradient for Deep Learning

- In optimization, gradient descent is a basic method
- But it has slow convergence
- So in many application domains higher-order optimization methods (e.g., Newton, quasi Newton) were developed for faster convergence
- However, in deep learning people use an even lower-order method: stochastic gradient
- Why?

Estimation of the Gradient

• Let us rewrite the objective function as

$$f(\boldsymbol{\theta}) = \frac{1}{2\boldsymbol{C}}\boldsymbol{\theta}^{T}\boldsymbol{\theta} + \frac{1}{l}\sum_{i=1}^{l}\xi(\boldsymbol{z}^{L+1,i}(\boldsymbol{\theta});\boldsymbol{x}_{i},\boldsymbol{y}_{i})$$

• The gradient is

$$\frac{\boldsymbol{\theta}}{C} + \frac{1}{l} \nabla_{\boldsymbol{\theta}} \sum_{i=1}^{l} \xi(\boldsymbol{z}^{L+1,i}(\boldsymbol{\theta}); \boldsymbol{x}_{i}, \boldsymbol{y}_{i})$$

• Going over all data is time consuming

Estimation of the Gradient (Cont'd)

• We may use a subset S of data

$$\frac{\boldsymbol{\theta}}{C} + \frac{1}{|S|} \nabla_{\boldsymbol{\theta}} \sum_{i:i \in S} \xi(\boldsymbol{z}^{L+1,i}(\boldsymbol{\theta}); \boldsymbol{x}_i, \boldsymbol{y}_i)$$

• This works if data points are under the same distribution

$$E_{\mathbf{y},\mathbf{x}}(\nabla_{\boldsymbol{\theta}}\xi(\mathbf{z}^{L+1,i};\mathbf{x},\mathbf{y})) = \frac{1}{l}\nabla_{\boldsymbol{\theta}}\sum_{i=1}^{l}\xi(\mathbf{z}^{L+1,i}(\boldsymbol{\theta});\mathbf{x}_{i},\mathbf{y}_{i})$$

Stochastic Gradient Algorithm

- 1: Given an initial learning rate η .
- 2: while do
- 3: Choose $S \subset \{1, \ldots, l\}$.
- 4: Calculate

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \boldsymbol{\eta} (\frac{\boldsymbol{\theta}}{C} + \frac{1}{|S|} \nabla_{\boldsymbol{\theta}} \sum_{i:i \in S} \xi(\boldsymbol{z}^{L+1,i}(\boldsymbol{\theta}); \boldsymbol{x}_i, \boldsymbol{y}_i))$$

- 5: May adjust the learning rate η
- 6: end while

Issues of Stochastic Gradient Algorithm

- People often use the name SGD (stochastic gradient descent) but it is not a descent algorithm
 Note that we didn't (and cannot) do things like line search to ensure the function-value decrease
- It's known that deciding a suitable learning rate is difficult
 - Too small learning rate: very slow convergence
 - Too large learning rate: the procedure may diverge
- Despite such drawbacks, SG is widely used in deep learning. Why?

Why Stochastic Gradient Widely Used? I

- In machine learning fast final convergence may not be important
 - An optimal solution θ^* may not lead to the best model
 - Further, we don't need a point close to θ^* . In prediction we find

$$rg\max_k z_k^{L+1}(oldsymbol{ heta})$$

A not-so-accurate θ may be good enough An illustration

Optimization techniques for machine learning

Why Stochastic Gradient Widely Used? II

Slow final convergence Fast final convergence

Why Stochastic Gradient Widely Used? III

• The special property of data classification is essential

$$E(\nabla_{\boldsymbol{\theta}}\xi(\boldsymbol{z}^{L+1};\boldsymbol{x},\boldsymbol{y})) = \frac{1}{l}\nabla_{\boldsymbol{\theta}}\sum_{i=1}^{l}\xi(\boldsymbol{z}^{L+1,i}(\boldsymbol{\theta});\boldsymbol{x}_{i},\boldsymbol{y}_{i})$$

We can cheaply get a good approximation of the gradient

Indeed stochastic gradient is less used outside machine learning

Why Stochastic Gradient Widely Used? IV

- Easy implementation. It's simpler than methods using, for example, second derivative Now for complicated networks, (subsampled) gradient is calculated by automatic differentiation
- Non-convexity plays a role
 - For convex, other methods may possess advantages to more efficiently find the global minimum
 - But for non-convex, efficiency to reach a stationary point is less useful

Why Stochastic Gradient Widely Used? V

- A global minimum usually gives a good model (as loss is minimized), but for a stationary point we are less sure
- Some variants of SG have been proposed to improve the robustness or the convergence
- All these explain why SG is popular for deep learning

Subsampled 2nd-order Method

• Recall for stochastic gradient method, we use

$$E(\nabla_{\boldsymbol{\theta}}\xi(\boldsymbol{z}^{L+1};\boldsymbol{x},\boldsymbol{y})) = \frac{1}{l}\nabla_{\boldsymbol{\theta}}\sum_{i=1}^{l}\xi(\boldsymbol{z}^{L+1,i}(\boldsymbol{\theta});\boldsymbol{x}_{i},\boldsymbol{y}_{i})$$

• Can we extend this idea to 2nd derivative? Yes, Byrd et al. (2011); Martens (2010)

$$E(\nabla_{\theta\theta}^2 \xi(\boldsymbol{z}^{L+1}; \boldsymbol{y}, \boldsymbol{x})) = \frac{1}{l} \nabla_{\theta\theta}^2 \sum_{i=1}^l \xi(\boldsymbol{z}^{L+1}; \boldsymbol{y}_i, \boldsymbol{x}_i).$$

Subsampled 2nd-order Method (Cont'd)

• We can consider

$$\frac{1}{|S|} \nabla_{\theta\theta}^2 \sum_{i \in S} \xi(\boldsymbol{z}^{L+1}; \boldsymbol{y}_i, \boldsymbol{x}_i).$$

in designing subsampled Newton or quasi Newton methods

Outline

2 Empirical risk minimization

Optimization techniques for machine learning

Conclusions

- Many machine learning methods involve optimization problems
- However, designing useful optimization techniques for these applications may not be easy
- Incorporating machine learning knowledge is very essential

