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Introduction

What is Machine Learning

e Extract knowledge from data

@ Representative tasks: classification, clustering, and

others
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@ Today we will focus on classification
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Data Classification

@ Given training data in different classes (labels
known)

Predict test data (labels unknown)

@ Classic example
1. Find a patient’s blood pressure, weight, etc.
2. After several years, know if he/she recovers
3. Build a machine learning model
4. New patient: find blood pressure, weight, etc
5. Prediction

@ Two main stages: training and testing
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Why Is Optimization Used?

@ Usually the goal of classification is to
minimize the number of errors

@ Therefore, many classification methods solve
optimization problems

@ We will discuss a topic called empirical risk
minimization that can connect many classification
methods
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Minimizing Training Errors

@ Basically a classification method starts with
minimizing the training errors

min  (training errors)
model

@ That is, all or most training data with labels should
be correctly classified by our model

@ A model can be a decision tree, a neural network,
etc.
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Minimizing Training Errors (Cont'd)

e For simplicity, let's consider the model to be a
vector w
@ That is, the decision function is

sgn(w " x)
e For any data, x, the predicted label is
{1 if wix>0

—1 otherwise
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Minimizing Training Errors (Cont'd)

@ The two-dimensional situation
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@ This seems to be quite restricted, but practically x
is in @ much higher dimensional space
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Minimizing Training Errors (Cont'd)

@ To characterize the training error, we need a loss
function &(w; x, y) for each instance (x, y)

@ ldeally we should use 0-1 training loss:

1 ifyw'x <0,
0 otherwise

§(w; x,y) —{
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Minimizing Training Errors (Cont'd)

@ However, this function is discontinuous. The
optimization problem becomes difficult

E(w; x,y)
l

—yw'x

@ We can do continuous approximations
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Common Loss Functions

@ Hinge loss (11 loss)
fL(w; x, y) = max(0,1 — yw' x) (1)
@ Logistic loss
Er(w;x,y) = log(1 + e ™) (2)

@ Support vector machines (SVM): Eq. (1). Logistic
regression (LR): (2)
@ SVM and LR are two very fundamental classification

methods
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Common Loss Functions (Cont'd)

E(w; x,y)

J/
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—yw'Xx

@ Logistic regression is very related to SVM

@ Their performance is usually similar

14 /45



Common Loss Functions (Cont'd)

@ However, minimizing training losses may not give a
good model for future prediction

e Overfitting occurs
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Overfitting

@ See the illustration in the next slide
@ For classification,
You can easily achieve 100% training accuracy
@ This is useless
@ When training a data set, we should
Avoid underfitting: small training error
Avoid overfitting: small testing error
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Regularization

@ To minimize the training error we manipulate the w
vector so that it fits the data

@ To avoid overfitting we need a way to make w's
values less extreme.

@ One idea is to make w values closer to zero
@ We can add, for example,

WTW

2

or [[w}

to the function that is minimized
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General Form of Linear Classification

@ Training data {y;, x;},x; € R",i=1,...,1, yi =41
@ [: # of data, n: # of features

I
mMi/n f(w), f(w)= W;W + CZS(W;X/‘,}//)
i=1

o w'w/2: regularization term
e £(w; x,y): loss function
e C: regularization parameter (chosen by users)
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Neural Networks

@ We all know that recently deep learning (i.e., deep
neural networks) is very hot.

@ We will explain neural networks using the the same
empirical risk minimization framework

@ Among various types of networks, we consider
fully-connected feed-forward networks
for
multi-class classification

Chih-Jen Lin (National Taiwan Univ.) 20 /45



irical risk minimization

Neural Networks (Cont'd)

Our training set includes (y;, x;), i=1,...,1.
X; € R™ is the feature vector.

K: # of classes

°
°
e y; € R¥ is the label vector.
°
@ If x; is in class k, then

y;=1[0,...,0,1,0,...,0]" € R¥

k-1
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Neural Networks (Cont'd)

@ A neural network maps each feature vector to one
of the class labels by the connection of nodes

@ Between two layers a weight matrix maps input to
output




Neural Networks (Cont'd)

@ The weight matrix W™ at the mth layer is

m m m
Wll W12 “ .. Wlnm
m m m
wm— | W W2 ot W,
m m m
Wimial Wnpi2 Wi 1 Nm41X N,

@ n,, : 7 input features at layer m

@ n,.1: # output features at layer m, or # input
features at layer m+ 1

@ L: number of layers
@ ny = # of features, n; 1 = # of classes
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irical risk minimization

Neural Networks (Cont'd)

Let z™ be the input of the mth layer, z! = x and z!*!
be the output
From mth layer to (m + 1)th layer

ij+1 - U(Sjm)v ./ = 17 ceey Mmy,

o(+) is the activation function. We collect all variables:

vec(W1) n : total # variables
: e R" = (n1+1)n2+---+(nL+1)nL+1
vec(W?)

24 /45

0 =




Empirical risk minimization

Neural Networks (Cont'd)
@ We solve the following optimization problem,
ming £(0),

where
1.7 / L+Li(nY. o
f(6)=5670+CY" &1 (0)xiy,)

C: regularization parameter
o zI™(0) € R™+1: last-layer output vector of x.
o &(zHt: x,y): loss function. Example:
L+1. L+1 2
€z x,y) = |25~y
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Neural Networks (Cont'd)

@ The formulation is as before, but loss function is
more complicated

@ Note that we discussed the simplest type of
networks

@ Nowadays people use much more complicated
networks

@ The optimization problem is non-convex
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Discussion

@ We have seen that many classification methods are
under the empirical risk minimization framework

@ We also see that optimization problems must be
solved

Chih-Jen Lin (National Taiwan Univ.) 27 /45



Optimization techniques for machine learning
Outli

© Optimization techniques for machine learning

Chih-Jen Lin (National Taiwan Univ.)

28 /45



Optimization Techniques for Machine
Learning

@ Standard optimization packages may be directly
applied to machine learning applications

@ However, efficiency and scalability are issues

@ Many optimization researchers want to do machine
learning

@ Some are more successful, but some are not

@ Very often properties from machine learning side
must be considered

@ | will illustrate this point by some examples
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Differences between Optimization and
Machine Learning

@ The two topics may have different focuses. We give
the following example
@ Recall that the optimization problem for empirical
risk minimization is
1

EWTW + C(sum of training losses)

@ A large C means to fit training data
@ The optimization problem becomes more difficult
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Optimization techniques for machine learning

@ In contrast, if C — 0,

.1 5
min —w ' w
w 2
IS easy
@ Optimization researchers may rush to solve difficult
cases of large C

@ It turns out that C should not be too large
@ A large C causes severe overfitting and bad accuracy

@ Thus knowing what is useful and what is not on the
machine learning side is very important
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Stochastic Gradient for Deep Learning

@ In optimization, gradient descent is a basic method
@ But it has slow convergence
@ So in many application domains higher-order

optimization methods (e.g., Newton, quasi Newton)
were developed for faster convergence

@ However, in deep learning people use an even
lower-order method: stochastic gradient

e Why?
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Estimation of the Gradient

@ Let us rewrite the objective function as

f0) = 52070+ 3 £ (0)xiy)

@ The gradient is

/
0 1 L+1i(nY. o
E+7V¢9;§(Z (0); xi,y;)

e Going over all data is time consuming
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Estimation of the Gradient (Cont'd)

@ We may use a subset S of data

0 1

C + mve Z §(25H(0): xi. y))
iies

@ This works if data points are under the same
distribution

£ (Vol(z i x,y)) = 1V D0 (2 H(0); x1,y,)
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Stochastic Gradient Algorithm

1: Given an initial learning rate 7).
2. while do

3: Choose S C {1,...,/}.

4 Calculate

6
00—z ’5|ng§(z”1’

i:ieS

5: May adjust the learning rate n
6: end while
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Issues of Stochastic Gradient Algorithm

@ People often use the name SGD (stochastic gradient
descent) but it is not a descent algorithm
Note that we didn't (and cannot) do things like line
search to ensure the function-value decrease
@ It's known that deciding a suitable learning rate is
difficult
o Too small learning rate: very slow convergence
o Too large learning rate: the procedure may
diverge
@ Despite such drawbacks, SG is widely used in deep
learning. Why?
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Why Stochastic Gradient Widely Used? |

@ In machine learning fast final convergence may not
be important

o An optimal solution 8" may not lead to the
best model

o Further, we don't need a point close to 6*. In
prediction we find

arg max zF(6)

A not-so-accurate @ may be good enough
An illustration
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Why Stochastlc Gradlent Widely Used? |l

time time

distance to optimum
distance to optimum

Slow final convergence Fast final convergence
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Why Stochastlc Gradlent Widely Used? Il

@ The special property of data classification is
essential

E(Vob(z 5%, )) = 1V0 D€z H(6)ixi,y)

We can cheaply get a good approximation of the
gradient

Indeed stochastic gradient is less used outside
machine learning
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Why Stochastic Gradient Widely Used? IV

@ Easy implementation. It's simpler than methods
using, for example, second derivative
Now for complicated networks, (subsampled)
gradient is calculated by automatic differentiation
@ Non-convexity plays a role
o For convex, other methods may possess
advantages to more efficiently find the global
minimum
o But for non-convex, efficiency to reach a
stationary point is less useful
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Why Stochastlc Gradlent Widely Used? V

o A global minimum usually gives a good model
(as loss is minimized), but for a stationary
point we are less sure

@ Some variants of SG have been proposed to improve
the robustness or the convergence

@ All these explain why SG is popular for deep learning
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Subsampled 2nd order Method

@ Recall for stochastic gradient method, we use

E(Vos(z"ix, ) = V0 Y€z H(6)ixi.y)

@ Can we extend this idea to 2nd derivative? Yes,
Byrd et al. (2011); Martens (2010)

E(Vgel(z™y, x)) = Zf(zL“ Yi Xi)-
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Subsampled 2nd order Method (Cont'd)

@ We can consider

BZf(ZL—H,y”X,)

ieS

in designing subsampled Newton or quasi Newton
methods
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Discussion and conclusions
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Conclusions

@ Many machine learning methods involve
optimization problems

@ However, designing useful optimization techniques
for these applications may not be easy

@ Incorporating machine learning knowledge is very
essential
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