Can Support Vector Machine be a Major Classification Method ?

Chih-Jen Lin

Department of Computer Science National Taiwan University

Talk at Max Planck Institute, January 29, 2003

Motivation

- SVM: a hot machine learning issue
- However, not a major classification method yet KDNuggets 2002 Poll: Neural Networks, Decision trees remain main tools
- How to make SVM a major one ?

The Potential of SVM

- In my opinion, after careful data pre-processing Appropriately use NN or SVM \Rightarrow similar accuracy
- But, users may not use them properly
- The chance of SVM

Easier for users to appropriately use it

The ambition: replacing NN on some applications

We Hope Users At Least Do

- The following procedure
 - 1. Simple scaling (training and testing)
 - 2. Consider the **RBF** kernel

$$K(x,y) = e^{-\gamma \|x-y\|^2} = e^{-\|x-y\|^2/(2\sigma^2)}$$

and find the best C and γ (or σ^2)

- Why RBF:
 - Linear kernel: special case of RBF [Keerthi and Lin 2003]
 - Polynomial: numerical difficulties
 - $(<1)^d \to 0, (>1)^d \to \infty$
 - tanh: still a mystery

In general not PD

In a coming paper [Lin and Lin 2003], for certain parameters, it behaves like RBF


```
>TRAINING.SCALE.DAT
```

```
./svm-train -s 0 -t 2 -c 10 TRAINING.SCALE.DAT
./svm-predict TESTING_SIGNAL.SCALE.DAT
TRAINING.SCALE.DAT.model s_0_2_10.out
Accuracy = 75.2%
```

• Answer:

OK. Send me the data

• Answer:

```
First I scale the training and testing TOGETHER:
/mnt/professor/cjlin/tmp% libsvm-2.36/svm-scale
total > total.scale
Then separate them again.
Using the model selection tool (cross validation) to
find out the best parameter:
/mnt/professor/cjlin/tmp%python grid.py train
```

```
sort the results: (find the best cv accuracy)
 /mnt/professor/cjlin/tmp% sort -k 3 train.out
 2 1 96.9569
 8 1 96.9569
 so c = 4 and g = 1 might be the best.
 Train the training data again:
 /mnt/professor/cjlin/tmp/libsvm-2.36%./svm-train -m
 300 -c 4 -g 2 ../train
 Finally test the independent data:
 /mnt/professor/cjlin/tmp/libsvm-2.36%./svm-predict
  ../testdata train.model o Accuracy = 97.3
 User 1:
 You earned a copy of my PhD thesis
• User 2:
```

I am a developer in a bioinformatics laboratory at ... We would like to use LIBSVM in a project ... The datasets are reasonable unbalanced - there are 221 examples in the first set, 117 in the second set and 53 in the third set. But results not good

• Answer:

Have you scaled the data? What is your accuracy?

- User 2: Yes, to [0,1]. **36**%
- Answer:

OK. Send me the data

• Answer:

I am able to give 83.88% cv accuracy. Is that good enough for you ?

• User 2:

83.88% accuracy would be excellent...

Model Selection is Important

- In fact, two-parameter search
- By bounds of loo
- By two line search
- By grid search

Bound of loo

- Many loo bounds
- Main reason: save computational cost
- Bounds where a **path** may be found

Chih-Jen Lin, National Taiwan University

- Radius margin bound
- Span bound
- A recent paper [Chung et al. 2002] on radius margin bound
 - Minima in a good region more important than tightness Good bound should avoid that minima happen at the boundary (i.e., too small or too large C and σ^2)
 - Modification for L1-SVM
 - Differentiability

 $\min_{C,\sigma^2} f(\alpha(C,\sigma^2))$

– Reliable Implementation

		L1-SVI	<u></u>	L2-SVM		
	$ \begin{array}{c c} \# fun & \# grad & accuracy \end{array} $					
banana	9	6	88.96	8	5	88.53
image	17	13	96.24	11	6	97.03
splice	13	12	89.84	21	19	89.84
tree	8	8	86.50	8	8	86.54
waveform	16	13	88.57	8	7	89.83
ijcnn1	9	9	97.09	7	7	97.83

- A coming paper [Chang and Lin 2003]: non-smooth optimization techniques for bounds
 - Allow us to use more (i.e. non-differentiable) bounds
 - Sensitive analysis
 - Nonsmooth Optimization

Piecewise diff. \rightarrow Semi-smooth

Directionally diff.Locally Lipschitz cont.

$\log \sigma^2 = \log C - \log \tilde{C}$ using RBF							
Problem	n	#test	Test error of	Test error of			
			grid method	new method			
banana	400	4900	0.1235(6,-0)	0.1178 (-2,-2)			
image	1300	1010	$0.02475 \ (9,4)$	$0.02475\ (1,0.5)$			
splice	1000	2175	$0.09701 \ (1,4)$	$0.1011 \ (0,4)$			
ringnorm	400	7000	0.01429(-2,2)	0.018 (-3,2)			
twonorm	400	7000	$0.031\ (1,3)$	0.02914(1,4)			
tree	700	11692	0.1132(8,4)	$0.1246\ (2,2)$			
adult	1605	29589	$0.1614\ (5,6)$	$0.1614(5,\!6)$			
web	2477	38994	0.02223 $(5,5)$	0.02223 $(5,5)$			

2. Fix \tilde{C} and search for the best (C, σ^2) satisfying $\log \sigma^2 = \log C - \log \tilde{C}$ using RBF

• 441 verses 54 SVMs

Chih-Jen Lin, National Taiwan University

- Solving linear not as easy as we thought:

loo bounds: 20 steps \Rightarrow more time than 10 \times 10 grids with five computers

Automatic load balancing

• No need for α -seeding, passing cache etc.

- This simple tool
 - Enough for median-sized problems
 - Advantage of having only one figure for multi-class problems
- Further improvement

Possible but many considerations

Challenges

- Using this, if for enough problems, satisfactory results obtained ⇒ then SVM can be a major method eventually
 How do we ask users to at least do this ?
 How do we know if it is or not ?
- If not

What is the next general thing to be added for users ?