Some Thoughts on Machine Learning Software Design

Chih-Jen Lin

Department of Computer Science
National Taiwan University

Talk at University of Southampton, February 6, 2004
About This Talk

- Machine learning software design involves interesting research issues
- Also other issues
 - Implementation
 - Users
- Would like to share past experience on the software LIBSVM for discussion
- Many issues are controversial

Chih-Jen Lin, National Taiwan University
• Focus on software of one method
 e.g. SVM software

• Integrated ML environments: even more complicated issues
 – A bit different from data mining software
 – Examples:
 Spider
 http://www.kyb.tuebingen.mpg.de/bs/people/spider/main.html
 PyML
 http://cmgm.stanford.edu/~asab/pyml/pyml.html

So issues such as data types etc. will not be discussed
Good Machine Learning Software

- Must use good methods
 Has been the focus of machine learning research

Issues less discussed

- Should include tools needed by users
 e.g. a simple scaling code
- Should be simple and complete
 e.g. multi-class classification
- Should be numerically stable
 Efficiency may not be the only concern
I started working on SVM in 1999
Saw SVM papers presenting excellent accuracy
Decided to try by myself

Statlog data set (http://www.liacc.up.pt/ML/statlog/)
heart data

70.0 1.0 4.0 130.0 322.0 0.0 2.0 109.0 0.0 2.4 2.0 3.0 3.0 2
67.0 0.0 3.0 115.0 564.0 0.0 2.0 160.0 0.0 1.6 2.0 0.0 7.0 1
57.0 1.0 2.0 124.0 261.0 0.0 0.0 141.0 0.0 0.3 1.0 0.0 7.0 2
64.0 1.0 4.0 128.0 263.0 0.0 0.0 105.0 1.0 0.2 2.0 1.0 7.0 1

100% SVs
Bad accuracy
• No idea what happened

In few papers one simple sentence mentions “normalization” or “scaling” to [-1,1]

• Then I also realized

SVM dual

\[
\min_{\alpha} \quad \frac{1}{2} \alpha^T Q \alpha - e^T \alpha \\
\text{subject to} \quad 0 \leq \alpha_i \leq C, i = 1, \ldots, l, \\
y^T \alpha = 0,
\]

RBF kernel

\[
K(x_i, x_j) = \phi(x_i)^T \phi(x_j) = e^{-\gamma \|x_i - x_j\|^2}
\]
• If $Q \to I$, and $C \geq 2l_1/l$.

$$\alpha_i \to \begin{cases} 2l_2/l & \text{if } y_i = 1, \\ 2l_1/l & \text{if } y_i = -1 \end{cases}$$

All are SVs
Lesson:

ML researchers know the importance of scaling

Most users do not know

Such simple tools should be provided

David Meyer (author of R interface to LIBSVM) had exactly the same experience

He decided to scale data by default
Simple and Complete:

- Many methods when proposed:
 - *Only two-class* case considered
- OK for a paper
 - Standard extension to multi-class
- But if no one implements it
 - The proposed method can never be useful
- I did not realize this before

LIBSVM released in April 2000: 2-class only

By the summer: many requests for multi-class

Chih-Jen Lin, National Taiwan University
Multi-class Implementation: One or Many

- So I was forced to implement it

- Many options:
 - 1 vs. the rest, 1 vs. 1 (pairwise), error correcting codes,
 - All k-class together as one optimization formula

- Include one or many?
Two Types of Numerical Software

1. Include all options and let users choose

2. Provide only one which is generally good

- The argument never ends
 Also depends on different situations

- For SVM software, I prefer the 2nd
 - Historical reason: I was from a numerical optimization group supporting the 2nd
 - A black box type implementation may be useful
 Many have no ability to choose from different options
• Need a **serious comparison** to find a “generally good” one

• Finally I chose 1 vs. 1 [Hsu and Lin, 2002]

 Similar accuracy to others

 Shortest training

 A bit longer on testing than 1 vs. the rest

• In scientific computing

 Numerical comparison: seriously conducted and considered part of the research

• We should emphasize more on such issues

Chih-Jen Lin, National Taiwan University
More on Completeness: Parameter Selection

- SVM: a bit sensitive to parameters

Chih-Jen Lin, National Taiwan University
• I spent a lot of time on loo bound

\[\text{leave-one-out error} \leq f(C, \gamma) \]

so

\[\min_{C, \gamma} f(C, \gamma) \]

• Not stable, so for two parameters, now we recommend CV+grid search

• But, unlike 1vs1 for multi-class, this is still far from settled
- OK if no need for feature selection
- Feature selection considered
 \[\Rightarrow \text{# parameters may be } > 2 \]

 \textbf{CV+grid not work}

 Loo bound or Bayesian evidence more suitable?

- In other words, we may have

<table>
<thead>
<tr>
<th></th>
<th>CV+grid</th>
<th>loo/Bayesian</th>
</tr>
</thead>
<tbody>
<tr>
<td>parameter selection</td>
<td></td>
<td>></td>
</tr>
<tr>
<td>feature selection</td>
<td></td>
<td><</td>
</tr>
</tbody>
</table>

Chih-Jen Lin, National Taiwan University
Comparing Two Methods

- **If**

<table>
<thead>
<tr>
<th></th>
<th>Method 1</th>
<th>Method 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two-class classification</td>
<td>so so</td>
<td>excellent</td>
</tr>
<tr>
<td>Multi-class</td>
<td>easy</td>
<td>complicated</td>
</tr>
<tr>
<td>Probability output</td>
<td>easy</td>
<td>easy</td>
</tr>
<tr>
<td>Parameter selection</td>
<td>easy</td>
<td>difficult</td>
</tr>
<tr>
<td>Feature selection</td>
<td>easy</td>
<td>difficult</td>
</tr>
<tr>
<td>regression</td>
<td>easy</td>
<td>easy</td>
</tr>
</tbody>
</table>

- Which should we use?
• When comparing two methods
 All aspects should be considered

• SVM
 Not particularly good
 Each item: by several research papers

• Any method: one paper provides all and results reasonably good?
Random Forest Is One

- 500 trees
 - Each: full tree using m_{try} random features
- Prediction: by voting
• Multi-class: by tree

• Probability output: proportion of 500

• Parameter selection: m_{try} the only parameter
 Moreover, not sensitive

• Feature selection:
 Out-of-bag validation of each tree
 \Rightarrow feature importance

• All these are discussed in Breiman’s paper
• Performance: My experience and [Meyer et al. 2003]

 Competitive with (or only a bit worse than) SVM

• Though some said:

 Comparing random forest with SVM not fair
 ⇒ random forest, random nearest neighbor, random SVM

• RF: simple and complete

• My goal for SVM: as simple and complete software
Numerical Stability

- Many classification methods (e.g., SVM, neural networks) solve optimization problems
- Part of their implementations:
 Essentially numerical software
- Numerical analysts: high standard on their code
 We do not
- Reasonable:
 Efforts on implementing method A
 One day method B: higher accuracy
 Efforts wasted
- Really a dilemma
Example: SMO and Linear Kernel

- Selecting working set \(\{i, j\} \), solve

\[
\begin{align*}
\min_{\alpha_i, \alpha_j} & \quad \frac{1}{2} \begin{bmatrix} \alpha_i & \alpha_j \end{bmatrix} \begin{bmatrix} Q_{ii} & Q_{ij} \\ Q_{ji} & Q_{jj} \end{bmatrix} \begin{bmatrix} \alpha_i \\ \alpha_j \end{bmatrix} + (Q_{i,N} \alpha_N^k - 1) \alpha_i + (Q_{j,N} \alpha_N^k - 1) \alpha_j \\
\text{subject to} & \quad y_i \alpha_i + y_j \alpha_j = -y_N^T \alpha_N^k, \\
& \quad 0 \leq \alpha_i, \alpha_j \leq C,
\end{align*}
\]

- If \(y_i = y_j \), substituting \(\alpha_i = -\alpha_j - \cdots \)

One-variable minimization:

\[
\alpha_j^{new} = \alpha_j + \frac{G_i - G_j}{Q_{ii} + Q_{jj} - 2Q_{ij}}
\] (1)
where

\[G_i \equiv (Q_\alpha)_i - 1 \] and \[G_j \equiv (Q_\alpha)_j - 1. \]

Clipping it back to \([0, C]\)
• Linear kernel: matrix may be PSD but not PD
\[Q_{ii} + Q_{jj} - 2Q_{ij} = 0 \]
Division by zero

• Some may say
Check if \(Q_{ii} + Q_{jj} - 2Q_{ij} = 0 \), if so,
add a small threshold

• Remember floating point “==” not recommended in general

• Indeed, no need to worry about this
As long as \(-G_i - G_j \neq 0\), (1) goes to \(\infty\) or \(-\infty\), defined under IEEE 754/854 floating-point standard.

- Comparing \(C\) and INF: valid IEEE operations
- Correctly clipped to 0 or \(C\)
- \(0/0\) not defined
- \(-G_i - G_j > \epsilon\) always holds
 \(\Rightarrow\) the stopping criteria
- \(0/0\) never happens
• What if $Q_{ii} + Q_{jj} - 2Q_{ij} < 0$ due to numerical error
 Or rounded to zero?

• Under IEEE: +0, -0
 -0 causes wrong direction

• Use

$$\frac{G_i - G_j}{\max(0, Q_{ii} + Q_{jj} - 2Q_{ij})}$$

• Proper $\max(-0, 0)$ gives 0

 java.lang.math: max:
 If one argument is positive zero and the other negative zero,
 the result is positive zero.

• Goldberg, ACM Computing Surveys, 1991

 What every computer scientist should know about floating-point
 arithmetic

Chih-Jen Lin, National Taiwan University
Example: SMO and tanh Kernel

- Whether it should be used or not is another issue
 Let's assume it is there
- Kernel matrix: non-PSD
 \[Q_{ii} + Q_{jj} + 2Q_{ij} < 0 \]
- Objective value \(\uparrow \) but not \(\downarrow \)
 Not converge to a local minimum
- Infinite loop using LIBSVM
 At one point: I have to warn users this in LIBSVM FAQ
Later we developed a simple strategy for all non-PSD kernels and proved convergence [Lin and Lin 2003]

But someone said

\[
\frac{1}{2} w^T w + C \sum_{i=1}^{l} \xi_i = \frac{1}{2} \alpha^T Q \alpha + C \sum_{i=1}^{l} l((Q \alpha)_i - 1)
\]

Non-convex; change it to

\[
\frac{1}{2} \alpha^T \alpha + C \sum_{i=1}^{l} l((Q \alpha)_i - 1)
\]

\text{tanh still used, but convex}
• Accuracy may be similar (sparsity another issue)

• He/she is right; but I cannot force users not to use SVM+tanh
 Such issues may still need to be investigated

• **Different points of view**:
 One is from designing methods
 One is from designing software
There are Many Such Issues

• For example
 How to check support vectors? $\alpha_i > 0, < C$
 A place where floating point “==” may be used
• Not only numerical analysis techniques
 SVM: optimization issues
• Implementation of ML software
 Can be a quite interdisciplinary issue
• ML software: many interesting research issues
 Some are traditional ML considerations
 Some are not

• It is rewarding to see users benefit from such research efforts