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Outline

-

Introduction to machine learning and support vector
machines (SVM)

SVM and optimization theory

SVM and numerical optimization

Practical use of SVM

Talk slides available at
http://www.csie.ntu.edu.tw/ cjlin/talks/rome.pdf

This talk intends to give optimization researchers an
overview of SVM research

|
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http://www.csie.ntu.edu.tw/~cjlin/talks/rome.pdf

What Is Machine Learning?

f o Extract knowledge from data T
# Classification, clustering, and others
We focus only on classification here
# Many new optimization issues
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Data Classification

f # Given training data in different classes (labels known) T

Predict test data (labels unknown)

# Examples

s Handwritten digits recognition
s Spam filtering

# Training and testing



Methods: T
» Nearest Neighbor

» Neural Networks

s Decision Tree

Support vector machines: another popular method
Main topic of this talk

Machine learning, applied statistics, pattern recognition
Very similar, but slightly different focuses

As it's more applied, machine learning is a bigger
research area than optimization

|
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Support Vector Classification
-

#® Training vectors . x;,i =1,...,1
# Consider a simple case with two classes:
Define a vector y

o 1 ifx;inclass1
773 21 ifx; inclass 2.

#® A hyperplane which separates all data

|
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(WTXZ') +b>0
(WTXZ') +b6 <0

® A separating hyperplane: w'x +b =0

ifyi:1
ifyz':—l

|
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» Decision function f(x) = sign(w!x + b), x: test data

Variables: w and b : Need to know coefficients of a
plane

Many possible choices of w and b

#® Select w, b with the maximal margin.

Maximal distance between wix 4+ b = +1

(wix))+b>1 ify; =1
(wix)+b< -1 ify; =-1

|
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# Distance between wix +b=1and —1:

2/|wl = 2/vw'w

® max?2/||w| = minw!w/2

, 1
min —wlw

w,b

subjectto  yi((w'x;) +b) > 1,
i=1,...,1

A nonlinear programming problem

#® A 3-D demonstration
L http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/svmtoy3d J
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-

# Notations very different from optimization
Well, this is unavoidable

o |
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Higher Dimensional Feature Spaces

- N

o Earlier we tried to find a linear separating hyperplane
Data may not be linearly separable
# Non-separable case: allow training errors

[
1
min §WTW—|—C;§,,;
yi(whx;) +0) >1-¢,
>0, 1=1,....1

® & >1,x; of the separating plane

# (' large penalty parameter, most ¢; are zero

o |
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#® Nonlinear case: linearly separable in other spaces ?

# Higher dimensional ( maybe infinite ) feature space

P(x) = (¢1(x), P2(x), .. .).

o |
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® Example: x ¢ R? ¢(x) € RY

¢(X) — (17 \/53317 \/53327 \/53337 113%,
23, 13, V21119, V21123, V21023)

1

# A standard problem (Cortes and Vapnik, 1995):

I
] (' E
vr?é% 2W w + &

subjectto  y;(w! ¢(xi)+b)21—§i, >0 i=1,...,1

|
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Finding the Decision Function

-

# w: avector in a high dimensional space
= maybe infinite variables
#® The dual problem

, 1
min  -a!Qa — e’ a
o 2

subjectto 0< o <C,i=1,...,1

yla =0,

where Qij = yiy]’gb(X@')Tgb(Xj) and e = [1, Caee 1]T

W= i aigid(xi)
L ® SVM problem: primal

-



Primal and dual : Discussed later
A finite problem:
#variables = #training data

Qi; = yiy;id(x;)! ¢(x;) needs a closed form
Efficient calculation of high dimensional inner products

Example: x; € R?, ¢(x;) € RV

¢(XZ) :(17 \/5(37’&')17 \/5(37’&')27 \/5(*%73)37 (sz)%,
(24)3, ()3, V2(xi)1(xi)2, V2(wi)1(2i)3, V2(i)2(24)3)

|
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Kernel Tricks

® Kernel: K(x,y) = o(x)! ¢(y)
No need to explicitly know ¢(x)
® Common kernels K (x;,x;) =

e Ixi—x1" " (Radial Basis Function)

(x'x;/a + b)? (Polynomial kernel)

# They can be inner product in infinite dimensional space

® Assume z € R' and v > 0.

|
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—y||zi—z;]? Y(@i—2;)* _ o—yri+2ymiz;—ye;

€ =€
_ e_wg_w;(le 2924 n (2ywix5)° X (2yziz;)’

1! 2! 3!

22 [ 27 [ 27 (27)? (27)% ,

(27)% 3 [(29)? 3
TR A T A

= o) p(zy),
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Decision function

-

# w: maybe an infinite vector
# At optimum

l
W — Zizl Oéiyz'ﬁb(xi)
® Decision function

w! (%) + b

;
= > awid(xi) p(x) + b
i=1

l
= Y owiK(x;,x) +b
i=1



-

®» No need to have w
® > (: 1stclass, < 0: 2nd class
# Only ¢(x;) of a; > 0 used

o; > 0 = support vectors

o |
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Support Vectors: More Important Data

- , , , , N
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Is Kernel Really Useful?

-

Training data mapped to be linearly independent

= separable

Except this, we know little in high dimensional spaces
Selection is another issue

On the one hand, very few general kernels

On the other hand, people try to design kernels specific
to applications

Overall this may be the weakest point of SVM

|
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SVM and Optimization
=

# Dual problem is essential for SVM
There are other optimization issues in SVM
# But, things are not that simple

If SVM isn’t good, useless to study its optimization
Issues

o |
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Optimization in ML Research

-

Everyday there are new classification methods

Most are related to optimization problems

Most will never be popular

Things optimization people focused (e.g., convergence
rate) may not be that important for ML people

More examples later

|
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In machine learning

The use of optimization techniques sometimes not
rigorous

Usually an optimization algorithm

1. Strictly decreasing

2. Convergence to a stationary point
3. Convergence rate

In some ML papers, 1 even does not hold
Some wrongly think 1 and 2 the same

-

|
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Status of SVM
-

Existing methods:

Nearest neighbor, Neural networks, decision trees.
SVM: similar status (competitive but may not be better)
In my opinion, after careful data pre-processing
Appropriately use NN or SVM = similar accuracy

But, users may not use them properly

The chance of SVM

s Easier for users to appropriately use it

» Replacing NN on some applications

|

.—p.25/121



- N

® So SVM has survived as a ML method

#® There are needs to seriously study its optimization
Issues

o |
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B SVM and Optimization Theory



A Primal-Dual Example

- N

# Let us have an example before deriving the dual
To check the primal dual relationship:

z
W= aiyip(x;)
1=1
# Two training data in R':

A a
= O
0 1

# What is the separating hyperplane ?

o |



Primal Problem

-

® x1=0,x9=1withy =[-1,1].
# Primal problem

1
min —w?
w,b
subject to w-1+b2>1,
—1(w-0+0) > 1.



—b>landw >1—-b> 2.
We are minimizing $w?

The smallestis w = 2.

(w,b) = (2,—1) optimal solution.
The separating hyperplane 2z — 1 =0

yAmmY @

0 r=1/2

)
u
1

|
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Dual Problem

- N

# Formula without penalty parameter C

L l
, 1
min > vogyiyio(x) o(xg) —
i=1

l
aeh i=1 j=1

z
subjectto ;> 0,i=1,...,1, and » a;y; = 0.
1=1

#® Get the objective function

x1x1 =0,x1 %9 =0

ngl = O,Xng =1

o |
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#® Objective function

® Constraints

1
2

~af — (a1 + az)

|
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ag = «aq to the objective function,

1 2
- - 2
20[1 1

Smallest value at oy = 2.

as = 2 as well

2,2]! satisfies 0 < a; and 0 < a
Optimal

Primal-dual relation

Y111 + Y2029

w

2

1-2-14(=1)-2-0

|
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SVM Primal and Dual
-

# Standard SVM (Primal)

[
1 T

mi — C’g :

,é,% 2W W + i:1§z

subjectto  yi(wlo(x;)+b) > 1—&,
>0, 1=1,...,1.

# w: huge (maybe infinite) vector variable
# Practically we solve dual, a different but related problem

o |
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# Dual problem

[ z
. 1 T
min > vogyiyio(x) o(xg) —
i=1 j=1 i=1
subjectto 0<q; <C, i=1,...,1,
z
Z yic; =0
1=1

9 K(XZ',X]') — ¢(Xi)T¢(X]‘) available

® o [ variables: finite

o |
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Primal Dual Relationship

-

# At optimum

where e = [1,...,1]".
# Primal objective value = —Dual objective value

® How does this dual come from ?

o |
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Derivation of the Dual

-

# Consider a simpler problem

, 1
min —WTW
w,b

subjectto  yi(wlo(x) +b)>1,i=1,...,1

® Its dual
min —zza@a;,yzyﬂb xi)" zaz
1=1 7=1
subjectto 0 < qy, i=1,...,1,

[
Z Y; Oy = 0.
1=1
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Lagrangian Dual

-

® Defined as

in L(w,b
glgg(rgvfg (W, b, ),

where

[
= L w2 2 ST (0 (wT () + b) —
L(w,b,a) = 5w ;&Z(y@(w o(x;) +b) — 1)
#» Strong duality

min Primal = max(min L(w, b, «))
a>0 w,b



- N

o Simplify the dual. When « is fixed,

min L(w, b, )
w,b

B {oo If 22:1 a;y; 7 0,

ming sw/w — S ailyi(wlo(x;) — 1] if L agyi = 0.

o |f Zézl QY # 0,

decrease —b >\, cjy; in L(w, b, &) 10 —cc

o |
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o |f Zﬁzl a;y; = 0, optimum of the strictly convex

%WTW — Zizl o [yz'(WTqb(Xi) — 1] happens when

0
a—wL(W, b, ) = 0.

® Assume w € R". L(w,b, ) rewritten as
1 n [ n
5w = D alyi(dwi(xi); — 1]
j=1 i=1 j=1

l

0

—L(w,b,a) = Wi — Z @iyi¢(Xi)j =0
i=1

B N
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® Thus,
l
W = Z oY P(X;).
1=1
® Note that
l T , 1
wiw = (Zawz’cﬁ(xz’)) (Zajngb(xj)>
i=1 g=1

Z ;oYY o(%i) T o(x;)
1,]



o

-

The dual 1s

z e
max 2 i1 0t — % )3 aiajyiyj¢(xi)T¢(Xj) if > . oy =0,
e G If 22:1 a;y; # 0.

—oo definitely not maximum of the dual

Dual optimal solution not happen when 2221 a;y; # 0.
Dual simplified to

max Zaz - 3 Z Z&z&jyzy]¢ XZ gb( )
aER! i—1 j—1

subjectto ;> 0,i=1,...,1, and y'a = 0. J

.—p.42/121



Karush-Kuhn-Tucker (KKT) conditions
- -

® The KKT condition of the dual:

Ozi)\i:()
Ai >0

#® The KKT condition of the primal:

[
W= ) 0y
1=1

ai(yiw! x; +by; — 1) = 0

yTazovai >0



o -

(Qa — e + by);
z
= ) wiyjax; xj — 1+ by,
j=1

= yiw' x; — L+ y;b
= yi(WTXZ' + b) — 1

#® The KKT of the primal the same as the KKT of the dual

o |
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More about Dual Problems
-

w may be infinite
Seriously speaking, infinite programming (Lin, 2001a)

In machine learning, quite a few think that for any
optimization problem

Lagrangian dual exists
This Is wrong

Lagrangian duality usually needs
s Convex programming problems
s Constraint qualification

|
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# We have them
s SVM primal is convex
s Constraints linear

# Why ML people sometimes make such mistakes
They focus on developing new methods
It is difficult to show a counter example

o |
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SVM and Numerical Optimization



Large Dense Quadratic Programming

-

o

o

9

o

-

ming, %aTQa —el'a, subjecttoy’a=0,0<o; < C

Ri; 70, Q : an( by [ fully dense matrix
30,000 training points: 30,000 variables:

(30,0002 x 8/2) bytes = 3GB RAM to store Q: still difficult
Traditional methods:
Newton, Quasi Newton cannot be directly applied

Current methods:

» Decomposition methods (e.g., (Osuna et al., 1997,
Joachims, 1998; Platt, 1998))

» Nearest point of two convex hulls (e.g.,

P R |

Keerthi et al., 1999))
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o

Decomposition Methods

# Working on a few variable each time

® Similar to coordinate-wise minimization
o Working set B, N ={1,...,l}\B fixed
Size of B usually <= 100

#® Sub-problem in each iteration:

subject to

ap
e ()] |5
_aN_

0< o <C,t€B, ypap=—yyo

Opp WBN]| |aB
N ONN| |ay

k
N

|
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Avoid Memory Problems

- N

# The new objective function

1
§a}§QBBaB + (—ep + Qpnak)lap + constant

#® B columns of () needed

® Calculated when used
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Decomposition Method: the Algorithm

-

1.

B

Find initial feasible o
Setk = 1.

. If o stationary, stop. Otherwise, find working set B.

Define N ={1,...,[}\B

. Solve sub-problem of ap:

. 1
I&l}gﬂ 5&%@33&3 + (—eB + QBNO&{V)T

ap

subjectto 0< o <C,t€B

T T T k
YBO&pB = —YNON,

.ol = ok, Setk — k 4+ 1; goto Step 2.

|
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Does it Really Work?

Compared to Newton, Quasi-Newton
Slow convergence
However, no need to have very accurate «

z
sgn (Z oy K (x4, X) + b)

1=1
Prediction not affected much

In some situations, # support vectors < # training points

Initial o' = 0, some elements never used
An example where ML knowledge affect optimization

|
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Working Set Selection
f # \ery important T

Better selection = fewer iterations
® But

Better selection = higher cost per iteration

# Two issues:
1. Size
|B| 7, # Iterations ™\
| B| \, # Iterations ~
2. Selecting elements

o |
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Size of the Working Set
-

# Keeping all nonzero «; in the working set
If all SVs included = optimum
Few iterations (i.e., few sub-problems)
Size varies
May still have memory problems
# EXxisting software
Small and fixed size
Memory problems solved
Though sometimes slower

o |
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Sequential Minimal Optimization (SMO)
- -

o Consider |B| = 2 (Platt, 1998)
|B| > 2 because of the linear constraint
Extreme of decomposition methods

#® Sub-problem analytically solved; no need to use
optimization software

min 5 [ozi 04]} Qi Qij |+ (QBNa]fV - eB)T Z
@i, Qij Qjj| | Qj

S.1. 0< g, O < (),

T k
Vi +Yj0; = —ynNOp,

o |
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Optimization people may not think this a big advantage
Machine learning people do: they like simple code

A minor advantage in optimization

No need to have inner and outer stopping conditions

B = {i,j}

Too slow convergence?

With other tricks, |B| = 2 fine In practice

|
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Selection by KKT violation
- -

® min, f(a), subjecttoy’aa=0,0<o; <C
#® « stationary if and only if

Vi(a) +by =X —p,
Nivi =0, 1;(C'— ;) =0, >0, > 0,0 =1,...,1,

® Vila)=Qa—e
® Rewritten as

Vila); +by; >0 if a; < C,
Vila); +by; <0 If a; > 0.
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® Note y;, = +1

® KKT further rewritten as

)i+b>0 ifa, < C,y; =1
a)i—b>0 ifa; < C,y; = —1
)i+b6<0 ifa; > 0,9y, =1,
a); —b <0 ifa; >0,y;, = —1

(87

(87

VI
VI
VA
VI

# A condition on the range of b:

max{—ytVf(a)t ’ o < C, yr =1 0rap > 0,y = —1}

S

min{—ytVf(a)t ’ o < C, yy = —10Oray >0,y = I}J
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#® Define
]up(a) — {t ‘ ar < O, yr =10rap > 0,y = —1}, and
]low(a) — {t ‘ ar < C, yr = —10ray >0,y = 1}.

# o stationary if and only if feasible and

max —y;Vf(a); < min —yVf(a).

ZEIup(a) 'I:EIIOW(Q)

o |
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Violating Pair
- -

# KKT equivalent to

i € Iup(av),j € Iiow(a), and — y;V f(a); > —y; Vf(a);.

# Strict decrease if and only if B has at least one violating
pair.

However, having violating pair not enough for
convergence.

o |

.- p.60/121



Maximal Violating Pair

- N

# |f |B| = 2, naturally indices most violate the KKT
condition:

1 € arg max —yV ak,
3 A, fle)s

jearg min  —yVf(a®),
t€liow ()

o Can be extended to |B| > 2

o |
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Calculating Gradient
B -

# To find violating pairs, gradient maintained throughout
all iterations

#® Memory problem occur as V f(a) = Qa — e involves @)
# Solved by following tricks
1. al =0implies Vf(al)=Q -0 —e = —e
Initial gradient easily obtained
2. Update V f(a) using only Qpp and Qpx:

Vi) = Vf(a")+ Q" —af)
_ Vf(ak) 4 Q:’B(aknLl o ak)B

# Only |B| columns needed per iteration



Selection by Gradient Information

- N

# Maximal violating pair same as using gradient

Information
{i,j} = arg BT{E{LQS”b(B)’
where
Sub(B)=min  Vf(a®)Ldp (1a)

ds

subjectto  yLdgp =0,
d; >0, ifaf =0,t€B,  (ib)
d; <0, ifozf:C,tEB, (1c)
~1<d;<1,teB. (1d)
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°

First considered in (Joachims, 1998)
Letd = [dp;0y], (18) comes from minimizing

f(ak+d) ~ f(ak)—l—Vf(ak)Td

= f(ak) + Vf(ak)gdg.

First order approximation
0 < oy < (C leads to (1b) and (1c).
—1 <d; <1,t € B avoid —oco objective value

|
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# Rough explanation connecting to maximal violating pair

Vf(eX)idi + V f(a¥);d;
=y V(@) yidi +y;V (@) - y;d;
= (V)i =y V(b)) - (yids)
o We used y;d; + y;d; =0
Find {7, j} so that

°

yiV f(a®); — y; V f(a¥); the smallest, y;d; = 1, y;d; = —1
® y;d; =1 corresponds to i € I, (a®):

\— ]up(a)E{t]at<C,yt:10rat>O,yt:—1} J
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Convergence: Maximal Violating Pair

-

o

9

9

-

AAMNN1

Special case of (Lin, 2001c

Let & limit of any convergent subsequence {a”},k € K.
If not stationary, 3 a violating pair

NS ]up(a)aj € how(ar), and — yivf(&)i + yivf(&)§> 0

If i € Ip(@), then i € (), Vk € K large enough

If i € Ly (@), then i € L1, (a®), Yk € K large enough

So
{4,7} a violating pair at k € K
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® From kto k£ + 1:
B¥ = {i, 5}
i ¢ Iup(a’““) Or j ¢ Fow(a®™)
because of optimality of sub-problem
# |f we can show
{ak}ke/C —a= {ak+1}ke/C - a,

then {i, j} should not be selected at &,k +1,...,k +r
# A procedure showing in finite iterations, it is selected
Contradiction

o |
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Key of the Proof

f # Essentially we proved T

In finite iterations, B = {¢, j} selected

to have a contradiction

# Can be used to design working sets (Lucidi et al.,

£ZUUD).

4N > 0 such that for all £, any violating

pair of o selected at least once in iterations & to k + N

#® A cyclic selection

(1,2}, {1,3Y, ... {10}, {23V, ... {1 — 1,1}
| |
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Beyond Maximal Violating Pair
B | -

#® Better working sets?
Difficult: # iterations \, but cost per iteration ~

May not imply shorter training time
#® A selection by second order information (Fan et al.,

"N\NT-

£ZUUO
As f Is a quadratic,

fl@*+d) = f(a)+Vfa®)'d+ %dTVQf(ak)d

= f(a") +Vf(a")Ldp + %dgVQf(ak)BBdB

o |
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Selection by Quadratic Information

- N

#® Using second order information

min Sub(B),
B:|B|=2
SUb(B) — Iélin %le;VQf(ak)BBdB + Vf(ak)gdg

subjectto  yLdgp =0,
d;, >0, ifaf =0,t € B,
d; <0, ifaf =C,t e B.
® —1<d;<1,te Bnotneededif V2f(a*)gp = Qpr PD
| » Too expensive to check (1) sets N
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® A heuristic
1. Select

I € arg m?X{—ytVf(ak)t |t € Ip(a®)).

2. Select
j € arg mtin{Sub({i,t}) |t € Tiow(a®),
—yVf(a®) < —yVf(a)}).

3. Return B = {i,j}.
# The same ¢ as the maximal violating pair

L Check only O(l) possible B’s to decide j J
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Comparison of Two Selections

# |Iteration and time ratio between using quadratic

Ratio

14

12

0.8

0.6

0.4

0.2

iInformation and maximal violating pair

T

| | |
time (40M cache) -A-
time (100K cache) -©-
total #iter 5+

1

T

T

T

T

Data sets

-

|
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Comparing SVM Software/Methods
=

In optimization, straightforward to compare two methods

°

# Now the comparison under one set of parameters may
not be enough

# Unclear yet the most suitable way of doing comparisons

® In ours, we check two

1. Timel/total iterations for several parameter sets used
In parameter selection

2. Time/iterations for final parameter set

# Simulate how we use SVM in practice

|
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|Issues about the Quadratic Selection

f # Asymptotic convergence holds T

# Faster convergence than maximal violating pair
Better approximation per iteration
But lacks global explanation yet

» What if we check all (}) sets

Iteration ratio between checking all and checking O(/):

o |
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14 I I I I I I I I I I
parameter selection ——

1.3 final training - 4

12

11

0.9

Ratio

0.8

0.7

0.6

05

0.4

Data sets

# Fewer iterations, but ratio (0.7 to 0.8) not enough to
justify the higher cost per iteration

|
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Caching and Shrinking
=

#® Speed up decomposition methods

# Caching (Joachims, 1998)
Store recently used Hessian columns in computer
memory

# Example

$tine ./libsvm2.81/svmtrain -mO0.01 ada
11. 463s

$tine ./libsvm2.81/svmtrain -m 40 ada
7.817s

o |
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# Shrinking (Joachims, 1998
Some bounded elements remain until the end
Heuristically resized to a smaller problem

o After certain iterations, most bounded elements
identified and not changed (Lin, 2002)

o |
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Stopping Condition
f # In optimization software such conditions are important T

However, don’t be surprised if you see no stopping
conditions in an optimization code of ML software

Sometimes time/iteration limits more suitable
® From KKT condition

ax —4iV f(a); < ief’ﬁjf(la) —yiVi(a)i+e (2

a natural stopping condition

o |
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Better Stopping Condition
B -

# Now in out software e = 10~
Past experience: ok but sometimes too strict

At one point we almost changed to 10!

® Large C' = large V f(a) components
Too strict = many iterations
Need a relative condition
# A very important issue not fully addressed yet

o |
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Example of Slow Convergence

Using C =1 T

$./1libsvm2.81/svmtrain -¢c 1 australian_scal
optimzation finished, # ter = 508
obj = -201.642538, rho = 0.044312

Using C' = 5000

$./libsvm2.81/svmtrain -c 5000 australian_:
optimzation finished, #iter = 35241
obj] = -242509. 157367, rho = -7.186733

Optimization researchers may rush to solve difficult
cases

That’s what | did in the beginning
It turns out that large C' less used than small C J
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Finite Termination

-

# Given ¢, finite termination under

Not implied from asymptotic convergence as

n —y;V i — —y; V ;
min =y fla) nax =y fla)

not a continuous function of o
® We worry

af = 0and i€ Iy (a®) N Doy (a®)

causes the program never ends
# Important from optimization point of view

|
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# ML people do not care this much

Many think finite termination same as asymptotic
convergence

We are careful on such issues in our software

# A good SVM software should
1. be a rigorous numerical optimization code
2. serve the need of users in ML and other areas

# Both are equally important

°

|
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Issues Not Discussed Here
f ® () not PSD T

# Solving sub-problems

Analytic form for SMO (two-variable problem)
# Linear convergence (Lin, 2001Db)

f(@ ) — f(a) < c(f(ab) — f(a))

Best worst case analysis



Practical Use of SVM



-
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Let Us Try An Example

#® A problem from astroparticle physics

. 617300e+01
. 707397e+01
. 725900e+01
. 177940e+01
. 133997e+01
. 537500e+01
. 956200e+01

NN NDNDMNDN
P RPN R RPN O

. 886700e+01
. 214040e+02
. 7134360e+02
. 249531e+02
. 935699e+02
. 792220e+02
. 913570e+02

W W w wwwow

:-1.894697e-01 4:1.251225e+02
: 8.607959e-02 4:1.229114e+02
:-1.298053e-01 4:1.250318e+02
: 1. 538853e-01 4:1.527150e+02
:1.423918e-01 4:1.605402e+02
: 1. 654953e-01 4:1.112273e+02
:9.901439e-02 4:1.034076e+02

# Training and testing sets available: 3,089 and 4,000

® Data format s an issue

|
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SVM software: LIBSVM
-

http://wwv. csie.ntu.edu.tw ~cjlin/libsvm
Now one of the most used SVM software

Installation

On Unix:

Download zip file and make

On Windows:

s Download zip file and make
s c:nmake -f Mikefile.wn
» Windows binaries included in the package

|
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http://www.csie.ntu.edu.tw/~cjlin/libsvm

-

o

# Training

Usage ofLIBSVM
-

Usage: svmtrain [options] training set file
opt i ons:
-Ss svmtype : set type of SVM (default O0)

0 -- GSVC

1 -- nu-SVC

2 -- one-class SVM
3 -- epsilon-SVR

4 -- nu-SVR

-t kernel type : set type of kernel function

# Testing

Usage: svmpredict test file nodel file out

|
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Training and Testing

-

# Training
$./svmtrain train.1

optimzation finished, #iter = 6131
nu = 0.606144

obj -1061. 528899, rho = -0.495258
nSV = 3053, nBSV = 724

Total nSV = 3053

# Testing

$./svmpredict test.1 train. 1. nodel
test. 1. predi ct
Accuracy = 66.925% (2677/4000)

o |
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°

What does this Output Mean
-

obj: the optimal objective value of the dual SVM
rho: —b in the decision function

nSV and nBSV: number of support vectors and
bounded support vectors

(i.e., oy = O)

nu-svm is a somewhat equivalent form of C-SVM where
C'is replaced by v.

|
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Why this Falls

- N

# After training, nearly 100% support vectors
# Training and testing accuracy different

$./svmpredict train.1 train.1. nodel o
Accuracy = 99.7734% (3082/ 3089)

® RBF kernel used

o~ YIIxi—x;]”

=1 ifi=j,
Kij e
— 0 Ifi# 7.

o |
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f.. K — 1

1
min —oala—ela
o 2
subjectto 0< o <C,i=1,...,1
y' o=
# Optimal solution
T
€
2>0=e€e— y—y > ()

[

® o; >0
yi(WTXZ' -+ b) =1

L Zero training error J
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Data Scaling
-

# Without scaling
Attributes In greater numeric ranges may dominate

# Example:
height gender
x1 150 F
X9 180 M
x3 185 M
and

y1 =0,y =1,y3 = 1.

o |
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f # The separating hyperplane

I
|
|
|
|
X1 :
, O O
|
]
|
|
|

# Decision strongly depends on the first attribute
# What if the second is more important

.—p.93/121



-

# Linearly scale the first to |0, 1] by:

1st attribute — 150
185 — 150 ’

# New points and separating hyperplane

A .
X1 e
/
/
/
/
/
/
/
/
7/

OO
X2X3

o |
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# Transformed to the original space,

—
—
—
—
—
—
—
—
—
—
—
—
-—
—

#® The second attribute plays a role

# Scaling generally helps, but not always

o |
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More about Data Scaling

- N

$./svmscale -1 -1 -u 1l train.1l > train.1.scale
$./svmscale -1 -1 -u 1l test.1 > test.1.scale

® A common mistake
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# Same factor on training and testing

$./svmscale -s rangel train.1 > train. 1. scal
$./svmscale -r rangel test.1 > test.1l.scale

$./svmtrain train.1. scale
$./svmpredict test.1.scale train. 1. scale.no

test. 1. predi ct
— Accuracy = 96. 15%

#® We store the scaling factor used in training
and apply them for testing set

o |
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More on Training

-

Train scaled data and then prediction

$./svmtrain train.1l. scale

$./svmpredict test.l.scale train.1l.scal e. nD
test. 1. predi ct
— Accuracy = 96. 15%

Training accuracy now Is

$./svmpredict train.l.scale train.1l.scale. m
Accuracy = 96.439% (2979/3089) (classificati:

Default parameter
C=1,v=0.25

|
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Different Parameters
L -

# |f we use C = 20,~ = 400

$./svmtrain -c 20 -g 400 train.1.scale
$./svmpredict train.1l.scale train.1.scale. m
Accuracy = 100% (3089/3089) (classification)

# 100% training accuracy but

$./svmpredict test.1.scale train. 1. scale.no
Accuracy = 82. 7% (3308/4000) (classification

# \ery bad test accuracy

# Overfitting happens

o |
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Overfitting and Underfitting

- N

# When training and predicting a data,
we should

» Avoid underfitting: small training error
s Avoid overfitting: small testing error
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e and A: training; () and A: testing

.—p.101/121




-

Overfitting

# Intheory
You can easily achieve 100% training accuracy

#® This is useless
& Surprisingly
Many application papers did this
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Parameter Selection

Sometimes important
Now parameters are

C' and kernel parameters
Example:

a,b,d of (x}x;/a +b)"

How to select them ?

|
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Performance Evaluation

f # Training errors not important; only test errors count T

# | training data, x; € R",y; € {+1,—-1},¢=1,...,[,a
learning machine:

r— f(x,a), f(x,a) =10r —1.

Different «: different machines
® The expected test error (generalized error)

Ro) = [ 5ly = fxa)ldPix.)

y. class of x (l.e. 1 or -1)

o |
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f ® P(x,y) unknown, empirical risk (training error): T

emp 2l Z ‘yz — X’u

® 2|y — f(xi, )| : loss, choose 0 < 5 < 1, with probability
at least 1 — n:

R(a) < Remp(a) + another term

s A good pattern recognition method:
minimize both terms at the same time

» Reppla) — 0
L another term — large J
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Performance Evaluation (Cont.)
f # In practice T
Available data = training, validation, and (testing)
# Train + validation = model
# [-fold cross validation:

s Data randomly separated to k groups.

s Each time k& — 1 as training and one as testing
s Select parameters with highest CV

» Another optimization problem

o |
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A Simple Procedure
-

. Conduct simple scaling on the data

. Consider RBF kernel K (x,y) = e =¥l

. Use cross-validation to find the best parameters C' and
Y
. Use the best C' and ~ to train the whole training set

. Test

Best C' and ~ by training £ — 1 and the whole ?
In theory, a minor difference

No problem in practice

Just a rough guideline. E.g., scaling hurts sometimes
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Why trying RBF Kernel First

- _—

d Lin,

# Linear kernel: special case of RBF (Keerthi an

NANNN

<UUS

Leave-one-out cross-validation accuracy of linear the
same as RBF under certain parameters

Related to optimization as well
# Polynomial: numerical difficulties
(<14 —=0,(>1)— o0

More parameters than RBF

o |
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Parameter Selection INnLIBSVM

- N

# grid search + CV

$./grid.py train.1 train.1l. scale
[local] -1 -7 85.1408 (best c¢=0.5, g=0.0078125, rate=85.1408)
[local] 5 -7 95.4354 (best ¢=32.0, g=0.0078125, rate=95.4354)

# grid.py: a python script in the python directory of LIBSVM

o |
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Contour of Parameter Selection

f d2 _‘

08.6 --------
984
3 97.8
97.6 -
974 e e
49 97.2 ——
{1
lg(gamma)
10
1
I -2
1 2 3 p : . ]
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Simple script In LIBSVM
- -

#® easy.py: a script for dummies

$pyt hon easy.py train.1 test.1
Scaling training data...

Cross validation...

Best ¢=2.0, g=2.0

Trai ni ng. ..

Scaling testing data...
Testing. ..

Accuracy = 96.875% (3875/4000)

o |
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Example: Engine Misfire
Detection

11111111111



o o

°

Problem Description
.

First problem of IJCNN Challenge 2001, data from For
Given time series length 7" = 50, 000
The kth data

xl(k)a xQ(k)v LBg(k), 5134(/6), 5135(16), y(k)

y(k) = +1: output, affected only by z1(k), ..., z4(k)
rs(k) = 1, kth data considered for evaluating accuracy
50,000 training data, 100,000 testing data (in two sets)

|
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f # Past and future information may affect y(k)

® (k). periodically nine Os, one 1, nine 0s, one 1, and so

on.

# Example:

OCOOOOO0O0O
OCOOOOO0O0O
OCOOOOO0O0O
OCOOOOO0O0O
oo .00 .O
e A
Q\ O
ONMN~LOOGYCO N0
OOOMOHLOLO
ONOMUO AT
OOANMNNOONN
OCOOOOHAOH
oo .00 .O
oo OO0 O
00000 LOLOLOLO
OOANNANANANN
NN HLOLOLWIOLW
o)lerlerlerlerler]e)]e)
OCOOOOOOO
e e e e

OCOOOOOOO0O

—COCOMN~-O)—(NQO
oMMOLOOIMO
OOLNSNMHOLON
OO0 OOOOOO
oOLHOOOLOHOLNO
OOVOOOOWOO

OCOOOOOOO0O

OCOOOOO0O0O
OCOOOOO0O0O
OCOOOOOO0O
OCOOOOO0O0O
OCOOOOOO0O
OCOOOOO0O0O

COO—HOOOO

® 14(k) more important
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Background: Engine Misfire Detection

-

9

°

-

How engine works
Air-fuel mixture injected to cylinder
Intact, compression, combustion, exhaustion

Engine misfire: a substantial fraction of a cylinder’s
air-fuel mixture fails to ignite

Frequent misfires: pollutants and costly replacement
On-board detection:

Engine crankshaft rational dynamics with a position
sensor

Training data: from some expensive experimental
environment

|
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Encoding Schemes

For SVM: each data is a vector
r1(k): periodically nine 0s, one 1, nine Os, one 1, ...

s 10 binary attributes
r1(k —5),...,x1(k + 4) for the kth data

s z1(k): anintegerin1lto 10
o Which one Is better
» We think 10 binaries better for SVM

r4(k) more important
Including z4(k — 5), ..., x4(k + 4) for the kth data
Each training data: 22 attributes

-

|
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Training SVM

Selecting parameters; generating a good model for
prediction

RBF kernel K (x;,x;) = ¢(x;) T ¢(x;) = e X%l
Two parameters: v and C

Five-fold cross validation on 50,000 data

Data randomly separated to five groups.

Each time four as training and one as testing

Use C' = 2% ~ = 22 and train 50,000 data for the final
model

|
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d2

lg(gamma)
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- N

® Testset 1: 656 errors, Test set 2: 637 errors

#® About 3000 support vectors of 50,000 training data
A good case for SVM

# This is just the outline. There are other detalls.

# |t is essential to do parameter selection

o |
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Conclusions

-

# SVM optimization issues are challenging
Quite extensively studied

But better results still possible

# Why working on machine learning?
It is less mature than optimization
More new issues

# Many other optimization issues from machine learning
Need to study things useful for ML tasks

o |
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f #» While we complain ML people’s lack of optimization T
knowledge, we must admit this fact first

ML people focus on developing methods, so pay less
attention to optimization details

o Only if we widely apply solid optimization technigues to
machine learning

then the contribution of optimization in ML can be
recognized

o |
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