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Outline

Introduction to machine learning and support vector
machines (SVM)

SVM and optimization theory

SVM and numerical optimization

Practical use of SVM

Talk slides available at

http://www.csie.ntu.edu.tw/˜cjlin/talks/rome.pdf

This talk intends to give optimization researchers an
overview of SVM research
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What Is Machine Learning?

Extract knowledge from data

Classification, clustering, and others

We focus only on classification here

Many new optimization issues
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Data Classification

Given training data in different classes (labels known)

Predict test data (labels unknown)

Examples
Handwritten digits recognition
Spam filtering

Training and testing
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Methods:
Nearest Neighbor
Neural Networks
Decision Tree

Support vector machines: another popular method

Main topic of this talk

Machine learning, applied statistics, pattern recognition

Very similar, but slightly different focuses

As it’s more applied, machine learning is a bigger
research area than optimization

. – p.5/121



Support Vector Classification

Training vectors : xi, i = 1, . . . , l

Consider a simple case with two classes:

Define a vector y

yi =

{

1 if xi in class 1
−1 if xi in class 2,

A hyperplane which separates all data
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wTx + b =


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

+1

0

−1


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A separating hyperplane: wTx + b = 0

(wTxi) + b > 0 if yi = 1

(wTxi) + b < 0 if yi = −1
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Decision function f(x) = sign(wTx + b), x: test data

Variables: w and b : Need to know coefficients of a
plane

Many possible choices of w and b

Select w, b with the maximal margin.

Maximal distance between wTx + b = ±1

(wTxi) + b ≥ 1 if yi = 1

(wTxi) + b ≤ −1 if yi = −1
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Distance between wTx + b = 1 and −1:

2/‖w‖ = 2/
√

wTw

max 2/‖w‖ ≡ minwTw/2

min
w,b

1

2
wTw

subject to yi((w
Txi) + b) ≥ 1,

i = 1, . . . , l.

A nonlinear programming problem

A 3-D demonstration

http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/svmtoy3d
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Notations very different from optimization

Well, this is unavoidable
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Higher Dimensional Feature Spaces

Earlier we tried to find a linear separating hyperplane

Data may not be linearly separable

Non-separable case: allow training errors

min
w,b,ξ

1

2
wTw + C

l
∑

i=1

ξi

yi((w
Txi) + b) ≥ 1− ξi,

ξi ≥ 0, i = 1, . . . , l

ξi > 1, xi not on the correct side of the separating plane

C: large penalty parameter, most ξi are zero
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Nonlinear case: linearly separable in other spaces ?

Higher dimensional ( maybe infinite ) feature space

φ(x) = (φ1(x), φ2(x), . . .).
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Example: x ∈ R3, φ(x) ∈ R10

φ(x) = (1,
√

2x1,
√

2x2,
√

2x3, x
2
1,

x2
2, x

2
3,
√

2x1x2,
√

2x1x3,
√

2x2x3)

A standard problem (Cortes and Vapnik, 1995):

min
w,b,ξ

1

2
wTw + C

l
∑

i=1

ξi

subject to yi(w
Tφ(xi) + b) ≥ 1− ξi, ξi ≥ 0, i = 1, . . . , l.

. – p.13/121



Finding the Decision Function

w: a vector in a high dimensional space

⇒ maybe infinite variables

The dual problem

min
α

1

2
αTQα− eT α

subject to 0 ≤ αi ≤ C, i = 1, . . . , l

yT α = 0,

where Qij = yiyjφ(xi)
Tφ(xj) and e = [1, . . . , 1]T

w =
∑l

i=1 αiyiφ(xi)

SVM problem: primal
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Primal and dual : Discussed later

A finite problem:

#variables = #training data

Qij = yiyjφ(xi)
T φ(xj) needs a closed form

Efficient calculation of high dimensional inner products

Example: xi ∈ R3, φ(xi) ∈ R10

φ(xi) =(1,
√

2(xi)1,
√

2(xi)2,
√

2(xi)3, (xi)
2
1,

(xi)
2
2, (xi)

2
3,
√

2(xi)1(xi)2,
√

2(xi)1(xi)3,
√

2(xi)2(xi)3)

Then φ(xi)
Tφ(xj) = (1 + xT

i xj)
2.
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Kernel Tricks

Kernel: K(x,y) = φ(x)Tφ(y)

No need to explicitly know φ(x)

Common kernels K(xi,xj) =

e−γ‖xi−xj‖
2

, (Radial Basis Function)

(xT
i xj/a + b)d (Polynomial kernel)

They can be inner product in infinite dimensional space

Assume x ∈ R1 and γ > 0.
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e−γ‖xi−xj‖
2

= e−γ(xi−xj)
2

= e−γx2
i +2γxixj−γx2

j

= e−γx2
i−γx2

j
(

1 +
2γxixj

1!
+

(2γxixj)
2

2!
+

(2γxixj)
3

3!
+ · · ·

)

= e−γx2
i−γx2

j
(

1 · 1 +

√

2γ

1!
xi ·

√

2γ

1!
xj +

√

(2γ)2

2!
x2

i ·
√

(2γ)2

2!
x2

j

+

√

(2γ)3

3!
x3

i ·
√

(2γ)3

3!
x3

j + · · ·
)

= φ(xi)
Tφ(xj),

where

φ(x) = e−γx2[

1,

√

2γ

1!
x,

√

(2γ)2

2!
x2,

√

(2γ)3

3!
x3, · · ·

]T
.
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Decision function

w: maybe an infinite vector

At optimum

w =
∑l

i=1 αiyiφ(xi)

Decision function

wTφ(x) + b

=
l
∑

i=1

αiyiφ(xi)
T φ(x) + b

=
l
∑

i=1

αiyiK(xi,x) + b
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No need to have w

> 0: 1st class, < 0: 2nd class

Only φ(xi) of αi > 0 used

αi > 0⇒ support vectors
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Support Vectors: More Important Data
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Is Kernel Really Useful?

Training data mapped to be linearly independent

⇒ separable

Except this, we know little in high dimensional spaces

Selection is another issue

On the one hand, very few general kernels

On the other hand, people try to design kernels specific
to applications

Overall this may be the weakest point of SVM
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SVM and Optimization

Dual problem is essential for SVM

There are other optimization issues in SVM

But, things are not that simple

If SVM isn’t good, useless to study its optimization
issues
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Optimization in ML Research

Everyday there are new classification methods

Most are related to optimization problems

Most will never be popular

Things optimization people focused (e.g., convergence
rate) may not be that important for ML people

More examples later
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In machine learning

The use of optimization techniques sometimes not
rigorous

Usually an optimization algorithm
1. Strictly decreasing
2. Convergence to a stationary point
3. Convergence rate

In some ML papers, 1 even does not hold

Some wrongly think 1 and 2 the same
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Status of SVM

Existing methods:

Nearest neighbor, Neural networks, decision trees.

SVM: similar status (competitive but may not be better)

In my opinion, after careful data pre-processing

Appropriately use NN or SVM⇒ similar accuracy

But, users may not use them properly

The chance of SVM

Easier for users to appropriately use it

Replacing NN on some applications
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So SVM has survived as a ML method

There are needs to seriously study its optimization
issues
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SVM and Optimization Theory
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A Primal-Dual Example

Let us have an example before deriving the dual

To check the primal dual relationship:

w =
l
∑

i=1

αiyiφ(xi)

Two training data in R1:

△
0

©
1

What is the separating hyperplane ?
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Primal Problem

x1 = 0,x2 = 1 with y = [−1, 1]T .

Primal problem

min
w,b

1

2
w2

subject to w · 1 + b ≥ 1,

−1(w · 0 + b) ≥ 1.
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−b ≥ 1 and w ≥ 1− b ≥ 2.

We are minimizing 1
2w2

The smallest is w = 2.

(w, b) = (2,−1) optimal solution.

The separating hyperplane 2x− 1 = 0

△
0

©
1

•
x = 1/2
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Dual Problem

Formula without penalty parameter C

min
α∈Rl

1

2

l
∑

i=1

l
∑

j=1

αiαjyiyjφ(xi)
T φ(xj)−

l
∑

i=1

αi

subject to αi ≥ 0, i = 1, . . . , l, and
l
∑

i=1

αiyi = 0.

Get the objective function

xT
1 x1 = 0,xT

1 x2 = 0

xT
2 x1 = 0,xT

2 x2 = 1
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Objective function

1

2
α2

1 − (α1 + α2)

=
1

2

[

α1 α2

]

[

0 0

0 1

][

α1

α2

]

−
[

1 1
]

[

α1

α2

]

.

Constraints

α1 − α2 = 0, 0 ≤ α1, 0 ≤ α2.
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α2 = α1 to the objective function,

1

2
α2

1 − 2α1

Smallest value at α1 = 2.

α2 = 2 as well

[2, 2]T satisfies 0 ≤ α1 and 0 ≤ α2

Optimal

Primal-dual relation

w = y1α1x1 + y2α2x2

= 1 · 2 · 1 + (−1) · 2 · 0
= 2
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SVM Primal and Dual

Standard SVM (Primal)

min
w,b,ξ

1

2
wTw + C

l
∑

i=1

ξi

subject to yi(w
Tφ(xi) + b) ≥ 1− ξi,

ξi ≥ 0, i = 1, . . . , l.

w: huge (maybe infinite) vector variable

Practically we solve dual, a different but related problem
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Dual problem

min
α

1

2

l
∑

i=1

l
∑

j=1

αiαjyiyjφ(xi)
T φ(xj)−

l
∑

i=1

αi

subject to 0 ≤ αi ≤ C, i = 1, . . . , l,

l
∑

i=1

yiαi = 0.

K(xi,xj) = φ(xi)
Tφ(xj) available

α: l variables; finite
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Primal Dual Relationship

At optimum

w̄ =

l
∑

i=1

ᾱiyiφ(xi)

1

2
w̄T w̄ + C

l
∑

i=1

ξ̄i = eT ᾱ− 1

2
ᾱTQᾱ.

where e = [1, . . . , 1]T .

Primal objective value = −Dual objective value

How does this dual come from ?
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Derivation of the Dual

Consider a simpler problem

min
w,b

1

2
wTw

subject to yi(w
Tφ(xi) + b) ≥ 1, i = 1, . . . , l.

Its dual

min
α

1

2

l
∑

i=1

l
∑

j=1

αiαjyiyjφ(xi)
T φ(xj)−

l
∑

i=1

αi

subject to 0 ≤ αi, i = 1, . . . , l,

l
∑

i=1

yiαi = 0.
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Lagrangian Dual

Defined as
max
α≥0

(min
w,b

L(w, b,α)),

where

L(w, b,α) =
1

2
‖w‖2 −

l
∑

i=1

αi

(

yi(w
Tφ(xi) + b)− 1

)

Strong duality

min Primal = max
α≥0

(min
w,b

L(w, b,α))
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Simplify the dual. When α is fixed,

min
w,b

L(w, b,α)

=

{

−∞ if
∑l

i=1 αiyi 6= 0,

minw
1
2w

Tw −
∑l

i=1 αi[yi(w
T φ(xi)− 1] if

∑l
i=1 αiyi = 0.

If
∑l

i=1 αiyi 6= 0,

decrease −b
∑l

i=1 αiyi in L(w, b,α) to −∞
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If
∑l

i=1 αiyi = 0, optimum of the strictly convex

1
2w

Tw −
∑l

i=1 αi[yi(w
Tφ(xi)− 1] happens when

∂

∂w
L(w, b,α) = 0.

Assume w ∈ Rn. L(w, b,α) rewritten as

1

2

n
∑

j=1

w2
j −

l
∑

i=1

αi[yi(
n
∑

j=1

wjφ(xi)j − 1]

∂

∂wj
L(w, b,α) = wj −

l
∑

i=1

αiyiφ(xi)j = 0
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Thus,

w =

l
∑

i=1

αiyiφ(xi).

Note that

wTw =

( l
∑

i=1

αiyiφ(xi)

)T( l
∑

j=1

αjyjφ(xj)

)

=
∑

i,j

αiαjyiyjφ(xi)
Tφ(xj)
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The dual is

max
α≥0

{

∑l
i=1 αi − 1

2

∑

αiαjyiyjφ(xi)
Tφ(xj) if

∑l
i=1 αiyi = 0,

−∞ if
∑l

i=1 αiyi 6= 0.

−∞ definitely not maximum of the dual

Dual optimal solution not happen when
∑l

i=1 αiyi 6= 0.

Dual simplified to

max
α∈Rl

l
∑

i=1

αi −
1

2

l
∑

i=1

l
∑

j=1

αiαjyiyjφ(xi)
Tφ(xj)

subject to αi ≥ 0, i = 1, . . . , l, and yT α = 0.
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Karush-Kuhn-Tucker (KKT) conditions

The KKT condition of the dual:

Qα− e = −by + λ

αiλi = 0

λi ≥ 0

The KKT condition of the primal:

w =

l
∑

i=1

αiyixi

αi(yiw
Txi + byi − 1) = 0

yT α = 0, αi ≥ 0

. – p.43/121



Let λi = yi((w
Txi) + b)− 1 ,

(Qα− e + by)i

=

l
∑

j=1

yiyjαjx
T
i xj − 1 + byi

= yiw
Txi − 1 + yib

= yi(w
Txi + b)− 1

The KKT of the primal the same as the KKT of the dual
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More about Dual Problems

w may be infinite

Seriously speaking, infinite programming (Lin, 2001a)

In machine learning, quite a few think that for any
optimization problem

Lagrangian dual exists

This is wrong

Lagrangian duality usually needs
Convex programming problems
Constraint qualification
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We have them
SVM primal is convex
Constraints linear

Why ML people sometimes make such mistakes

They focus on developing new methods

It is difficult to show a counter example
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SVM and Numerical Optimization
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Large Dense Quadratic Programming

minα
1
2αT Qα− eTα, subject to yT α = 0, 0 ≤ αi ≤ C

Qij 6= 0, Q : an l by l fully dense matrix

30,000 training points: 30,000 variables:

(30, 0002× 8/2) bytes = 3GB RAM to store Q: still difficult

Traditional methods:

Newton, Quasi Newton cannot be directly applied

Current methods:
Decomposition methods (e.g., (Osuna et al., 1997;
Joachims, 1998; Platt, 1998))
Nearest point of two convex hulls (e.g.,
(Keerthi et al., 1999))
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Decomposition Methods

Working on a few variable each time

Similar to coordinate-wise minimization

Working set B, N = {1, . . . , l}\B fixed

Size of B usually <= 100

Sub-problem in each iteration:

min
αB

1

2

[

αT
B (αk

N )T
]

[

QBB QBN

QNB QNN

][

αB

αk
N

]

−

[

eT
B (ek

N )T
]

[

αB

αk
N

]

subject to 0 ≤ αt ≤ C, t ∈ B, yT
BαB = −yT

Nαk
N
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Avoid Memory Problems

The new objective function

1

2
αT

BQBBαB + (−eB + QBNαk
N )T αB + constant

B columns of Q needed

Calculated when used
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Decomposition Method: the Algorithm

1. Find initial feasible α1

Set k = 1.

2. If αk stationary, stop. Otherwise, find working set B.

Define N ≡ {1, . . . , l}\B
3. Solve sub-problem of αB:

min
αB

1

2
αT

BQBBαB + (−eB + QBNαk
N )T αB

subject to 0 ≤ αt ≤ C, t ∈ B

yT
BαT

B = −yT
Nαk

N ,

4. αk+1
N ≡ αk

N . Set k ← k + 1; goto Step 2.
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Does it Really Work?

Compared to Newton, Quasi-Newton

Slow convergence

However, no need to have very accurate α

sgn

(

l
∑

i=1

αiyiK(xi,x) + b

)

Prediction not affected much

In some situations, # support vectors≪ # training points

Initial α1 = 0, some elements never used

An example where ML knowledge affect optimization
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Working Set Selection

Very important

Better selection⇒ fewer iterations

But

Better selection⇒ higher cost per iteration

Two issues:
1. Size
|B| ր, # iterationsց
|B| ց, # iterationsր

2. Selecting elements
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Size of the Working Set

Keeping all nonzero αi in the working set

If all SVs included⇒ optimum

Few iterations (i.e., few sub-problems)

Size varies

May still have memory problems

Existing software

Small and fixed size

Memory problems solved

Though sometimes slower
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Sequential Minimal Optimization (SMO)

Consider |B| = 2 (Platt, 1998)

|B| ≥ 2 because of the linear constraint

Extreme of decomposition methods

Sub-problem analytically solved; no need to use
optimization software

min
αi,αj

1

2

[

αi αj

]

[

Qii Qij

Qij Qjj

][

αi

αj

]

+ (QBNαk
N − eB)T

[

αi

αj

]

s.t. 0 ≤ αi, αj ≤ C,

yiαi + yjαj = −yT
Nαk

N ,
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Optimization people may not think this a big advantage

Machine learning people do: they like simple code

A minor advantage in optimization

No need to have inner and outer stopping conditions

B = {i, j}
Too slow convergence?

With other tricks, |B| = 2 fine in practice
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Selection by KKT violation

minα f(α), subject to yTα = 0, 0 ≤ αi ≤ C

α stationary if and only if

∇f(α) + by = λ− µ,

λiαi = 0, µi(C − αi) = 0, λi ≥ 0, µi ≥ 0, i = 1, . . . , l,

∇f(α) ≡ Qα− e

Rewritten as

∇f(α)i + byi ≥ 0 if αi < C,

∇f(α)i + byi ≤ 0 if αi > 0.
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Note yi = ±1

KKT further rewritten as

∇f(α)i + b ≥ 0 if αi < C, yi = 1

∇f(α)i − b ≥ 0 if αi < C, yi = −1

∇f(α)i + b ≤ 0 if αi > 0, yi = 1,

∇f(α)i − b ≤ 0 if αi > 0, yi = −1

A condition on the range of b:

max{−yt∇f(α)t | αt < C, yt = 1 or αt > 0, yt = −1}
≤ b

≤ min{−yt∇f(α)t | αt < C, yt = −1 or αt > 0, yt = 1}
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Define

Iup(α) ≡ {t | αt < C, yt = 1 or αt > 0, yt = −1}, and

Ilow(α) ≡ {t | αt < C, yt = −1 or αt > 0, yt = 1}.

α stationary if and only if feasible and

max
i∈Iup(α)

−yi∇f(α)i ≤ min
i∈Ilow(α)

−yi∇f(α)i.
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Violating Pair

KKT equivalent to

-�

t ∈ Iup(α) t ∈ Ilow(α)

−yt∇f(α)t

Violating pair (Keerthi et al., 2001)

i ∈ Iup(α), j ∈ Ilow(α), and − yi∇f(α)i > −yj∇f(α)j .

Strict decrease if and only if B has at least one violating
pair.

However, having violating pair not enough for
convergence.
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Maximal Violating Pair

If |B| = 2, naturally indices most violate the KKT
condition:

i ∈ arg max
t∈Iup(αk)

−yt∇f(αk)t,

j ∈ arg min
t∈Ilow(αk)

−yt∇f(αk)t,

Can be extended to |B| > 2
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Calculating Gradient

To find violating pairs, gradient maintained throughout
all iterations

Memory problem occur as ∇f(α) = Qα− e involves Q

Solved by following tricks

1. α1 = 0 implies ∇f(α1) = Q · 0− e = −e

Initial gradient easily obtained
2. Update ∇f(α) using only QBB and QBN :

∇f(αk+1) = ∇f(αk) + Q(αk+1 −αk)

= ∇f(αk) + Q:,B(αk+1 −αk)B

Only |B| columns needed per iteration
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Selection by Gradient Information

Maximal violating pair same as using gradient
information

{i, j} = arg min
B:|B|=2

Sub(B),

where

Sub(B) ≡ min
dB

∇f(αk)TBdB (1a)

subject to yT
BdB = 0,

dt ≥ 0, if αk
t = 0, t ∈ B, (1b)

dt ≤ 0, if αk
t = C, t ∈ B, (1c)

−1 ≤ dt ≤ 1, t ∈ B. (1d)
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First considered in (Joachims, 1998)

Let d ≡ [dB ;0N ], (1a) comes from minimizing

f(αk + d) ≈ f(αk) +∇f(αk)Td

= f(αk) +∇f(αk)TBdB.

First order approximation

0 ≤ αt ≤ C leads to (1b) and (1c).

−1 ≤ dt ≤ 1, t ∈ B avoid −∞ objective value
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Rough explanation connecting to maximal violating pair

∇f(αk)idi +∇f(αk)jdj

= yi∇f(αk)i · yidi + yj∇f(αk)j · yjdj

= (yi∇f(αk)i − yj∇f(αk)j) · (yidi)

We used yidi + yjdj = 0

Find {i, j} so that

yi∇f(αk)i − yj∇f(αk)j the smallest, yidi = 1, yjdj = −1

yidi = 1 corresponds to i ∈ Iup(αk):

Iup(α) ≡ {t | αt < C, yt = 1 or αt > 0, yt = −1}
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Convergence: Maximal Violating Pair

Special case of (Lin, 2001c)

Let ᾱ limit of any convergent subsequence {αk}, k ∈ K.

If not stationary, ∃ a violating pair

ī ∈ Iup(α), j̄ ∈ Ilow(α), and − yī∇f(ᾱ)̄i + yj̄∇f(ᾱ)j̄> 0

If i ∈ Iup(ᾱ), then i ∈ Iup(α
k),∀k ∈ K large enough

If i ∈ Ilow(ᾱ), then i ∈ Ilow(αk),∀k ∈ K large enough

So
{̄i, j̄} a violating pair at k ∈ K
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From k to k + 1:

Bk = {i, j}

i /∈ Iup(αk+1) or j /∈ Ilow(αk+1)

because of optimality of sub-problem

If we can show

{αk}k∈K → ᾱ⇒ {αk+1}k∈K → ᾱ,

then {̄i, j̄} should not be selected at k, k + 1, . . . , k + r

A procedure showing in finite iterations, it is selected

Contradiction
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Key of the Proof

Essentially we proved

In finite iterations, B = {̄i, j̄} selected

to have a contradiction

Can be used to design working sets (Lucidi et al.,
2005):

∃N > 0 such that for all k, any violating

pair of αk selected at least once in iterations k to k + N

A cyclic selection

{1, 2}, {1, 3}, . . . , {1, l}, {2, 3}, . . . , {l − 1, l}
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Beyond Maximal Violating Pair

Better working sets?

Difficult: # iterationsց but cost per iterationր
May not imply shorter training time

A selection by second order information (Fan et al.,
2005)

As f is a quadratic,

f(αk + d) = f(αk) +∇f(αk)Td +
1

2
dT∇2f(αk)d

= f(αk) +∇f(αk)TBdB +
1

2
dT

B∇2f(αk)BBdB
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Selection by Quadratic Information

Using second order information

min
B:|B|=2

Sub(B),

Sub(B) ≡ min
dB

1

2
dT

B∇2f(αk)BBdB +∇f(αk)TBdB

subject to yT
BdB = 0,

dt ≥ 0, if αk
t = 0, t ∈ B,

dt ≤ 0, if αk
t = C, t ∈ B.

−1 ≤ dt ≤ 1, t ∈ B not needed if ∇2f(αk)BB = QBB PD

Too expensive to check
(

l
2

)

sets
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A heuristic
1. Select

i ∈ arg max
t
{−yt∇f(αk)t | t ∈ Iup(αk)}.

2. Select

j ∈ arg min
t
{Sub({i, t}) | t ∈ Ilow(αk),

−yt∇f(αk)t < −yi∇f(αk)i}.

3. Return B = {i, j}.
The same i as the maximal violating pair

Check only O(l) possible B’s to decide j
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Comparison of Two Selections

Iteration and time ratio between using quadratic
information and maximal violating pair
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Comparing SVM Software/Methods

In optimization, straightforward to compare two methods

Now the comparison under one set of parameters may
not be enough

Unclear yet the most suitable way of doing comparisons

In ours, we check two
1. Time/total iterations for several parameter sets used

in parameter selection
2. Time/iterations for final parameter set

Simulate how we use SVM in practice
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Issues about the Quadratic Selection

Asymptotic convergence holds

Faster convergence than maximal violating pair

Better approximation per iteration

But lacks global explanation yet

What if we check all
(

l
2

)

sets

Iteration ratio between checking all and checking O(l):
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Fewer iterations, but ratio (0.7 to 0.8) not enough to
justify the higher cost per iteration
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Caching and Shrinking

Speed up decomposition methods

Caching (Joachims, 1998)

Store recently used Hessian columns in computer
memory

Example

$ time ./libsvm-2.81/svm-train -m 0.01 a4a
11.463s

$ time ./libsvm-2.81/svm-train -m 40 a4a
7.817s
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Shrinking (Joachims, 1998)

Some bounded elements remain until the end

Heuristically resized to a smaller problem

After certain iterations, most bounded elements
identified and not changed (Lin, 2002)
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Stopping Condition

In optimization software such conditions are important

However, don’t be surprised if you see no stopping
conditions in an optimization code of ML software

Sometimes time/iteration limits more suitable

From KKT condition

max
i∈Iup(α)

−yi∇f(α)i ≤ min
i∈Ilow(α)

−yi∇f(α)i + ǫ (2)

a natural stopping condition
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Better Stopping Condition

Now in out software ǫ = 10−3

Past experience: ok but sometimes too strict

At one point we almost changed to 10−1

Large C ⇒ large ∇f(α) components

Too strict⇒ many iterations

Need a relative condition

A very important issue not fully addressed yet
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Example of Slow Convergence

Using C = 1

$./libsvm-2.81/svm-train -c 1 australian_scale
optimization finished, #iter = 508
obj = -201.642538, rho = 0.044312

Using C = 5000

$./libsvm-2.81/svm-train -c 5000 australian_scale
optimization finished, #iter = 35241
obj = -242509.157367, rho = -7.186733

Optimization researchers may rush to solve difficult
cases

That’s what I did in the beginning

It turns out that large C less used than small C
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Finite Termination

Given ǫ, finite termination under (2)
(Keerthi and Gilbert, 2002; Lin, 2002)

Not implied from asymptotic convergence as

min
i∈Ilow(α)

−yi∇f(α)i − max
i∈Iup(α)

−yi∇f(α)i

not a continuous function of α

We worry

αk
i → 0 and i ∈ Iup(αk) ∩ Ilow(αk)

causes the program never ends

Important from optimization point of view
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ML people do not care this much

Many think finite termination same as asymptotic
convergence

We are careful on such issues in our software

A good SVM software should
1. be a rigorous numerical optimization code
2. serve the need of users in ML and other areas

Both are equally important
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Issues Not Discussed Here

Q not PSD

Solving sub-problems

Analytic form for SMO (two-variable problem)

Linear convergence (Lin, 2001b)

f(αk+1)− f(ᾱ) ≤ c(f(αk)− f(ᾱ))

Best worst case analysis
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Practical Use of SVM
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Let Us Try An Example

A problem from astroparticle physics

1.0 1:2.617300e+01 2:5.886700e+01 3:-1.894697e-01 4:1.251225e+02

1.0 1:5.707397e+01 2:2.214040e+02 3:8.607959e-02 4:1.229114e+02

1.0 1:1.725900e+01 2:1.734360e+02 3:-1.298053e-01 4:1.250318e+02

1.0 1:2.177940e+01 2:1.249531e+02 3:1.538853e-01 4:1.527150e+02

1.0 1:9.133997e+01 2:2.935699e+02 3:1.423918e-01 4:1.605402e+02

1.0 1:5.537500e+01 2:1.792220e+02 3:1.654953e-01 4:1.112273e+02

1.0 1:2.956200e+01 2:1.913570e+02 3:9.901439e-02 4:1.034076e+02

Training and testing sets available: 3,089 and 4,000

Data format is an issue
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SVM software: LIBSVM

http://www.csie.ntu.edu.tw/~cjlin/libsvm

Now one of the most used SVM software

Installation

On Unix:

Download zip file and make

On Windows:

Download zip file and make
c:nmake -f Makefile.win

Windows binaries included in the package
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Usage ofLIBSVM

Training

Usage: svm-train [options] training_set_file [model_file]
options:
-s svm_type : set type of SVM (default 0)

0 -- C-SVC
1 -- nu-SVC
2 -- one-class SVM
3 -- epsilon-SVR
4 -- nu-SVR

-t kernel_type : set type of kernel function (default

Testing

Usage: svm-predict test_file model_file out

. – p.87/121



Training and Testing

Training

$./svm-train train.1
......*
optimization finished, #iter = 6131
nu = 0.606144
obj = -1061.528899, rho = -0.495258
nSV = 3053, nBSV = 724
Total nSV = 3053

Testing

$./svm-predict test.1 train.1.model
test.1.predict

Accuracy = 66.925% (2677/4000)
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What does this Output Mean

obj: the optimal objective value of the dual SVM

rho: −b in the decision function

nSV and nBSV: number of support vectors and
bounded support vectors

(i.e., αi = C).

nu-svm is a somewhat equivalent form of C-SVM where
C is replaced by ν.
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Why this Fails

After training, nearly 100% support vectors

Training and testing accuracy different

$./svm-predict train.1 train.1.model o
Accuracy = 99.7734% (3082/3089)

RBF kernel used
e−γ‖xi−xj‖

2

Then

Kij

{

= 1 if i = j,

→ 0 if i 6= j.
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K → I

min
α

1

2
αTα− eT α

subject to 0 ≤ αi ≤ C, i = 1, . . . , l

yT α = 0

Optimal solution

2 > α = e− yTe

l
y > 0

αi > 0

yi(w
Txi + b) = 1

Zero training error
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Data Scaling

Without scaling

Attributes in greater numeric ranges may dominate

Example:

height gender
x1 150 F
x2 180 M
x3 185 M

and
y1 = 0, y2 = 1, y3 = 1.
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The separating hyperplane

x1

x2x3

Decision strongly depends on the first attribute

What if the second is more important
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Linearly scale the first to [0, 1] by:

1st attribute− 150

185− 150
,

New points and separating hyperplane

x1

x2x3
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Transformed to the original space,

x1

x2x3

The second attribute plays a role

Scaling generally helps, but not always
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More about Data Scaling

A common mistake

$./svm-scale -l -1 -u 1 train.1 > train.1.scale
$./svm-scale -l -1 -u 1 test.1 > test.1.scale
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Same factor on training and testing

$./svm-scale -s range1 train.1 > train.1.scale
$./svm-scale -r range1 test.1 > test.1.scale
$./svm-train train.1.scale
$./svm-predict test.1.scale train.1.scale.model
test.1.predict
→ Accuracy = 96.15%

We store the scaling factor used in training
and apply them for testing set
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More on Training

Train scaled data and then prediction

$./svm-train train.1.scale
$./svm-predict test.1.scale train.1.scale.model
test.1.predict
→ Accuracy = 96.15%

Training accuracy now is

$./svm-predict train.1.scale train.1.scale.model
Accuracy = 96.439% (2979/3089) (classification)

Default parameter

C = 1, γ = 0.25
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Different Parameters

If we use C = 20, γ = 400

$./svm-train -c 20 -g 400 train.1.scale
$./svm-predict train.1.scale train.1.scale.model
Accuracy = 100% (3089/3089) (classification)

100% training accuracy but

$./svm-predict test.1.scale train.1.scale.model
Accuracy = 82.7% (3308/4000) (classification)

Very bad test accuracy

Overfitting happens
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Overfitting and Underfitting

When training and predicting a data,
we should

Avoid underfitting: small training error
Avoid overfitting: small testing error
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● and ▲: training; © and△: testing
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Overfitting

In theory

You can easily achieve 100% training accuracy

This is useless

Surprisingly

Many application papers did this
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Parameter Selection

Sometimes important

Now parameters are

C and kernel parameters

Example:

γ of e−γ‖xi−xj‖
2

a, b, d of (xT
i xj/a + b)d

How to select them ?
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Performance Evaluation

Training errors not important; only test errors count

l training data, xi ∈ Rn, yi ∈ {+1,−1}, i = 1, . . . , l, a
learning machine:

x→ f(x, α), f(x, α) = 1 or − 1.

Different α: different machines

The expected test error (generalized error)

R(α) =

∫

1

2
|y − f(x, α)|dP (x, y)

y: class of x (i.e. 1 or -1)
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P (x, y) unknown, empirical risk (training error):

Remp(α) =
1

2l

l
∑

i=1

|yi − f(xi, α)|

1
2 |yi − f(xi, α)| : loss, choose 0 ≤ η ≤ 1, with probability
at least 1− η:

R(α) ≤ Remp(α) + another term

A good pattern recognition method:
minimize both terms at the same time
Remp(α)→ 0
another term→ large
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Performance Evaluation (Cont.)

In practice

Available data⇒ training, validation, and (testing)

Train + validation⇒ model

k-fold cross validation:

Data randomly separated to k groups.
Each time k − 1 as training and one as testing
Select parameters with highest CV
Another optimization problem
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A Simple Procedure

1. Conduct simple scaling on the data

2. Consider RBF kernel K(x,y) = e−γ‖x−y‖2

3. Use cross-validation to find the best parameters C and
γ

4. Use the best C and γ to train the whole training set

5. Test

Best C and γ by training k − 1 and the whole ?

In theory, a minor difference

No problem in practice

Just a rough guideline. E.g., scaling hurts sometimes
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Why trying RBF Kernel First

Linear kernel: special case of RBF (Keerthi and Lin,
2003)

Leave-one-out cross-validation accuracy of linear the
same as RBF under certain parameters

Related to optimization as well

Polynomial: numerical difficulties

(< 1)d → 0, (> 1)d →∞
More parameters than RBF
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Parameter Selection inLIBSVM

grid search + CV

$./grid.py train.1 train.1.scale

[local] -1 -7 85.1408 (best c=0.5, g=0.0078125, rate=85.1408)

[local] 5 -7 95.4354 (best c=32.0, g=0.0078125, rate=95.4354)

.

.

.

grid.py: a python script in the python directory of LIBSVM
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Contour of Parameter Selection
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Simple script in LIBSVM

easy.py: a script for dummies

$python easy.py train.1 test.1
Scaling training data...
Cross validation...
Best c=2.0, g=2.0
Training...
Scaling testing data...
Testing...
Accuracy = 96.875% (3875/4000)
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Example: Engine Misfire
Detection
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Problem Description

First problem of IJCNN Challenge 2001, data from Ford

Given time series length T = 50, 000

The kth data

x1(k), x2(k), x3(k), x4(k), x5(k), y(k)

y(k) = ±1: output, affected only by x1(k), . . . , x4(k)

x5(k) = 1, kth data considered for evaluating accuracy

50,000 training data, 100,000 testing data (in two sets)
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Past and future information may affect y(k)

x1(k): periodically nine 0s, one 1, nine 0s, one 1, and so
on.

Example:

0.000000 -0.999991 0.169769 0.000000 1.000000
0.000000 -0.659538 0.169769 0.000292 1.000000
0.000000 -0.660738 0.169128 -0.020372 1.000000
1.000000 -0.660307 0.169128 0.007305 1.000000
0.000000 -0.660159 0.169525 0.002519 1.000000
0.000000 -0.659091 0.169525 0.018198 1.000000
0.000000 -0.660532 0.169525 -0.024526 1.000000
0.000000 -0.659798 0.169525 0.012458 1.000000

x4(k) more important
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Background: Engine Misfire Detection

How engine works

Air-fuel mixture injected to cylinder

intact, compression, combustion, exhaustion

Engine misfire: a substantial fraction of a cylinder’s
air-fuel mixture fails to ignite

Frequent misfires: pollutants and costly replacement

On-board detection:

Engine crankshaft rational dynamics with a position
sensor

Training data: from some expensive experimental
environment
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Encoding Schemes

For SVM: each data is a vector

x1(k): periodically nine 0s, one 1, nine 0s, one 1, ...

10 binary attributes
x1(k − 5), . . . , x1(k + 4) for the kth data
x1(k): an integer in 1 to 10
Which one is better
We think 10 binaries better for SVM

x4(k) more important

Including x4(k − 5), . . . , x4(k + 4) for the kth data

Each training data: 22 attributes
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Training SVM

Selecting parameters; generating a good model for
prediction

RBF kernel K(xi,xj) = φ(xi)
T φ(xj) = e−γ‖xi−xj‖

2

Two parameters: γ and C

Five-fold cross validation on 50,000 data

Data randomly separated to five groups.

Each time four as training and one as testing

Use C = 24, γ = 22 and train 50,000 data for the final
model
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Test set 1: 656 errors, Test set 2: 637 errors

About 3000 support vectors of 50,000 training data

A good case for SVM

This is just the outline. There are other details.

It is essential to do parameter selection
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Conclusions

SVM optimization issues are challenging

Quite extensively studied

But better results still possible

Why working on machine learning?

It is less mature than optimization

More new issues

Many other optimization issues from machine learning

Need to study things useful for ML tasks
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While we complain ML people’s lack of optimization
knowledge, we must admit this fact first

ML people focus on developing methods, so pay less
attention to optimization details

Only if we widely apply solid optimization techniques to
machine learning

then the contribution of optimization in ML can be
recognized
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