Optimization, Support Vector Machines, and Machine Learning

Chih-Jen Lin

Department of Computer Science National Taiwan University

Talk at DIS, University of Rome and IASI, CNR, September, 2005

Outline

- Introduction to machine learning and support vector machines (SVM)
- SVM and optimization theory
- SVM and numerical optimization
- Practical use of SVM
- Talk slides available at

http://www.csie.ntu.edu.tw/~cjlin/talks/rome.pdf

This talk intends to give optimization researchers an overview of SVM research

What Is Machine Learning?

- Extract knowledge from data
- Classification, clustering, and others
 We focus only on classification here
- Many new optimization issues

Data Classification

- Given training data in different classes (labels known)
 Predict test data (labels unknown)
- Examples
 - Handwritten digits recognition
 - Spam filtering
- Training and testing

- Methods:
 - Nearest Neighbor
 - Neural Networks
 - Decision Tree
- Support vector machines: another popular method Main topic of this talk
- Machine learning, applied statistics, pattern recognition
 Very similar, but slightly different focuses
- As it's more applied, machine learning is a bigger research area than optimization

Support Vector Classification

- Training vectors : $\mathbf{x}_i, i = 1, \ldots, l$
- Consider a simple case with two classes:
 Define a vector y

$$y_i = \begin{cases} 1 & \text{if } \mathbf{x}_i \text{ in class 1} \\ -1 & \text{if } \mathbf{x}_i \text{ in class 2}, \end{cases}$$

A hyperplane which separates all data

• A separating hyperplane: $\mathbf{w}^T \mathbf{x} + b = 0$

$$(\mathbf{w}^T \mathbf{x}_i) + b > 0 \quad \text{if } y_i = 1 (\mathbf{w}^T \mathbf{x}_i) + b < 0 \quad \text{if } y_i = -1$$

Decision function f(x) = sign(w^Tx + b), x: test data Variables: w and b : Need to know coefficients of a plane

Many possible choices of w and b

Select \mathbf{w} , *b* with the maximal margin.

Maximal distance between $\mathbf{w}^T \mathbf{x} + b = \pm 1$

$$(\mathbf{w}^T \mathbf{x}_i) + b \ge 1$$
 if $y_i = 1$
 $(\mathbf{w}^T \mathbf{x}_i) + b \le -1$ if $y_i = -1$

Distance between
$$\mathbf{w}^T \mathbf{x} + b = 1$$
 and -1 :
$$2/\|\mathbf{w}\| = 2/\sqrt{\mathbf{w}^T \mathbf{w}}$$

$$\max 2/\|\mathbf{w}\| \equiv \min \mathbf{w}^T \mathbf{w}/2$$

$$\min_{\mathbf{w},b} \quad \frac{1}{2}\mathbf{w}^T \mathbf{w}$$
subject to
$$y_i((\mathbf{w}^T \mathbf{x}_i) + b) \ge 1,$$

$$i = 1, \dots, l.$$

T

A nonlinear programming problem

A 3-D demonstration

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/svmtoy3d

Notations very different from optimization
 Well, this is unavoidable

Higher Dimensional Feature Spaces

- Earlier we tried to find a linear separating hyperplane
 Data may not be linearly separable
- Non-separable case: allow training errors

$$\min_{\mathbf{w},b,\boldsymbol{\xi}} \quad \frac{1}{2}\mathbf{w}^T\mathbf{w} + C\sum_{i=1}^{l} \xi_i$$
$$y_i((\mathbf{w}^T\mathbf{x}_i) + b) \ge 1 - \xi_i,$$
$$\xi_i \ge 0, \ i = 1, \dots, l$$

• $\xi_i > 1$, \mathbf{x}_i not on the correct side of the separating plane

• C: large penalty parameter, most ξ_i are zero

Nonlinear case: linearly separable in other spaces ?

Higher dimensional (maybe infinite) feature space

$$\phi(\mathbf{x}) = (\phi_1(\mathbf{x}), \phi_2(\mathbf{x}), \ldots).$$

• Example:
$$\mathbf{x} \in R^3, \phi(\mathbf{x}) \in R^{10}$$

$$\phi(\mathbf{x}) = (1, \sqrt{2}x_1, \sqrt{2}x_2, \sqrt{2}x_3, x_1^2, \\ x_2^2, x_3^2, \sqrt{2}x_1x_2, \sqrt{2}x_1x_3, \sqrt{2}x_2x_3)$$

A standard problem (Cortes and Vapnik, 1995):

$$\min_{\mathbf{w},b,\boldsymbol{\xi}} \quad \frac{1}{2}\mathbf{w}^T\mathbf{w} + C\sum_{i=1}^{l}\xi_i$$

subject to $y_i(\mathbf{w}^T\boldsymbol{\phi}(\mathbf{x}_i) + b) \ge 1 - \xi_i, \ \xi_i \ge 0, \ i = 1, \dots, l.$

Finding the Decision Function

w: a vector in a high dimensional space

- \Rightarrow maybe infinite variables
- The dual problem

$$\min_{\boldsymbol{\alpha}} \quad \frac{1}{2} \boldsymbol{\alpha}^T Q \boldsymbol{\alpha} - \mathbf{e}^T \boldsymbol{\alpha}$$
subject to
$$0 \le \alpha_i \le C, i = 1, \dots, l$$

$$\mathbf{y}^T \boldsymbol{\alpha} = 0,$$

where $Q_{ij} = y_i y_j \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$ and $\mathbf{e} = [1, \dots, 1]^T$

$$\mathbf{w} = \sum_{i=1}^{l} \alpha_i y_i \phi(\mathbf{x}_i)$$

SVM problem: primal

- Primal and dual : Discussed later
- A finite problem:

#variables = #training data

• $Q_{ij} = y_i y_j \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$ needs a closed form

Efficient calculation of high dimensional inner products

• Example:
$$\mathbf{x}_i \in R^3, \phi(\mathbf{x}_i) \in R^{10}$$

$$\phi(\mathbf{x}_i) = (1, \sqrt{2}(x_i)_1, \sqrt{2}(x_i)_2, \sqrt{2}(x_i)_3, (x_i)_1^2, (x_i)_2^2, (x_i)_3^2, \sqrt{2}(x_i)_1(x_i)_2, \sqrt{2}(x_i)_1(x_i)_3, \sqrt{2}(x_i)_2(x_i)_3)$$

Then $\phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j) = (1 + \mathbf{x}_i^T \mathbf{x}_j)^2$.

Kernel Tricks

- Kernel: $K(\mathbf{x}, \mathbf{y}) = \phi(\mathbf{x})^T \phi(\mathbf{y})$ No need to explicitly know $\phi(\mathbf{x})$
- Common kernels $K(\mathbf{x}_i, \mathbf{x}_j) =$

 $e^{-\gamma \|\mathbf{x}_i - \mathbf{x}_j\|^2}$, (Radial Basis Function) $(\mathbf{x}_i^T \mathbf{x}_j / a + b)^d$ (Polynomial kernel)

- They can be inner product in infinite dimensional space
- Assume $x \in R^1$ and $\gamma > 0$.

$$e^{-\gamma ||x_i - x_j||^2} = e^{-\gamma (x_i - x_j)^2} = e^{-\gamma x_i^2 + 2\gamma x_i x_j - \gamma x_j^2}$$

= $e^{-\gamma x_i^2 - \gamma x_j^2} \left(1 + \frac{2\gamma x_i x_j}{1!} + \frac{(2\gamma x_i x_j)^2}{2!} + \frac{(2\gamma x_i x_j)^3}{3!} + \cdots\right)$
= $e^{-\gamma x_i^2 - \gamma x_j^2} \left(1 \cdot 1 + \sqrt{\frac{2\gamma}{1!}} x_i \cdot \sqrt{\frac{2\gamma}{1!}} x_j + \sqrt{\frac{(2\gamma)^2}{2!}} x_i^2 \cdot \sqrt{\frac{(2\gamma)^2}{2!}} x_j^2 + \sqrt{\frac{(2\gamma)^3}{3!}} x_i^3 \cdot \sqrt{\frac{(2\gamma)^3}{3!}} x_j^3 + \cdots\right)$
= $\phi(x_i)^T \phi(x_j),$

where

$$\phi(x) = e^{-\gamma x^2} \left[1, \sqrt{\frac{2\gamma}{1!}} x, \sqrt{\frac{(2\gamma)^2}{2!}} x^2, \sqrt{\frac{(2\gamma)^3}{3!}} x^3, \cdots \right]^T.$$

Decision function

- w: maybe an infinite vector
- At optimum

$$\mathbf{w} = \sum_{i=1}^{l} \alpha_i y_i \phi(\mathbf{x}_i)$$

Decision function

$$\mathbf{w}^{T} \phi(\mathbf{x}) + b$$

$$= \sum_{i=1}^{l} \alpha_{i} y_{i} \phi(\mathbf{x}_{i})^{T} \phi(\mathbf{x}) + b$$

$$= \sum_{i=1}^{l} \alpha_{i} y_{i} K(\mathbf{x}_{i}, \mathbf{x}) + b$$

- No need to have w
- \blacksquare > 0: 1st class, < 0: 2nd class
- Only $\phi(\mathbf{x}_i)$ of $\alpha_i > 0$ used

 $\alpha_i > 0 \Rightarrow$ support vectors

Support Vectors: More Important Data

Is Kernel Really Useful?

- Training data mapped to be linearly independent
 ⇒ separable
- Except this, we know little in high dimensional spaces
- Selection is another issue

On the one hand, very few general kernels

On the other hand, people try to design kernels specific to applications

Overall this may be the weakest point of SVM

SVM and Optimization

- Dual problem is essential for SVM
 There are other optimization issues in SVM
- But, things are not that simple
 If SVM isn't good, useless to study its optimization issues

Optimization in ML Research

- Everyday there are new classification methods
- Most are related to optimization problems
- Most will never be popular
- Things optimization people focused (e.g., convergence rate) may not be that important for ML people

More examples later

In machine learning

The use of optimization techniques sometimes not rigorous

- Usually an optimization algorithm
 - 1. Strictly decreasing
 - 2. Convergence to a stationary point
 - 3. Convergence rate
- In some ML papers, 1 even does not hold
- Some wrongly think 1 and 2 the same

Status of SVM

- Existing methods:
 Nearest neighbor, Neural networks, decision trees.
- SVM: similar status (competitive but may not be better)
- In my opinion, after careful data pre-processing Appropriately use NN or SVM ⇒ similar accuracy
- But, users may not use them properly
- The chance of SVM
 - Easier for users to appropriately use it
 - Replacing NN on some applications

- So SVM has survived as a ML method
- There are needs to seriously study its optimization issues

SVM and Optimization Theory

A Primal-Dual Example

 Let us have an example before deriving the dual To check the primal dual relationship:

$$\mathbf{w} = \sum_{i=1}^{l} \alpha_i y_i \phi(\mathbf{x}_i)$$

• Two training data in R^1 :

What is the separating hyperplane ?

Primal Problem

- **x**₁ = 0, **x**₂ = 1 with **y** = [-1, 1]^T.
 Primal problem
 - $\min_{\substack{w,b}\\ \text{subject to}} \quad \frac{1}{2}w^2$ $\frac{1}{2}w^2$ $\frac{1}{2}w^2$

- $-b \ge 1$ and $w \ge 1 b \ge 2$.
- We are minimizing $\frac{1}{2}w^2$ The smallest is w = 2.
- (w,b) = (2,-1) optimal solution.
- The separating hyperplane 2x 1 = 0

$$\begin{array}{ccc} & & & \\ & & \\ 0 & & x = 1/2 & 1 \end{array}$$

Dual Problem

\square Formula without penalty parameter C

$$\begin{split} \min_{\boldsymbol{\alpha}\in R^l} & \quad \frac{1}{2}\sum_{i=1}^l\sum_{j=1}^l\alpha_i\alpha_jy_iy_j\phi(\mathbf{x}_i)^T\phi(\mathbf{x}_j) - \sum_{i=1}^l\alpha_i\\ \text{subject to} & \quad \alpha_i \geq 0, i = 1, \dots, l, \text{ and } \sum_{i=1}^l\alpha_iy_i = 0. \end{split}$$

Get the objective function

$$\mathbf{x}_1^T \mathbf{x}_1 = 0, \mathbf{x}_1^T \mathbf{x}_2 = 0$$
$$\mathbf{x}_2^T \mathbf{x}_1 = 0, \mathbf{x}_2^T \mathbf{x}_2 = 1$$

Objective function

$$\frac{1}{2}\alpha_1^2 - (\alpha_1 + \alpha_2)$$

$$= \frac{1}{2} \begin{bmatrix} \alpha_1 & \alpha_2 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} - \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix}$$

Constraints

$$\alpha_1 - \alpha_2 = 0, 0 \le \alpha_1, 0 \le \alpha_2.$$

 \square $\alpha_2 = \alpha_1$ to the objective function,

$$\frac{1}{2}\alpha_1^2 - 2\alpha_1$$

• Smallest value at $\alpha_1 = 2$.

 $\alpha_2 = 2$ as well

- $[2,2]^T$ satisfies $0 \le \alpha_1$ and $0 \le \alpha_2$ Optimal
- Primal-dual relation

$$w = y_1 \alpha_1 x_1 + y_2 \alpha_2 x_2 = 1 \cdot 2 \cdot 1 + (-1) \cdot 2 \cdot 0 = 2$$

SVM Primal and Dual

Standard SVM (Primal)

$$\min_{\mathbf{w},b,\boldsymbol{\xi}} \quad \frac{1}{2}\mathbf{w}^T\mathbf{w} + C\sum_{i=1}^{l}\xi_i$$

subject to
$$y_i(\mathbf{w}^T\phi(\mathbf{x}_i) + b) \ge 1 - \xi_i,$$
$$\xi_i \ge 0, \ i = 1, \dots, l.$$

- **w**: huge (maybe infinite) vector variable
- Practically we solve dual, a different but related problem

Dual problem

$$\begin{split} \min_{\boldsymbol{\alpha}} & \frac{1}{2} \sum_{i=1}^{l} \sum_{j=1}^{l} \alpha_{i} \alpha_{j} y_{i} y_{j} \phi(\mathbf{x}_{i})^{T} \phi(\mathbf{x}_{j}) - \sum_{i=1}^{l} \alpha_{i} \\ \text{subject to} & 0 \leq \alpha_{i} \leq C, \qquad i = 1, \dots, l, \\ & \sum_{i=1}^{l} y_{i} \alpha_{i} = 0. \end{split}$$

- $K(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$ available
- α : *l* variables; finite

Primal Dual Relationship

At optimum

$$\bar{\mathbf{w}} = \sum_{i=1}^{l} \bar{\alpha}_{i} y_{i} \phi(\mathbf{x}_{i})$$
$$\frac{1}{2} \bar{\mathbf{w}}^{T} \bar{\mathbf{w}} + C \sum_{i=1}^{l} \bar{\xi}_{i} = \mathbf{e}^{T} \bar{\boldsymbol{\alpha}} - \frac{1}{2} \bar{\boldsymbol{\alpha}}^{T} Q \bar{\boldsymbol{\alpha}}$$

where $e = [1, ..., 1]^T$.

- Primal objective value = -Dual objective value
- How does this dual come from ?
Derivation of the Dual

Consider a simpler problem

$$\begin{split} \min_{\mathbf{w},b} & \frac{1}{2} \mathbf{w}^T \mathbf{w} \\ \text{subject to} & y_i (\mathbf{w}^T \phi(\mathbf{x}_i) + b) \geq 1, i = 1, \dots, l. \end{split}$$

Its dual
$$\\ \min_{\alpha} & \frac{1}{2} \sum_{i=1}^l \sum_{j=1}^l \alpha_i \alpha_j y_i y_j \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j) - \sum_{i=1}^l \alpha_i \\ \text{subject to} & 0 \leq \alpha_i, \qquad i = 1, \dots, l, \\ & \sum_{i=1}^l y_i \alpha_i = 0. \end{split}$$

Lagrangian Dual

Defined as

$$\max_{\boldsymbol{\alpha} \ge 0} (\min_{\mathbf{w},b} L(\mathbf{w},b,\boldsymbol{\alpha})),$$

where

$$L(\mathbf{w}, b, \boldsymbol{\alpha}) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^{l} \alpha_i \left(y_i(\mathbf{w}^T \phi(\mathbf{x}_i) + b) - 1 \right)$$

Strong duality

min Primal =
$$\max_{\alpha \ge 0} (\min_{\mathbf{w}, b} L(\mathbf{w}, b, \alpha))$$

• Simplify the dual. When α is fixed,

$$\min_{\mathbf{w},b} L(\mathbf{w}, b, \boldsymbol{\alpha}) = \begin{cases} -\infty & \text{if } \sum_{i=1}^{l} \alpha_{i} y_{i} \neq 0, \\ \min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^{T} \mathbf{w} - \sum_{i=1}^{l} \alpha_{i} [y_{i}(\mathbf{w}^{T} \phi(\mathbf{x}_{i}) - 1] & \text{if } \sum_{i=1}^{l} \alpha_{i} y_{i} = 0. \end{cases}$$

$$If \sum_{i=1}^{l} \alpha_{i} y_{i} \neq 0, \\ decrease - b \sum_{i=1}^{l} \alpha_{i} y_{i} \text{ in } L(\mathbf{w}, b, \boldsymbol{\alpha}) \text{ to } -\infty \end{cases}$$

• If
$$\sum_{i=1}^{l} \alpha_i y_i = 0$$
, optimum of the strictly convex
 $\frac{1}{2} \mathbf{w}^T \mathbf{w} - \sum_{i=1}^{l} \alpha_i [y_i(\mathbf{w}^T \phi(\mathbf{x}_i) - 1] \text{ happens when}$
 ∂

$$\frac{\partial}{\partial \mathbf{w}} L(\mathbf{w}, b, \boldsymbol{\alpha}) = 0.$$

▶ Assume $\mathbf{w} \in R^n$. $L(\mathbf{w}, b, \alpha)$ rewritten as

$$\frac{1}{2} \sum_{j=1}^{n} w_j^2 - \sum_{i=1}^{l} \alpha_i [y_i (\sum_{j=1}^{n} w_j \phi(\mathbf{x}_i)_j - 1]$$
$$\frac{\partial}{\partial w_j} L(\mathbf{w}, b, \boldsymbol{\alpha}) = w_j - \sum_{i=1}^{l} \alpha_i y_i \phi(\mathbf{x}_i)_j = 0$$

$$\mathbf{w} = \sum_{i=1}^{l} \alpha_i y_i \phi(\mathbf{x}_i).$$

$$\mathbf{w}^{T}\mathbf{w} = \left(\sum_{i=1}^{l} \alpha_{i} y_{i} \phi(\mathbf{x}_{i})\right)^{T} \left(\sum_{j=1}^{l} \alpha_{j} y_{j} \phi(\mathbf{x}_{j})\right)$$
$$= \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \phi(\mathbf{x}_{i})^{T} \phi(\mathbf{x}_{j})$$

The dual is

$$\max_{\boldsymbol{\alpha} \ge 0} \begin{cases} \sum_{i=1}^{l} \alpha_i - \frac{1}{2} \sum \alpha_i \alpha_j y_i y_j \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j) & \text{if } \sum_{i=1}^{l} \alpha_i y_i = 0, \\ -\infty & \text{if } \sum_{i=1}^{l} \alpha_i y_i \neq 0. \end{cases}$$

-∞ definitely not maximum of the dual
 Dual optimal solution not happen when ∑^l_{i=1} α_iy_i ≠ 0.
 Dual simplified to

$$\max_{\boldsymbol{\alpha}\in R^{l}} \qquad \sum_{i=1}^{l} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{l} \sum_{j=1}^{l} \alpha_{i} \alpha_{j} y_{i} y_{j} \phi(\mathbf{x}_{i})^{T} \phi(\mathbf{x}_{j})$$

subject to
$$\alpha_{i} \geq 0, i = 1, \dots, l, \text{ and } \mathbf{y}^{T} \boldsymbol{\alpha} = 0.$$

Karush-Kuhn-Tucker (KKT) conditions

The KKT condition of the dual:

$$Q\boldsymbol{\alpha} - \mathbf{e} = -b\mathbf{y} + \boldsymbol{\lambda}$$
$$\alpha_i \lambda_i = 0$$
$$\lambda_i \ge 0$$

The KKT condition of the primal:

$$\mathbf{w} = \sum_{i=1}^{l} \alpha_i y_i \mathbf{x}_i$$
$$\alpha_i (y_i \mathbf{w}^T \mathbf{x}_i + by_i - 1) = 0$$
$$\mathbf{y}^T \boldsymbol{\alpha} = 0, \alpha_i \ge 0$$

• Let
$$\lambda_i = y_i((\mathbf{w}^T \mathbf{x}_i) + b) - 1$$
,

$$(Q\boldsymbol{\alpha} - \mathbf{e} + b\mathbf{y})_i$$

$$= \sum_{j=1}^{l} y_i y_j \alpha_j \mathbf{x}_i^T \mathbf{x}_j - 1 + by_i$$

$$= y_i \mathbf{w}^T \mathbf{x}_i - 1 + y_i b$$

$$= y_i (\mathbf{w}^T \mathbf{x}_i + b) - 1$$

The KKT of the primal the same as the KKT of the dual

More about Dual Problems

- w may be infinite
 Seriously speaking, infinite programming (Lin, 2001a)
- In machine learning, quite a few think that for any optimization problem

Lagrangian dual exists

- This is wrong
- Lagrangian duality usually needs
 - Convex programming problems
 - Constraint qualification

- We have them
 - SVM primal is convex
 - Constraints linear

Why ML people sometimes make such mistakes
 They focus on developing new methods
 It is difficult to show a counter example

SVM and Numerical Optimization

Large Dense Quadratic Programming

- $\min_{\alpha} \frac{1}{2} \alpha^T Q \alpha \mathbf{e}^T \alpha$, subject to $\mathbf{y}^T \alpha = 0, 0 \le \alpha_i \le C$
- $Q_{ij} \neq 0$, Q : an l by l fully dense matrix
- **30,000** training points: 30,000 variables: $(30,000^2 \times 8/2) \text{ bytes} = 3\text{GB RAM to store } Q: \text{ still difficult}$
- Traditional methods:

Newton, Quasi Newton cannot be directly applied

- Current methods:
 - Decomposition methods (e.g., (Osuna et al., 1997; Joachims, 1998; Platt, 1998))
 - Nearest point of two convex hulls (e.g., (Keerthi et al., 1999))

Decomposition Methods

- Working on a few variable each time
- Similar to coordinate-wise minimization
- Working set B, $N = \{1, \ldots, l\} \setminus B$ fixed Size of B usually ≤ 100
- Sub-problem in each iteration:

SU

$$\begin{split} \min_{\boldsymbol{\alpha}_{B}} & \frac{1}{2} \begin{bmatrix} \boldsymbol{\alpha}_{B}^{T} & (\boldsymbol{\alpha}_{N}^{k})^{T} \end{bmatrix} \begin{bmatrix} Q_{BB} & Q_{BN} \\ Q_{NB} & Q_{NN} \end{bmatrix} \begin{bmatrix} \boldsymbol{\alpha}_{B} \\ \boldsymbol{\alpha}_{N}^{k} \end{bmatrix} - \\ & \begin{bmatrix} \mathbf{e}_{B}^{T} & (\mathbf{e}_{N}^{k})^{T} \end{bmatrix} \begin{bmatrix} \boldsymbol{\alpha}_{B} \\ \boldsymbol{\alpha}_{N}^{k} \end{bmatrix} \\ \mathbf{\alpha}_{N}^{k} \end{bmatrix} \\ \\ \mathbf{bject to} & 0 \leq \alpha_{t} \leq C, t \in B, \ \mathbf{y}_{B}^{T} \boldsymbol{\alpha}_{B} = -\mathbf{y}_{N}^{T} \boldsymbol{\alpha}_{N}^{k} \end{split}$$

Avoid Memory Problems

The new objective function

$$\frac{1}{2}\boldsymbol{\alpha}_{B}^{T}Q_{BB}\boldsymbol{\alpha}_{B} + (-\mathbf{e}_{B} + Q_{BN}\boldsymbol{\alpha}_{N}^{k})^{T}\boldsymbol{\alpha}_{B} + \text{ constant}$$

- \blacksquare B columns of Q needed
- Calculated when used

Decomposition Method: the Algorithm

1. Find initial feasible α^1

Set k = 1.

- 2. If α^k stationary, stop. Otherwise, find working set *B*. Define $N \equiv \{1, \dots, l\} \setminus B$
- 3. Solve sub-problem of α_B :

$$\min_{\boldsymbol{\alpha}_B} \quad \frac{1}{2} \boldsymbol{\alpha}_B^T Q_{BB} \boldsymbol{\alpha}_B + (-\mathbf{e}_B + Q_{BN} \boldsymbol{\alpha}_N^k)^T \boldsymbol{\alpha}_B$$
subject to
$$0 \le \alpha_t \le C, t \in B$$

$$\mathbf{y}_B^T \boldsymbol{\alpha}_B^T = -\mathbf{y}_N^T \boldsymbol{\alpha}_N^k,$$

4. $\alpha_N^{k+1} \equiv \alpha_N^k$. Set $k \leftarrow k+1$; goto Step 2.

Does it Really Work?

- Compared to Newton, Quasi-Newton
 Slow convergence
- However, no need to have very accurate α

$$\operatorname{sgn}\left(\sum_{i=1}^{l} \alpha_i y_i K(\mathbf{x}_i, \mathbf{x}) + b\right)$$

Prediction not affected much

- In some situations, # support vectors <
 # training points
 Initial $\alpha^1 = 0$, some elements never used
- An example where ML knowledge affect optimization

Working Set Selection

- ▶ Very important
 Better selection ⇒ fewer iterations
- But

Better selection \Rightarrow higher cost per iteration

- Two issues:
 - 1. Size
 - $|B| \nearrow$, # iterations \searrow
 - |B| \searrow , # iterations \nearrow
 - 2. Selecting elements

Size of the Working Set

- Keeping all nonzero α_i in the working set
 If all SVs included ⇒ optimum
 Few iterations (i.e., few sub-problems)
 Size varies
 May still have memory problems
- Existing software
 Small and fixed size
 Memory problems solved
 Though sometimes slower

Sequential Minimal Optimization (SMO)

- Consider |B| = 2 (Platt, 1998)
 - $|B| \ge 2$ because of the linear constraint

Extreme of decomposition methods

Sub-problem analytically solved; no need to use optimization software

$$\min_{\boldsymbol{\alpha}_{i},\boldsymbol{\alpha}_{j}} \quad \frac{1}{2} \begin{bmatrix} \alpha_{i} & \alpha_{j} \end{bmatrix} \begin{bmatrix} Q_{ii} & Q_{ij} \\ Q_{ij} & Q_{jj} \end{bmatrix} \begin{bmatrix} \alpha_{i} \\ \alpha_{j} \end{bmatrix} + (Q_{BN}\boldsymbol{\alpha}_{N}^{k} - \mathbf{e}_{B})^{T} \begin{bmatrix} \alpha_{i} \\ \alpha_{j} \end{bmatrix}$$
s.t. $0 \leq \alpha_{i}, \alpha_{j} \leq C,$
 $y_{i}\alpha_{i} + y_{j}\alpha_{j} = -\mathbf{y}_{N}^{T}\boldsymbol{\alpha}_{N}^{k},$

- Optimization people may not think this a big advantage
 Machine learning people do: they like simple code
- A minor advantage in optimization
 No need to have inner and outer stopping conditions
- $B = \{i, j\}$
- Too slow convergence?

With other tricks, |B| = 2 fine in practice

Selection by KKT violation

• $\min_{\alpha} f(\alpha)$, subject to $\mathbf{y}^T \alpha = 0, 0 \le \alpha_i \le C$ • α stationary if and only if

$$\nabla f(\boldsymbol{\alpha}) + b\mathbf{y} = \boldsymbol{\lambda} - \boldsymbol{\mu},$$
$$\lambda_i \alpha_i = 0, \, \mu_i (C - \alpha_i) = 0, \, \lambda_i \ge 0, \, \mu_i \ge 0, \, i = 1, \dots, l,$$

•
$$\nabla f(\boldsymbol{\alpha}) \equiv Q\boldsymbol{\alpha} - \mathbf{e}$$

Rewritten as

$$\nabla f(\boldsymbol{\alpha})_i + by_i \ge 0 \quad \text{if } \alpha_i < C,$$

$$\nabla f(\boldsymbol{\alpha})_i + by_i \le 0 \quad \text{if } \alpha_i > 0.$$

• Note $y_i = \pm 1$

KKT further rewritten as

$$\begin{aligned} \nabla f(\boldsymbol{\alpha})_i + b &\geq 0 & \text{if } \alpha_i < C, y_i = 1 \\ \nabla f(\boldsymbol{\alpha})_i - b &\geq 0 & \text{if } \alpha_i < C, y_i = -1 \\ \nabla f(\boldsymbol{\alpha})_i + b &\leq 0 & \text{if } \alpha_i > 0, y_i = 1, \\ \nabla f(\boldsymbol{\alpha})_i - b &\leq 0 & \text{if } \alpha_i > 0, y_i = -1 \end{aligned}$$

A condition on the range of b:

$$\max\{-y_t \nabla f(\boldsymbol{\alpha})_t \mid \alpha_t < C, y_t = 1 \text{ or } \alpha_t > 0, y_t = -1\}$$

$$\leq b$$

$$\leq \min\{-y_t \nabla f(\boldsymbol{\alpha})_t \mid \alpha_t < C, y_t = -1 \text{ or } \alpha_t > 0, y_t = 1\}$$

$$I_{\rm up}(\alpha) \equiv \{t \mid \alpha_t < C, y_t = 1 \text{ or } \alpha_t > 0, y_t = -1\}, \text{ and} \\ I_{\rm low}(\alpha) \equiv \{t \mid \alpha_t < C, y_t = -1 \text{ or } \alpha_t > 0, y_t = 1\}.$$

 \checkmark stationary if and only if feasible and

$$\max_{i \in I_{up}(\boldsymbol{\alpha})} -y_i \nabla f(\boldsymbol{\alpha})_i \leq \min_{i \in I_{low}(\boldsymbol{\alpha})} -y_i \nabla f(\boldsymbol{\alpha})_i.$$

Violating Pair

KKT equivalent to

$$t \in I_{up}(\boldsymbol{\alpha}) \qquad t \in I_{low}(\boldsymbol{\alpha})$$

Violating pair (Keerthi et al., 2001)

 $i \in I_{up}(\boldsymbol{\alpha}), j \in I_{low}(\boldsymbol{\alpha}), \text{ and } -y_i \nabla f(\boldsymbol{\alpha})_i > -y_j \nabla f(\boldsymbol{\alpha})_j.$

Strict decrease if and only if B has at least one violating pair.

However, having violating pair not enough for convergence.

Maximal Violating Pair

If |B| = 2, naturally indices most violate the KKT condition:

$$i \in \arg \max_{t \in I_{up}(\boldsymbol{\alpha}^k)} -y_t \nabla f(\boldsymbol{\alpha}^k)_t,$$
$$j \in \arg \min_{t \in I_{low}(\boldsymbol{\alpha}^k)} -y_t \nabla f(\boldsymbol{\alpha}^k)_t,$$

• Can be extended to |B| > 2

Calculating Gradient

- To find violating pairs, gradient maintained throughout all iterations
- Memory problem occur as $\nabla f(\alpha) = Q\alpha e$ involves Q
- Solved by following tricks
 - 1. $\alpha^1 = 0$ implies $\nabla f(\alpha^1) = Q \cdot 0 e = -e$ Initial gradient easily obtained
 - 2. Update $\nabla f(\alpha)$ using only Q_{BB} and Q_{BN} :

$$\nabla f(\boldsymbol{\alpha}^{k+1}) = \nabla f(\boldsymbol{\alpha}^{k}) + Q(\boldsymbol{\alpha}^{k+1} - \boldsymbol{\alpha}^{k})$$
$$= \nabla f(\boldsymbol{\alpha}^{k}) + Q_{:,B}(\boldsymbol{\alpha}^{k+1} - \boldsymbol{\alpha}^{k})_{B}$$

Only |B| columns needed per iteration

Selection by Gradient Information

Maximal violating pair same as using gradient information

$$\{i, j\} = \arg\min_{B:|B|=2} \mathsf{Sub}(B),$$

where

$$\begin{aligned} \mathsf{Sub}(B) &\equiv \min_{\mathbf{d}_B} & \nabla f(\boldsymbol{\alpha}^k)_B^T \mathbf{d}_B & \text{(1a)} \\ & \mathsf{subject to} & \mathbf{y}_B^T \mathbf{d}_B = 0, \\ & d_t \geq 0, \text{ if } \alpha_t^k = 0, t \in B, & \text{(1b)} \\ & d_t \leq 0, \text{ if } \alpha_t^k = C, t \in B, & \text{(1c)} \\ & -1 \leq d_t \leq 1, t \in B. & \text{(1d)} \end{aligned}$$

- First considered in (Joachims, 1998)
- Let $d \equiv [d_B; 0_N]$, (1a) comes from minimizing

$$f(\boldsymbol{\alpha}^{k} + \mathbf{d}) \approx f(\boldsymbol{\alpha}^{k}) + \nabla f(\boldsymbol{\alpha}^{k})^{T} \mathbf{d}$$
$$= f(\boldsymbol{\alpha}^{k}) + \nabla f(\boldsymbol{\alpha}^{k})^{T}_{B} \mathbf{d}_{B}.$$

First order approximation

- $0 \le \alpha_t \le C$ leads to (1b) and (1c).
- $-1 \le d_t \le 1, t \in B$ avoid $-\infty$ objective value

Rough explanation connecting to maximal violating pair

$$\nabla f(\boldsymbol{\alpha}^{k})_{i}d_{i} + \nabla f(\boldsymbol{\alpha}^{k})_{j}d_{j}$$

= $y_{i}\nabla f(\boldsymbol{\alpha}^{k})_{i} \cdot y_{i}d_{i} + y_{j}\nabla f(\boldsymbol{\alpha}^{k})_{j} \cdot y_{j}d_{j}$
= $(y_{i}\nabla f(\boldsymbol{\alpha}^{k})_{i} - y_{j}\nabla f(\boldsymbol{\alpha}^{k})_{j}) \cdot (y_{i}d_{i})$

• We used
$$y_i d_i + y_j d_j = 0$$

• Find $\{i, j\}$ so that

 $y_i \nabla f(\boldsymbol{\alpha}^k)_i - y_j \nabla f(\boldsymbol{\alpha}^k)_j$ the smallest, $y_i d_i = 1$, $y_j d_j = -1$ $\boldsymbol{y}_i d_i = 1$ corresponds to $i \in I_{up}(\boldsymbol{\alpha}^k)$:

$$I_{\rm up}(\boldsymbol{\alpha}) \equiv \{t \mid \alpha_t < C, y_t = 1 \text{ or } \alpha_t > 0, y_t = -1\}$$

Convergence: Maximal Violating Pair

- Special case of (Lin, 2001c)
- Let $\bar{\alpha}$ limit of any convergent subsequence $\{\alpha^k\}, k \in \mathcal{K}$.
- If not stationary, \exists a violating pair

 $\overline{i} \in I_{up}(\alpha), \overline{j} \in I_{low}(\alpha), \text{ and } - y_{\overline{i}} \nabla f(\overline{\alpha})_{\overline{i}} + y_{\overline{j}} \nabla f(\overline{\alpha})_{\overline{j}} > 0$

If i ∈ I_{up}(ā), then i ∈ I_{up}(α^k), ∀k ∈ K large enough
 If i ∈ I_{low}(ā), then i ∈ I_{low}(α^k), ∀k ∈ K large enough
 So

$\{\overline{i},\overline{j}\}$ a violating pair at $k \in \mathcal{K}$

• From
$$k$$
 to $k + 1$:
 $B^k = \{i, j\}$
 $i \notin I_{\mathrm{up}}(\boldsymbol{\alpha}^{k+1})$ or $j \notin I_{\mathrm{low}}(\boldsymbol{\alpha}^{k+1})$

because of optimality of sub-problem

If we can show

$$\{oldsymbol{lpha}^k\}_{k\in\mathcal{K}}
ightarrowar{oldsymbol{lpha}}
ightarrow\{oldsymbol{lpha}^{k+1}\}_{k\in\mathcal{K}}
ightarrowar{oldsymbol{lpha}},$$

then $\{\overline{i}, \overline{j}\}$ should not be selected at $k, k+1, \ldots, k+r$

 A procedure showing in finite iterations, it is selected Contradiction

Key of the Proof

Essentially we proved

In finite iterations, $B = \{\overline{i}, \overline{j}\}$ selected

to have a contradiction

Can be used to design working sets (Lucidi et al., 2005):

 $\exists N > 0$ such that for all k, any violating pair of α^k selected at least once in iterations k to k + N

A cyclic selection

 $\{1, 2\}, \{1, 3\}, \dots, \{1, l\}, \{2, 3\}, \dots, \{l - 1, l\}$

Beyond Maximal Violating Pair

Better working sets?

Difficult: # iterations \searrow but cost per iteration \nearrow

May not imply shorter training time

A selection by second order information (Fan et al., 2005)

As f is a quadratic,

$$f(\boldsymbol{\alpha}^{k} + \mathbf{d}) = f(\boldsymbol{\alpha}^{k}) + \nabla f(\boldsymbol{\alpha}^{k})^{T} \mathbf{d} + \frac{1}{2} \mathbf{d}^{T} \nabla^{2} f(\boldsymbol{\alpha}^{k}) \mathbf{d}$$
$$= f(\boldsymbol{\alpha}^{k}) + \nabla f(\boldsymbol{\alpha}^{k})^{T}_{B} \mathbf{d}_{B} + \frac{1}{2} \mathbf{d}^{T}_{B} \nabla^{2} f(\boldsymbol{\alpha}^{k})_{BB} \mathbf{d}_{B}$$

Selection by Quadratic Information

Using second order information

$$\min_{B:|B|=2} \mathsf{Sub}(B),$$

$$\begin{aligned} \mathsf{Sub}(B) &\equiv \min_{\mathbf{d}_B} & \frac{1}{2} \mathbf{d}_B^T \nabla^2 f(\boldsymbol{\alpha}^k)_{BB} \mathbf{d}_B + \nabla f(\boldsymbol{\alpha}^k)_B^T \mathbf{d}_B \\ & \mathsf{subject to} & \mathbf{y}_B^T \mathbf{d}_B = 0, \\ & d_t \geq 0, \text{ if } \alpha_t^k = 0, t \in B, \\ & d_t \leq 0, \text{ if } \alpha_t^k = C, t \in B. \end{aligned}$$

−1 ≤ d_t ≤ 1, t ∈ B not needed if $\nabla^2 f(\alpha^k)_{BB} = Q_{BB}$ PD
 Too expensive to check ^l₂ sets

A heuristic1. Select

$$i \in \arg\max_t \{-y_t \nabla f(\boldsymbol{\alpha}^k)_t \mid t \in I_{\mathrm{up}}(\boldsymbol{\alpha}^k)\}.$$

2. Select

$$j \in \arg\min_{t} \{ \mathsf{Sub}(\{i,t\}) \mid t \in I_{\text{low}}(\boldsymbol{\alpha}^{k}), \\ -y_{t} \nabla f(\boldsymbol{\alpha}^{k})_{t} < -y_{i} \nabla f(\boldsymbol{\alpha}^{k})_{i} \}.$$

3. Return $B = \{i, j\}$.

• The same *i* as the maximal violating pair Check only O(l) possible *B*'s to decide *j*

. – p.71/121

Comparison of Two Selections

Iteration and time ratio between using quadratic information and maximal violating pair

Comparing SVM Software/Methods

- In optimization, straightforward to compare two methods
- Now the comparison under one set of parameters may not be enough
- Unclear yet the most suitable way of doing comparisons
- In ours, we check two
 - 1. Time/total iterations for several parameter sets used in parameter selection
 - 2. Time/iterations for final parameter set
- Simulate how we use SVM in practice

Issues about the Quadratic Selection

- Asymptotic convergence holds
- Faster convergence than maximal violating pair
 Better approximation per iteration
 But lacks global explanation yet
- What if we check all $\binom{l}{2}$ sets

Iteration ratio between checking all and checking O(l):

Fewer iterations, but ratio (0.7 to 0.8) not enough to justify the higher cost per iteration

Caching and Shrinking

- Speed up decomposition methods
- Caching (Joachims, 1998)
 Store recently used Hessian columns in computer memory
- Example

```
$ time ./libsvm-2.81/svm-train -m 0.01 a4a
11.463s
```

\$ time ./libsvm-2.81/svm-train -m 40 a4a
7.817s

- Shrinking (Joachims, 1998)
 Some bounded elements remain until the end Heuristically resized to a smaller problem
- After certain iterations, most bounded elements identified and not changed (Lin, 2002)

Stopping Condition

- In optimization software such conditions are important However, don't be surprised if you see no stopping conditions in an optimization code of ML software
 Sometimes time/iteration limits more suitable
- From KKT condition

$$\max_{i \in I_{up}(\boldsymbol{\alpha})} -y_i \nabla f(\boldsymbol{\alpha})_i \le \min_{i \in I_{low}(\boldsymbol{\alpha})} -y_i \nabla f(\boldsymbol{\alpha})_i + \epsilon$$
(2)

a natural stopping condition

Better Stopping Condition

Now in out software \(\epsilon = 10^{-3}\)
 Past experience: ok but sometimes too strict

At one point we almost changed to 10^{-1}

- Large C \Rightarrow large $\nabla f(\alpha)$ components
 Too strict \Rightarrow many iterations
 Need a relative condition
- A very important issue not fully addressed yet

Example of Slow Convergence

• Using C = 1

 $./libsvm-2.81/svm-train -c 1 australian_sca optimization finished, #iter = 508 obj = -201.642538, rho = 0.044312$

J Using C = 5000

\$./libsvm-2.81/svm-train -c 5000 australian_
optimization finished, #iter = 35241
obj = -242509.157367, rho = -7.186733

Optimization researchers may rush to solve difficult cases

That's what I did in the beginning

• It turns out that large C less used than small C

Finite Termination

 Given
 e, finite termination under (2) (Keerthi and Gilbert, 2002; Lin, 2002)
 Not implied from asymptotic convergence as

$$\min_{i \in I_{\text{low}}(\boldsymbol{\alpha})} -y_i \nabla f(\boldsymbol{\alpha})_i - \max_{i \in I_{\text{up}}(\boldsymbol{\alpha})} -y_i \nabla f(\boldsymbol{\alpha})_i$$

not a continuous function of α

We worry

$$\alpha_i^k \to 0 \text{ and } i \in I_{up}(\boldsymbol{\alpha}^k) \cap I_{low}(\boldsymbol{\alpha}^k)$$

causes the program never ends

Important from optimization point of view

- ML people do not care this much
 Many think finite termination same as asymptotic convergence
- We are careful on such issues in our software
- A good SVM software should
 - 1. be a rigorous numerical optimization code
 - 2. serve the need of users in ML and other areas
- Both are equally important

Issues Not Discussed Here

- $\blacksquare Q$ not PSD
- Solving sub-problems
 Analytic form for SMO (two-variable problem)
- Linear convergence (Lin, 2001b)

$$f(\boldsymbol{\alpha}^{k+1}) - f(\bar{\boldsymbol{\alpha}}) \le c(f(\boldsymbol{\alpha}^k) - f(\bar{\boldsymbol{\alpha}}))$$

Best worst case analysis

Practical Use of SVM

Let Us Try An Example

A problem from astroparticle physics

1.0 1:2.617300e+01 2:5.886700e+01 3:-1.894697e-01 4:1.251225e+02 1.0 1:5.707397e+01 2:2.214040e+02 3:8.607959e-02 4:1.229114e+02 1.0 1:1.725900e+01 2:1.734360e+02 3:-1.298053e-01 4:1.250318e+02 1.0 1:2.177940e+01 2:1.249531e+02 3:1.538853e-01 4:1.527150e+02 1.0 1:9.133997e+01 2:2.935699e+02 3:1.423918e-01 4:1.605402e+02 1.0 1:5.537500e+01 2:1.792220e+02 3:1.654953e-01 4:1.112273e+02 1.0 1:2.956200e+01 2:1.913570e+02 3:9.901439e-02 4:1.034076e+02

- Training and testing sets available: 3,089 and 4,000
- Data format is an issue

SVM software: LIBSVM

- http://www.csie.ntu.edu.tw/~cjlin/libsvm
- Now one of the most used SVM software
- Installation
- On Unix:

Download zip file and make

- On Windows:
 - Download zip file and make
 - c:nmake -f Makefile.win
 - Windows binaries included in the package

Usage of LIBSVM

Training

Usage: svm-train [options] training_set_file
options:

- -s svm_type : set type of SVM (default 0)
 - 0 -- C-SVC
 - 1 -- nu-SVC
 - 2 -- one-class SVM
 - 3 -- epsilon-SVR
 - 4 -- nu-SVR
- -t kernel_type : set type of kernel function

Jesting

Usage: svm-predict test_file model_file out

Training and Testing

Training

```
$./svm-train train.1
.....*
optimization finished, #iter = 6131
nu = 0.606144
obj = -1061.528899, rho = -0.495258
nSV = 3053, nBSV = 724
Total nSV = 3053
```

Testing

\$./svm-predict test.1 train.1.model
 test.1.predict
Accuracy = 66.925% (2677/4000)

What does this Output Mean

- obj: the optimal objective value of the dual SVM
- rho: -b in the decision function
- nSV and nBSV: number of support vectors and bounded support vectors

(i.e., $\alpha_i = C$).

Inu-sym is a somewhat equivalent form of C-SVM where C is replaced by ν .

Why this Fails

- After training, nearly 100% support vectors
- Training and testing accuracy different

\$./svm-predict train.1 train.1.model o
Accuracy = 99.7734% (3082/3089)

RBF kernel used

$$e^{-\gamma \|\mathbf{x}_i - \mathbf{x}_j\|^2}$$

Then

$$K_{ij} \begin{cases} = 1 & \text{if } i = j, \\ \to 0 & \text{if } i \neq j. \end{cases}$$

$$M \to I$$

 $\min_{\boldsymbol{\alpha}} \quad \frac{1}{2} \boldsymbol{\alpha}^T \boldsymbol{\alpha} - \mathbf{e}^T \boldsymbol{\alpha}$ subject to $0 \le \alpha_i \le C, i = 1, \dots, l$ $\mathbf{y}^T \boldsymbol{\alpha} = 0$

Optimal solution

$$2 > \boldsymbol{\alpha} = \mathbf{e} - \frac{\mathbf{y}^T \mathbf{e}}{l} \mathbf{y} > 0$$

•
$$\alpha_i > 0$$

$$y_i(\mathbf{w}^T\mathbf{x}_i+b)=1$$

Zero training error

Data Scaling

Without scaling
 Attributes in greater numeric ranges may dominate

Example:

	height	gender
\mathbf{x}_1	150	F
\mathbf{x}_2	180	Μ
\mathbf{x}_3	185	Μ

and

$$y_1 = 0, y_2 = 1, y_3 = 1.$$

- Decision strongly depends on the first attribute
- What if the second is more important

 $\frac{1 \text{st attribute} - 150}{185 - 150},$

New points and separating hyperplane

- The second attribute plays a role
- Scaling generally helps, but not always

More about Data Scaling

A common mistake

\$./svm-scale -l -l -u l train.l > train.l.scale \$./svm-scale -l -l -u l test.l > test.l.scale

Same factor on training and testing

- \$./svm-scale -s range1 train.1 > train.1.sca
- \$./svm-scale -r range1 test.1 > test.1.scale
- \$./svm-train train.1.scale
- \$./svm-predict test.1.scale train.1.scale.mo
 test.1.predict
 - \rightarrow Accuracy = 96.15%
- We store the scaling factor used in training and apply them for testing set

More on Training

Train scaled data and then prediction

- \$./svm-train train.1.scale
- \$./svm-predict test.1.scale train.1.scale.mo
 test.1.predict
 - \rightarrow Accuracy = 96.15%
- Training accuracy now is

\$./svm-predict train.1.scale train.1.scale.me Accuracy = 96.439% (2979/3089) (classification)

Default parameter

•
$$C = 1, \gamma = 0.25$$

Different Parameters

If we use $C = 20, \gamma = 400$

\$./svm-train -c 20 -g 400 train.1.scale \$./svm-predict train.1.scale train.1.scale.me Accuracy = 100% (3089/3089) (classification)

100% training accuracy but

\$./svm-predict test.1.scale train.1.scale.mo
Accuracy = 82.7% (3308/4000) (classification

- Very bad test accuracy
- Overfitting happens

Overfitting and Underfitting

- When training and predicting a data, we should
 - Avoid underfitting: small training error
 - Avoid overfitting: small testing error

• and \blacktriangle : training; \bigcirc and \triangle : testing

Overfitting

In theory

You can easily achieve 100% training accuracy

- This is useless
- Surprisingly

Many application papers did this

Parameter Selection

- Sometimes important
- Now parameters areC and kernel parameters
- Example:

$$\gamma \text{ of } e^{-\gamma \|\mathbf{x}_i - \mathbf{x}_j\|^2}$$

 $a, b, d \text{ of } (\mathbf{x}_i^T \mathbf{x}_j / a + b)^d$

How to select them ?

Performance Evaluation

- Training errors not important; only test errors count
- I training data, $x_i ∈ R^n, y_i ∈ \{+1, -1\}, i = 1, ..., l$, a learning machine:

$$x \to f(\mathbf{x}, \alpha), f(\mathbf{x}, \alpha) = 1 \text{ or } -1.$$

Different α : different machines

The expected test error (generalized error)

$$R(\alpha) = \int \frac{1}{2} |y - f(\mathbf{x}, \alpha)| dP(\mathbf{x}, y)$$

y: class of x (i.e. 1 or -1)

• $P(\mathbf{x}, y)$ unknown, empirical risk (training error):

$$R_{emp}(\alpha) = \frac{1}{2l} \sum_{i=1}^{l} |y_i - f(\mathbf{x}_i, \alpha)|$$

■ $\frac{1}{2}|y_i - f(\mathbf{x}_i, \alpha)|$: loss, choose $0 \le \eta \le 1$, with probability at least $1 - \eta$:

 $R(\alpha) \leq R_{emp}(\alpha) + \text{ another term}$

- A good pattern recognition method: minimize both terms at the same time
- $R_{emp}(\alpha) \to 0$ another term \to large

Performance Evaluation (Cont.)

In practice

Available data \Rightarrow training, validation, and (testing)

- **•** Train + validation \Rightarrow model
- k-fold cross validation:
 - Data randomly separated to k groups.
 - Each time k 1 as training and one as testing
 - Select parameters with highest CV
 - Another optimization problem

A Simple Procedure

- 1. Conduct simple scaling on the data
- 2. Consider RBF kernel $K(\mathbf{x}, \mathbf{y}) = e^{-\gamma \|\mathbf{x} \mathbf{y}\|^2}$
- 3. Use cross-validation to find the best parameters C and γ
- 4. Use the best *C* and γ to train the whole training set
- 5. Test
- Best C and γ by training k 1 and the whole ?
 In theory, a minor difference

No problem in practice

Just a rough guideline. E.g., scaling hurts sometimes

Why trying RBF Kernel First

Linear kernel: special case of RBF (Keerthi and Lin, 2003)

Leave-one-out cross-validation accuracy of linear the same as RBF under certain parameters

Related to optimization as well

Polynomial: numerical difficulties

 $(<1)^d \to 0, (>1)^d \to \infty$

More parameters than RBF
Parameter Selection in LIBSVM

grid search + CV

\$./grid.py train.1 train.1.scale
[local] -1 -7 85.1408 (best c=0.5, g=0.0078125, rate=85.1408)
[local] 5 -7 95.4354 (best c=32.0, g=0.0078125, rate=95.4354)
.

● grid.py: a python script in the python directory of LIBSVM

Contour of Parameter Selection

Simple script in LIBSVM

```
easy.py: a script for dummies
```

```
$python easy.py train.1 test.1
Scaling training data...
Cross validation...
Best c=2.0, g=2.0
Training...
Scaling testing data...
Testing...
Accuracy = 96.875% (3875/4000)
```

Example: Engine Misfire Detection

Problem Description

- First problem of IJCNN Challenge 2001, data from Ford
- Given time series length T = 50,000
- The kth data

 $x_1(k), x_2(k), x_3(k), x_4(k), x_5(k), y(k)$

- $y(k) = \pm 1$: output, affected only by $x_1(k), \ldots, x_4(k)$
- $x_5(k) = 1$, kth data considered for evaluating accuracy
- 50,000 training data, 100,000 testing data (in two sets)

• Past and future information may affect y(k)

x₁(k): periodically nine 0s, one 1, nine 0s, one 1, and so on.

Example:

0.00000 1.00000 -0.999991 0.169769 0.000000 0.00000 0.000292 -0.6595380.169769 1.00000 0.000000 -0.6607380.169128 -0.020372 1.0000 -0.660307 1.000000 0.169128 0.007305 1.000000.169525 0.002519 -0.660159 0.000000 1.00000 -0.659091 0.169525 0.018198 1.00000 0.000000 0.000000 -0.660532 0.169525 -0.024526 1.0000 0.169525 0.012458 1.00000 0.00000 -0.659798

• $x_4(k)$ more important

Background: Engine Misfire Detection

How engine works

Air-fuel mixture injected to cylinder

intact, compression, combustion, exhaustion

- Engine misfire: a substantial fraction of a cylinder's air-fuel mixture fails to ignite
- Frequent misfires: pollutants and costly replacement
- On-board detection:

Engine crankshaft rational dynamics with a position sensor

Training data: from some expensive experimental environment

Encoding Schemes

- For SVM: each data is a vector
- $x_1(k)$: periodically nine 0s, one 1, nine 0s, one 1, ...
 - 10 binary attributes $x_1(k-5), \ldots, x_1(k+4)$ for the *k*th data
 - $x_1(k)$: an integer in 1 to 10
 - Which one is better
 - We think 10 binaries better for SVM
- $x_4(k)$ more important

Including $x_4(k-5), \ldots, x_4(k+4)$ for the *k*th data

Each training data: 22 attributes

Training SVM

- Selecting parameters; generating a good model for prediction
- **RBF kernel** $K(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j) = e^{-\gamma ||\mathbf{x}_i \mathbf{x}_j||^2}$
- **•** Two parameters: γ and C
- Five-fold cross validation on 50,000 data
 Data randomly separated to five groups.
 Each time four as training and one as testing
- Use $C = 2^4, \gamma = 2^2$ and train 50,000 data for the final model

- Test set 1: 656 errors, Test set 2: 637 errors
- About 3000 support vectors of 50,000 training data
 A good case for SVM
- This is just the outline. There are other details.
- It is essential to do parameter selection

Conclusions

SVM optimization issues are challenging
 Quite extensively studied

But better results still possible

- Why working on machine learning?
 It is less mature than optimization
 More new issues
- Many other optimization issues from machine learning Need to study things useful for ML tasks

While we complain ML people's lack of optimization knowledge, we must admit this fact first

ML people focus on developing methods, so pay less attention to optimization details

Only if we widely apply solid optimization techniques to machine learning

then the contribution of optimization in ML can be recognized