Matrix Factorization and Factorization Machines for Recommender Systems

Chih-Jen Lin Department of Computer Science National Taiwan University

Talk at 4th Workshop on Large-Scale Recommender Systems,

ACM RecSys, 2016

Outline

- Pactorization machines
- Field-aware factorization machines
- Optimization methods for large-scale training

Outline

- Pactorization machines
- Field-aware factorization machines
- Optimization methods for large-scale training

Matrix Factorization

- Matrix Factorization is an effective method for recommender systems (e.g., Netflix Prize and KDD Cup 2011)
- A group of users give ratings to some items

User	Item	Rating
1	5	100
1	13	30
•••	•••	•••
u	V	r

• The information can be represented by a rating matrix *R*

Matrix Factorization (Cont'd)

- *m*, *n*: numbers of users and items
- u, v: index for u_{th} user and v_{th} item
- $r_{u,v}$: u_{th} user gives a rating $r_{u,v}$ to v_{th} item

Matrix Factorization (Cont'd)

k: number of latent dimensions
r_{u,v} = p_u^Tq_v
?_{2,2} = p₂^Tq₂

Matrix Factorization (Cont'd)

• A non-convex optimization problem:

$$\min_{P,Q} \sum_{(u,v)\in R} \left((r_{u,v} - \mathbf{p}_u^T \mathbf{q}_v)^2 + \lambda_P \|\mathbf{p}_u\|_F^2 + \lambda_Q \|\mathbf{q}_v\|_F^2 \right)$$

 λ_{P} and λ_{Q} are regularization parameters

- Many optimization methods have been successfully applied
- Overall MF is a mature technique

Outline

- Pactorization machines
- Field-aware factorization machines
- Optimization methods for large-scale training

MF versus Classification/Regression

MF solves

$$\min_{P,Q}\sum_{(u,v)\in R}\left(r_{u,v}-\mathbf{p}_{u}^{T}\mathbf{q}_{v}\right)^{2}$$

Note that I omit the regularization term

- Ratings are the only given information
- This doesn't sound like a classification or regression problem
- But indeed we can make some interesting connections

Handling User/Item Features

- What if instead of user/item IDs we are given user and item features?
- Assume user *u* and item *v* have feature vectors

$$\mathbf{f}_u \in R^U$$
 and $\mathbf{g}_v \in R^V$,

where

- $U \equiv$ number of user features $V \equiv$ number of item features
- How to use these features to build a model?

Handling User/Item Features (Cont'd)

• We can consider a regression problem where data instances are

and solve

$$\min_{\mathbf{w}} \sum_{u,v \in R} \left(r_{u,v} - \mathbf{w}^T \begin{bmatrix} \mathbf{f}_u \\ \mathbf{g}_v \end{bmatrix} \right)^2$$

Feature Combinations

- However, this does not take the interaction between users and items into account
- Following the concept of degree-2 polynomial mappings in SVM, we can generate new features

$$(f_u)_t(g_v)_s, t=1,\ldots,U, s=1,\ldots,V$$

and solve

$$\min_{w_{t,s},\forall t,s} \sum_{u,v \in R} (r_{u,v} - \sum_{t=1}^{U} \sum_{s=1}^{V} w_{t,s}(f_u)_t (g_v)_s)^2$$

Feature Combinations (Cont'd)

• This is equivalent to

$$\min_{W} \sum_{u,v\in R} (r_{u,v} - \mathbf{f}_u^T W \mathbf{g}_v)^2,$$

where

$$W \in R^{U \times V}$$
 is a matrix

• If we have vec(W) by concatenating W's columns, another form is

$$\min_{W} \sum_{u,v \in R} \left(r_{u,v} - \operatorname{vec}(W)^T \begin{bmatrix} \vdots \\ (f_u)_t(g_v)_s \\ \vdots \end{bmatrix} \right)^2,$$

Feature Combinations (Cont'd)

- However, this setting fails for extremely sparse features
- Consider the most extreme situation. Assume we have

user ID and item ID

as features

Then

$$U = m, J = n,$$

$$\mathbf{f}_i = [\underbrace{0, \dots, 0}_{i-1}, 1, 0, \dots, 0]^T$$

Feature Combinations (Cont'd)

• The optimal solution is

$$W_{u,v} = \begin{cases} r_{u,v}, & \text{if } u, v \in R \\ \mathbf{0}, & \text{if } u, v \notin R \end{cases}$$

• We can never predict

$$r_{u,v}, u, v \notin R$$

Factorization Machines

• The reason why we cannot predict unseen data is because in the optimization problem

variables = $mn \gg \#$ instances = |R|

- Overfitting occurs
- Remedy: we can let

$$W \approx P^T Q$$
,

where P and Q are low-rank matrices. This becomes matrix factorization

Factorization Machines (Cont'd)

• This can be generalized to sparse user and item features

$$\min_{P,Q} \sum_{(u,v)\in R} (r_{u,v} - \mathbf{f}_u^T P^T Q \mathbf{g}_v)^2$$

• That is, we think

 $P\mathbf{f}_u$ and $Q\mathbf{g}_v$

are latent representations of user u and item v, respectively

• We can also consider the interaction between elements in **f**_u (or elements in **g**_v)

Factorization Machines (Cont'd)

• The new formulation is

$$\min_{P,Q} \sum_{(u,v)\in R} \left(r_{u,v} - \begin{bmatrix} \mathbf{f}_u^T & \mathbf{g}_v^T \end{bmatrix} \begin{bmatrix} P^T \\ Q^T \end{bmatrix} \begin{bmatrix} P & Q \end{bmatrix} \begin{bmatrix} \mathbf{f}_u \\ \mathbf{g}_v \end{bmatrix} \right)^2$$

• This becomes factorization machines (Rendle, 2010)

Factorization Machines (Cont'd)

- Similar ideas have been used in other places such as Stern et al. (2009)
- We see that such ideas can be used for not only recommender systems.
- They may be useful for any classification problems with very sparse features

FM for Classification

- In a classification setting assume a data instance is $\mathbf{x} \in R^n$
- Linear model:

 $\mathbf{w}^T \mathbf{x}$

• Degree-2 polynomial mapping:

 $\mathbf{x}^T W \mathbf{x}$

FM for Classification (Cont'd)

• FM:

$$\mathbf{x}^T P^T P \mathbf{x}$$

or alternatively

$$\sum_{i,j} \mathbf{x}_i \mathbf{p}_i^T \mathbf{p}_j \mathbf{x}_j,$$

where

$$\mathbf{p}_i, \mathbf{p}_j \in R^k$$

• That is, in FM each feature is associated with a latent factor

Outline

- Matrix factorization
- Pactorization machines
- Field-aware factorization machines
 - Optimization methods for large-scale training

Field-aware Factorization Machines

- We have seen that FM seems to be useful to handle highly sparse features such as user IDs
- What if we have more than two ID fields?
- For example, in CTR (click-through rate) prediction for computational advertising, we may have

Field-aware Factorization Machines (Cont'd)

• FM can be generalized to handle different interactions between fields

Two latent matrices for user ID and Ad ID Two latent matrices for user ID and site ID

- We call this approach FFM (field-aware factorization machines)
- An early study on three fields is Rendle and Schmidt-Thieme (2010)

÷

FFM for CTR Prediction

- It's used by Jahrer et al. (2012) to win the 2nd prize of KDD Cup 2012
- In 2014 my students used FFM to win two Kaggle CTR competitions
- After we used FFM to win the first competition, in the second competition all top teams use FFM
- Note that for CTR prediction, logistic rather than squared loss is used

Practical Use of FFM

- Recently we conducted a detailed study on FFM (Juan et al., 2016)
- Here I briefly discuss some results there

Numerical Features

- For categorical features like IDs, we have ID: field ID index: feature
- Each field has many 0/1 features
- But how about numerical features?
- Two possibilities
 - Dummy fields: The field has only one real-valued feature
 - Discretization: transform a numerical feature to a categorical one and then many binary features

Normalization

- After obtaining the feature vector, empirically we find that instance-wise normalization is useful
- Faster convergence and better test accuracy

Impact of Parameters

We have the following parameters

- k: number of latent factors
- λ : regularization parameter
- parameters of the optimization methods (e.g., learning rate of stochastic gradient)

Their sensitivity to the performance varies

Example: Regularization Parameter λ

- Too large λ : model not good
- Too small λ : better model but easily overfitting
- Similar situations occur for SG learning rates

• Early stopping by a validation procedure is needed

Experiments: Two CTR Sets

method	test logloss	rank
Linear	0.46224	91
Poly2	0.44956	14
FM	0.44922	14
FM	0.44847	11
FFM	0.44603	3
Linear	0.38833	64
Poly2	0.38347	10
FM	0.38407	11
FM	0.38531	15
FFM	0.38223	6

For same method (e.g., FM), we try different parameters

Chih-Jen Lin (National Taiwan Univ.)

Experiments: Two CTR Sets (Cont'd)

- For these two sets, FFM is the best
- For winning competitions, some additional tricks are used

Experiments: Other Sets

- Can FFM work well for other sets? Can we identify when it's useful
- We try the following data

Data Set	# instances	# features	# fields
KDD2010-bridge	20,012,499	651,166	9
KDD2012	20,950,284	19,147,857	11
phishing	11,055	100	30
adult	48,842	308	14
cod–rna (dummy fields)	331,152	8	8
cod-rna (discretization)	331,152	2,296	8
ijcnn (dummy fields)	141,691	22	22
ijcnn (discretization)	141,691	69,867	22

Experiments: Other Sets (Cont'd)

Data Set	LM	Poly2	FM	FFM
KDD2010-bridge	0.30910	0.27448	0.28437	0.26899
KDD2012	0.49375	0.49640	0.49292	<u>0.48700</u>
phishing	0.11493	0.09659	0.09461	<u>0.09374</u>
adult	0.30897	<u>0.30757</u>	0.30959	0.30760
cod-rna (dummy fields)	0.13829	0.12874	0.12580	0.12914
cod-rna (discretization)	0.16455	0.17576	0.16570	<u>0.14993</u>
ijcnn (dummy fields)	0.20627	0.09209	0.07696	<u>0.07668</u>
ijcnn (discretization)	0.21686	0.22546	0.22259	<u>0.18635</u>
	1			

Best results are underlined

Experiments: Other Sets (Cont'd)

- For data with categorical data, FFM works well
- For some data (e.g., adult), feature interactions are not useful
- It's not easy for FFM to handle numerical features

Outline

- Matrix factorization
- Pactorization machines
- Field-aware factorization machines
- Optimization methods for large-scale training

Solving the Optimization Problem

- MF, FM, and FFM all involve optimization problems
- Optimization techniques for them are related but different due to different problem structures
- With time constraint I will only briefly discuss some optimization techniques for matrix factorization

Matrix Factorization

• Recall we have a non-convex optimization problem:

$$\min_{P,Q} \sum_{(\boldsymbol{u},\boldsymbol{v})\in \boldsymbol{R}} \left((r_{\boldsymbol{u},\boldsymbol{v}} - \boldsymbol{p}_{\boldsymbol{u}}^{T}\boldsymbol{q}_{\boldsymbol{v}})^{2} + \lambda_{P} \|\boldsymbol{p}_{\boldsymbol{u}}\|_{F}^{2} + \lambda_{Q} \|\boldsymbol{q}_{\boldsymbol{v}}\|_{F}^{2} \right)$$

- Existing optimization techniques include
 - ALS: Alternating Least Squares (ALS)
 - CD : Coordinate Descent
 - SG : Stochastic Gradient

Complexity in Training MF

To update P, Q once

- ALS: $O(|R|k^2 + (m+n)k^3)$
- CD: O(|R|k)

To go through |R| elements once

• SG: O(|R|k)

I don't discuss details, but this indicates that CD and SG are generally more efficient

Stochastic Gradient for Matrix Factorization

• SG update rule:

$$\mathbf{p}_{u} \leftarrow \mathbf{p}_{u} + \gamma \left(e_{u,v} \mathbf{q}_{v} - \lambda_{P} \mathbf{p}_{u} \right), \\ \mathbf{q}_{v} \leftarrow \mathbf{q}_{v} + \gamma \left(e_{u,v} \mathbf{p}_{u} - \lambda_{Q} \mathbf{q}_{v} \right)$$

where

$$e_{u,v} \equiv r_{u,v} - \mathbf{p}_u^T \mathbf{q}_v$$

• Two issues:

- SG is sensitive to learning rate
- SG is inherently sequential

SG's Learning Rate

- We can apply advanced settings such as ADAGRAD (Duchi et al., 2011)
- Each element of latent vectors \mathbf{p}_u , \mathbf{q}_v has its own learning rate
- Maintaining so many learning rates can be quite expensive
- How about a modification to let the whole p_u (or the whole q_v) associates with a rate? (Chin et al., 2015b)
- This is an example that we take MF's property into account

SG for Parallel MF

After $r_{3,3}$ is selected, ratings in gray blocks cannot be updated

•
$$r_{3,1} = \mathbf{p_3}^T \mathbf{q_1}$$

• $r_{3,2} = \mathbf{p_3}^T \mathbf{q_2}$

•
$$r_{3,2} = \mathbf{p_3}' \mathbf{q_2}$$

•
$$r_{3,6} = \mathbf{p_3}^T \mathbf{q_6}$$

•
$$r_{3,3} = \mathbf{p_3}^T \mathbf{q_3}$$

 $r_{6,6} = \mathbf{p_6}^T \mathbf{q_6}$

SG for Parallel MF (Cont'd)

We can split the matrix to blocks and update those which don't share \mathbf{p} or \mathbf{q}

This concept is simple, but there are many issues to have a right implementation under the given architecture

Chih-Jen Lin (National Taiwan Univ.)

SG for Parallel MF (Cont'd)

- Past developments of SG for parallel MF include Gemulla et al. (2011); Chin et al. (2015a); Yun et al. (2014)
- However, the idea of block splits applies to MF only
- We haven't seen an easy way to extend it to FM or FFM
- This is another example where we take problem structure into account

Outline

- Matrix factorization
- Pactorization machines
- Field-aware factorization machines
- Optimization methods for large-scale training

Discussion and Conclusions

• In this talk we briefly discuss three models for recommender systems

MF, FM, and FFM

- They are related, but are useful in different situations
- Different algorithms may be needed due to different properties of the optimization problems

Acknowledgments

Past and current students who have contributed to this work:

- Wei-Sheng Chin
- Yu-Chin Juan
- Meng-Yuan Yang
- Bo-Wen Yuan
- Yong Zhuang

We thank the support from Ministry of Science and Technology in Taiwan

