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Matrix factorization

Matrix Factorization

Matrix Factorization is an effective method for
recommender systems (e.g., Netflix Prize and KDD
Cup 2011)
A group of users give ratings to some items

User Item Rating
1 5 100
1 13 30
. . . . . . . . .
u v r
. . . . . . . . .

The information can be represented by a rating
matrix R
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Matrix factorization

Matrix Factorization (Cont’d)

R

m × n

m

:

u

:
2

1

1 2 .. v .. .. .. n

ru,v

?2,2

m, n: numbers of users and items

u, v : index for uth user and vth item

ru,v : uth user gives a rating ru,v to vth item
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Matrix factorization

Matrix Factorization (Cont’d)
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Matrix factorization

Matrix Factorization (Cont’d)

A non-convex optimization problem:

min
P,Q

∑
(u,v)∈R

(
(ru,v − pT

u qv)2 + λP ‖pu‖2F + λQ ‖qv‖2F
)

λP and λQ are regularization parameters

Many optimization methods have been successfully
applied

Overall MF is a mature technique
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Factorization machines

MF versus Classification/Regression

MF solves

min
P,Q

∑
(u,v)∈R

(
ru,v − pT

u qv

)2
Note that I omit the regularization term

Ratings are the only given information

This doesn’t sound like a classification or regression
problem

But indeed we can make some interesting
connections
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Factorization machines

Handling User/Item Features

What if instead of user/item IDs we are given user
and item features?

Assume user u and item v have feature vectors

fu ∈ RU and gv ∈ RV ,

where
U ≡ number of user features
V ≡ number of item features

How to use these features to build a model?
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Factorization machines

Handling User/Item Features (Cont’d)

We can consider a regression problem where data
instances are

value features
...

...
ruv

[
fTu gT

v

]
...

...

and solve

min
w

∑
u,v∈R

(
ru,v −wT

[
fu
gv

])2
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Factorization machines

Feature Combinations

However, this does not take the interaction between
users and items into account

Following the concept of degree-2 polynomial
mappings in SVM, we can generate new features

(fu)t(gv)s , t = 1, . . . ,U , s = 1, . . .V

and solve

min
wt,s ,∀t,s

∑
u,v∈R

(ru,v −
U∑
t=1

V∑
s=1

wt,s(fu)t(gv)s)
2
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Factorization machines

Feature Combinations (Cont’d)

This is equivalent to

min
W

∑
u,v∈R

(ru,v − fTu Wgv)2,

where
W ∈ RU×V is a matrix

If we have vec(W ) by concatenating W ’s columns,
another form is

min
W

∑
u,v∈R

ru,v − vec(W )T

 ...
(fu)t(gv)s

...




2

,
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Factorization machines

Feature Combinations (Cont’d)

However, this setting fails for extremely sparse
features

Consider the most extreme situation. Assume we
have

user ID and item ID

as features

Then

U = m, J = n,

fi = [0, . . . , 0︸ ︷︷ ︸
i−1

, 1, 0, . . . , 0]T
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Factorization machines

Feature Combinations (Cont’d)

The optimal solution is

Wu,v =

{
ru,v , if u, v ∈ R

0, if u, v /∈ R

We can never predict

ru,v , u, v /∈ R
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Factorization machines

Factorization Machines

The reason why we cannot predict unseen data is
because in the optimization problem

# variables = mn� # instances = |R |

Overfitting occurs

Remedy: we can let

W ≈ PTQ,

where P and Q are low-rank matrices. This
becomes matrix factorization
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Factorization machines

Factorization Machines (Cont’d)

This can be generalized to sparse user and item
features

min
P,Q

∑
(u,v)∈R

(ru,v − fTu P
TQgv)2

That is, we think

Pfu and Qgv

are latent representations of user u and item v ,
respectively
We can also consider the interaction between
elements in fu (or elements in gv)
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Factorization machines

Factorization Machines (Cont’d)

The new formulation is

min
P,Q

∑
(u,v)∈R

(
ru,v −

[
fTu gT

v

] [PT

QT

] [
P Q

] [ fu
gv

])2

This becomes factorization machines (Rendle, 2010)
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Factorization machines

Factorization Machines (Cont’d)

Similar ideas have been used in other places such as
Stern et al. (2009)

We see that such ideas can be used for not only
recommender systems.

They may be useful for any classification problems
with very sparse features
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Factorization machines

FM for Classification

In a classification setting assume a data instance is
x ∈ Rn

Linear model:
wTx

Degree-2 polynomial mapping:

xTW x
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Factorization machines

FM for Classification (Cont’d)

FM:
xTPTPx

or alternatively ∑
i ,j

xip
T
i pjxj ,

where
pi ,pj ∈ Rk

That is, in FM each feature is associated with a
latent factor
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Field-aware factorization machines

Field-aware Factorization Machines

We have seen that FM seems to be useful to handle
highly sparse features such as user IDs

What if we have more than two ID fields?

For example, in CTR (click-through rate) prediction
for computational advertising, we may have

clicked features
...

...
Yes user ID, Ad ID, site ID

...
...
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Field-aware factorization machines

Field-aware Factorization Machines
(Cont’d)

FM can be generalized to handle different
interactions between fields

Two latent matrices for user ID and Ad ID
Two latent matrices for user ID and site ID
...

We call this approach FFM (field-aware factorization
machines)

An early study on three fields is Rendle and
Schmidt-Thieme (2010)
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Field-aware factorization machines

FFM for CTR Prediction

It’s used by Jahrer et al. (2012) to win the 2nd prize
of KDD Cup 2012

In 2014 my students used FFM to win two Kaggle
CTR competitions

After we used FFM to win the first competition, in
the second competition all top teams use FFM

Note that for CTR prediction, logistic rather than
squared loss is used
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Field-aware factorization machines

Practical Use of FFM

Recently we conducted a detailed study on FFM
(Juan et al., 2016)

Here I briefly discuss some results there
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Field-aware factorization machines

Numerical Features

For categorical features like IDs, we have

ID: field ID index: feature

Each field has many 0/1 features

But how about numerical features?

Two possibilities

Dummy fields: The field has only one
real-valued feature
Discretization: transform a numerical feature to
a categorical one and then many binary features
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Field-aware factorization machines

Normalization

After obtaining the feature vector, empirically we
find that instance-wise normalization is useful

Faster convergence and better test accuracy
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Field-aware factorization machines

Impact of Parameters

We have the following parameters

k : number of latent factors

λ: regularization parameter

parameters of the optimization methods (e.g.,
learning rate of stochastic gradient)

Their sensitivity to the performance varies
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Field-aware factorization machines

Example: Regularization Parameter λ

Epochs
20 40 60 80 100 120 140

L
o
g
lo
ss

0.44

0.45

0.46

0.47

0.48

0.49

0.5
λ = 1e− 6

λ = 1e− 5

λ = 1e− 4

λ = 1e− 3

Too large λ: model not good
Too small λ: better model but easily overfitting
Similar situations occur for SG learning rates
Early stopping by a validation procedure is needed
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Field-aware factorization machines

Experiments: Two CTR Sets

method test logloss rank
Linear 0.46224 91
Poly2 0.44956 14
FM 0.44922 14
FM 0.44847 11
FFM 0.44603 3
Linear 0.38833 64
Poly2 0.38347 10
FM 0.38407 11
FM 0.38531 15
FFM 0.38223 6

For same method (e.g., FM), we try different parameters
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Field-aware factorization machines

Experiments: Two CTR Sets (Cont’d)

For these two sets, FFM is the best

For winning competitions, some additional tricks are
used
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Field-aware factorization machines

Experiments: Other Sets

• Can FFM work well for other sets? Can we identify
when it’s useful
• We try the following data

Data Set # instances # features # fields
KDD2010-bridge 20,012,499 651,166 9
KDD2012 20,950,284 19,147,857 11
phishing 11,055 100 30
adult 48,842 308 14
cod-rna (dummy fields) 331,152 8 8
cod-rna (discretization) 331,152 2,296 8
ijcnn (dummy fields) 141,691 22 22
ijcnn (discretization) 141,691 69,867 22
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Field-aware factorization machines

Experiments: Other Sets (Cont’d)

Data Set LM Poly2 FM FFM
KDD2010-bridge 0.30910 0.27448 0.28437 0.26899
KDD2012 0.49375 0.49640 0.49292 0.48700
phishing 0.11493 0.09659 0.09461 0.09374
adult 0.30897 0.30757 0.30959 0.30760
cod-rna (dummy fields) 0.13829 0.12874 0.12580 0.12914
cod-rna (discretization) 0.16455 0.17576 0.16570 0.14993
ijcnn (dummy fields) 0.20627 0.09209 0.07696 0.07668
ijcnn (discretization) 0.21686 0.22546 0.22259 0.18635

Best results are underlined

Chih-Jen Lin (National Taiwan Univ.) 34 / 47



Field-aware factorization machines

Experiments: Other Sets (Cont’d)

For data with categorical data, FFM works well

For some data (e.g., adult), feature interactions
are not useful

It’s not easy for FFM to handle numerical features
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Optimization methods for large-scale training

Solving the Optimization Problem

MF, FM, and FFM all involve optimization problems

Optimization techniques for them are related but
different due to different problem structures

With time constraint I will only briefly discuss some
optimization techniques for matrix factorization
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Optimization methods for large-scale training

Matrix Factorization

Recall we have a non-convex optimization problem:

min
P,Q

∑
(u,v)∈R

(
(ru,v − pT

u qv)2 + λP ‖pu‖2F + λQ ‖qv‖2F
)

Existing optimization techniques include

ALS: Alternating Least Squares (ALS)
CD : Coordinate Descent
SG : Stochastic Gradient
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Optimization methods for large-scale training

Complexity in Training MF

To update P ,Q once

ALS: O(|R |k2 + (m + n)k3)

CD: O(|R |k)

To go through |R | elements once

SG: O(|R |k)

I don’t discuss details, but this indicates that CD and SG
are generally more efficient
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Optimization methods for large-scale training

Stochastic Gradient for Matrix
Factorization

SG update rule:

pu ← pu + γ (eu,vqv − λPpu) ,

qv ← qv + γ (eu,vpu − λQqv)

where
eu,v ≡ ru,v − pT

u qv

Two issues:

SG is sensitive to learning rate
SG is inherently sequential
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Optimization methods for large-scale training

SG’s Learning Rate

We can apply advanced settings such as ADAGRAD
(Duchi et al., 2011)

Each element of latent vectors pu, qv has its own
learning rate

Maintaining so many learning rates can be quite
expensive

How about a modification to let the whole pu (or
the whole qv) associates with a rate? (Chin et al.,
2015b)

This is an example that we take MF’s property into
account
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Optimization methods for large-scale training

SG for Parallel MF

After r3,3 is selected, ratings in gray blocks cannot be
updated

r3,1 r3,2 r3,3 r3,4 r3,5 r3,6

r6,6

1 2 3 4 5 6

1

2

3

4

5

6

But r6,6 can be used

r3,1 = p3
Tq1

r3,2 = p3
Tq2

..

r3,6 = p3
Tq6

——————

r3,3 = p3
Tq3

r6,6 = p6
Tq6
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Optimization methods for large-scale training

SG for Parallel MF (Cont’d)

We can split the matrix to blocks and update those
which don’t share p or q

1 2 3 4 5 6

1

2

3

4

5

6

This concept is simple, but there are many issues to have
a right implementation under the given architecture
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Optimization methods for large-scale training

SG for Parallel MF (Cont’d)

Past developments of SG for parallel MF include
Gemulla et al. (2011); Chin et al. (2015a); Yun
et al. (2014)

However, the idea of block splits applies to MF only

We haven’t seen an easy way to extend it to FM or
FFM

This is another example where we take problem
structure into account
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Discussion and conclusions

Discussion and Conclusions

In this talk we briefly discuss three models for
recommender systems

MF, FM, and FFM

They are related, but are useful in different
situations

Different algorithms may be needed due to different
properties of the optimization problems
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Discussion and conclusions
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