Large-scale Linear and Kernel Classification

Chih-Jen Lin
Department of Computer Science
National Taiwan University

MSR India Summer School 2015 on Machine Learning

Data Classification

- Given training data in different classes (labels known)
 - Predict test data (labels unknown)
- Classic example: medical diagnosis
 Find a patient's blood pressure, weight, etc.
 After several years, know if he/she recovers
 Build a machine learning model
 New patient: find blood pressure, weight, etc
 Prediction
- Training and testing

Data Classification (Cont'd)

- Among many classification methods, linear and kernel are two popular ones
- They are very related
- We will discuss these two topics in detail in this lecture
- Talk slides:

```
http://www.csie.ntu.edu.tw/~cjlin/talks/msri.pdf
```


- Linear classification
- Mernel classification
- Linear versus kernel classification
- Solving optimization problems
- Big-data linear classification
- Discussion and conclusions

- Linear classification
- Kernel classification
- Linear versus kernel classification
- Solving optimization problems
- Big-data linear classification
- O Discussion and conclusions

- Linear classification
 - Maximum margin
 - Regularization and losses
 - Other derivations

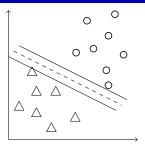
- Linear classification
 - Maximum margin
 - Regularization and losses
 - Other derivations

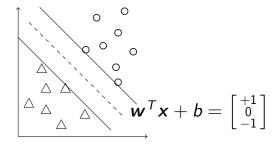
Linear Classification

- Training vectors : x_i , i = 1, ..., I
- Feature vectors. For example, A patient = $[height, weight, ...]^T$
- Consider a simple case with two classes: Define an indicator vector $\mathbf{y} \in R^I$

$$y_i = \begin{cases} 1 & \text{if } \mathbf{x}_i \text{ in class } 1 \\ -1 & \text{if } \mathbf{x}_i \text{ in class } 2 \end{cases}$$

• A hyperplane to linearly separate all data





• A separating hyperplane: $\mathbf{w}^T \mathbf{x} + \mathbf{b} = \mathbf{0}$

$$(\boldsymbol{w}^T \boldsymbol{x}_i) + b \ge 1$$
 if $y_i = 1$
 $(\boldsymbol{w}^T \boldsymbol{x}_i) + b \le -1$ if $y_i = -1$

• Decision function $f(x) = sgn(w^Tx + b)$, x: test data

Many possible choices of w and b

Maximal Margin

• Maximizing the distance between $\mathbf{w}^T \mathbf{x} + b = 1$ and -1:

$$2/\|\mathbf{w}\| = 2/\sqrt{\mathbf{w}^T \mathbf{w}}$$

A quadratic programming problem

$$\min_{\substack{\boldsymbol{w},b} \\ \boldsymbol{w},b} \quad \frac{1}{2}\boldsymbol{w}^T\boldsymbol{w}$$
subject to
$$y_i(\boldsymbol{w}^T\boldsymbol{x}_i+b) \geq 1,$$

$$i = 1, \dots, I.$$

 This is the basic formulation of support vector machines (Boser et al., 1992)

Data May Not Be Linearly Separable

• An example:

- We can never find a linear hyperplane to separate data
- Remedy: allow training errors

Data May Not Be Linearly Separable (Cont'd)

 Standard SVM (Boser et al., 1992; Cortes and Vapnik, 1995)

$$\min_{\boldsymbol{w},b,\boldsymbol{\xi}} \quad \frac{1}{2} \boldsymbol{w}^T \boldsymbol{w} + \boldsymbol{C} \sum_{i=1}^{I} \xi_i$$

subject to
$$y_i (\boldsymbol{w}^T \boldsymbol{x}_i + b) \ge 1 - \xi_i,$$
$$\xi_i \ge 0, \ i = 1, \dots, I.$$

 We explain later why this method is called support vector machine

The Bias Term b

Recall the decision function is

$$sgn(\mathbf{w}^T\mathbf{x} + b)$$

• Sometimes the bias term b is omitted

$$sgn(\boldsymbol{w}^T\boldsymbol{x})$$

That is, the hyperplane always passes through the origin

- This is fine if the number of features is not too small
- In our discussion, b is used for kernel, but omitted for linear (due to some historical reasons)

- Linear classification
 - Maximum margin
 - Regularization and losses
 - Other derivations

Equivalent Optimization Problem

• Recall SVM optimization problem (without b) is

$$\begin{aligned} \min_{\boldsymbol{w},\boldsymbol{\xi}} \quad & \frac{1}{2}\boldsymbol{w}^T\boldsymbol{w} + C\sum_{i=1}^{I}\xi_i \\ \text{subject to} \quad & y_i\boldsymbol{w}^T\boldsymbol{x}_i \geq 1 - \xi_i, \\ & \xi_i \geq 0, \ i = 1, \dots, I. \end{aligned}$$

It is equivalent to

$$\min_{\mathbf{w}} \quad \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{i=1}^{I} \max(0, 1 - y_i \mathbf{w}^T \mathbf{x}_i)$$
 (1)

• This reformulation is useful for subsequent discussion

Equivalent Optimization Problem (Cont'd)

• That is, at optimum,

$$\xi_i = \max(0, 1 - y_i \boldsymbol{w}^T \boldsymbol{x}_i)$$

Reason: from constraint

$$\xi_i \geq 1 - y_i \boldsymbol{w}^T \boldsymbol{x}_i$$
 and $\xi_i \geq 0$

but we also want to minimize ξ_i

Equivalent Optimization Problem (Cont'd)

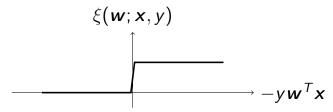
• We now derive the same optimization problem (1) from a different viewpoint

- To characterize the training error, we need a loss function $\xi(w; x, y)$ for each instance (x_i, y_i)
- Ideally we should use 0–1 training loss:

$$\xi(\mathbf{w}; \mathbf{x}, \mathbf{y}) = \begin{cases} 1 & \text{if } \mathbf{y} \mathbf{w}^T \mathbf{x} < 0, \\ 0 & \text{otherwise} \end{cases}$$

Equivalent Optimization Problem (Cont'd)

 However, this function is discontinuous. The optimization problem becomes difficult



We need continuous approximations

Common Loss Functions

• Hinge loss (I1 loss)

$$\xi_{L1}(\boldsymbol{w};\boldsymbol{x},\boldsymbol{y}) \equiv \max(0,1-\boldsymbol{y}\boldsymbol{w}^T\boldsymbol{x}) \tag{2}$$

Squared hinge loss (I2 loss)

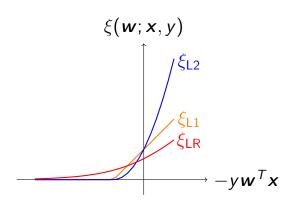
$$\xi_{L2}(\boldsymbol{w};\boldsymbol{x},y) \equiv \max(0,1-y\boldsymbol{w}^{T}\boldsymbol{x})^{2}$$
 (3)

Logistic loss

$$\xi_{\mathsf{LR}}(\boldsymbol{w};\boldsymbol{x},\boldsymbol{y}) \equiv \log(1 + e^{-y\boldsymbol{w}'\boldsymbol{x}}) \tag{4}$$

• SVM: (2)-(3). Logistic regression (LR): (4)

Common Loss Functions (Cont'd)



- Logistic regression is very related to SVM
- Their performance is usually similar

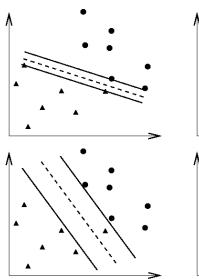
Common Loss Functions (Cont'd)

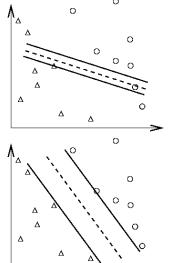
- However, minimizing training losses may not give a good model for future prediction
- Overfitting occurs

Overfitting

- See the illustration in the next slide
- For classification,
 You can easily achieve 100% training accuracy
- This is useless
- When training a data set, we should Avoid underfitting: small training error Avoid overfitting: small testing error

lacktriang and lacktriang: training; lacktriang and lacktriang: testing





Regularization

- In training we manipulate the w vector so that it fits the data
- So we need a way to make w's values less extreme.
- One idea is to make the objective function smoother

General Form of Linear Classification

- Training data $\{y_i, x_i\}, x_i \in R^n, i = 1, \dots, I, y_i = \pm 1$
- *I*: # of data, *n*: # of features

$$\min_{\mathbf{w}} f(\mathbf{w}), \quad f(\mathbf{w}) \equiv \frac{\mathbf{w}^{\mathsf{T}} \mathbf{w}}{2} + C \sum_{i=1}^{\mathsf{I}} \xi(\mathbf{w}; \mathbf{x}_i, y_i)$$
(5)

- $w^T w/2$: regularization term
- $\xi(w; x, y)$: loss function
- C: regularization parameter

General Form of Linear Classification (Cont'd)

If hinge loss

$$\xi_{L1}(\boldsymbol{w}; \boldsymbol{x}, y) \equiv \max(0, 1 - y \boldsymbol{w}^T \boldsymbol{x})$$

is used, then (5) goes back to the SVM problem described earlier (b omitted):

$$\min_{\boldsymbol{w},\boldsymbol{\xi}} \quad \frac{1}{2} \boldsymbol{w}^T \boldsymbol{w} + C \sum_{i=1}^{I} \xi_i$$
 subject to
$$y_i \boldsymbol{w}^T \boldsymbol{x}_i \ge 1 - \xi_i,$$

$$\xi_i \ge 0, \ i = 1, \dots, I.$$

Solving Optimization Problems

- We have an unconstrained problem, so many existing unconstrained optimization techniques can be used
- However,

 ξ_{L1} : not differentiable

 ξ_{L2} : differentiable but not twice differentiable

 ξ_{LR} : twice differentiable

- We may need different types of optimization methods
- Details of solving optimization problems will be discussed later

- Linear classification
 - Maximum margin
 - Regularization and losses
 - Other derivations

Logistic Regression

- Logistic regression can be traced back to the 19th century
- It's mainly from statistics community, so many people wrongly think that this method is very different from SVM
- Indeed from what we have shown they are very related.
- Let's see how to derive it from a statistical viewpoint

• For a label-feature pair (y, x), assume the probability model

$$p(y|\mathbf{x}) = \frac{1}{1 + e^{-y\mathbf{w}^T\mathbf{x}}}.$$

Note that

$$p(1|x) + p(-1|x)$$

$$= \frac{1}{1 + e^{-w^T x}} + \frac{1}{1 + e^{w^T x}}$$

$$= \frac{e^{w^T x}}{1 + e^{w^T x}} + \frac{1}{1 + e^{w^T x}}$$

$$= 1$$

Idea of this model

$$p(1|\mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w}^T \mathbf{x}}} \begin{cases} \to 1 & \text{if } \mathbf{w}^T \mathbf{x} \gg 0, \\ \to 0 & \text{if } \mathbf{w}^T \mathbf{x} \ll 0 \end{cases}$$

Assume training instances are

$$(y_i, x_i), i = 1, ..., I$$

 Logistic regression finds w by maximizing the following likelihood

$$\max_{\mathbf{w}} \quad \prod_{i=1}^{l} p(y_i|\mathbf{x}_i). \tag{6}$$

Negative log-likelihood

$$egin{aligned} -\log\prod_{i=1}^{l} p\left(y_i|oldsymbol{x}_i
ight) &= -\sum_{i=1}^{l} \log p\left(y_i|oldsymbol{x}_i
ight) \ &= \sum_{i=1}^{l} \log\left(1 + e^{-y_ioldsymbol{w}^Toldsymbol{x}_i}
ight) \end{aligned}$$

Logistic regression

$$\min_{\mathbf{w}} \quad \sum_{i=1}^{l} \log \left(1 + e^{-y_i \mathbf{w}^T \mathbf{x}_i} \right).$$

Regularized logistic regression

$$\min_{\boldsymbol{w}} \quad \frac{1}{2} \boldsymbol{w}^T \boldsymbol{w} + C \sum_{i=1}^{I} \log \left(1 + e^{-y_i \boldsymbol{w}^T \boldsymbol{x}_i} \right). \quad (7)$$

C: regularization parameter decided by users

Discussion

We see that the same method can be derived from different ways

SVM

- Maximal margin
- Regularization and training losses

LR

- Regularization and training losses
- Maximum likelihood

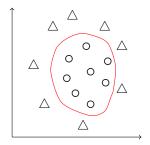
- Linear classification
- Mernel classification
- Linear versus kernel classification
- Solving optimization problems
- Big-data linear classification
- O Discussion and conclusions

- Kernel classification
 - Nonlinear mapping
 - Kernel tricks

- Mernel classification
 - Nonlinear mapping
 - Kernel tricks

Data May Not Be Linearly Separable

• This is an earlier example:



- In addition to allowing training errors, what else can we do?
- For this data set, shouldn't we use a nonlinear classifier?

Mapping Data to a Higher Dimensional Space

 But modeling nonlinear curves is difficult. Instead, we map data to a higher dimensional space

$$\phi(\mathbf{x}) = [\phi_1(\mathbf{x}), \phi_2(\mathbf{x}), \ldots]^T.$$

• For example,

is a useful new feature to check if a person overweights or not

Kernel Support Vector Machines

Linear SVM:

$$\begin{aligned} \min_{\boldsymbol{w},b,\boldsymbol{\xi}} \quad & \frac{1}{2} \boldsymbol{w}^T \boldsymbol{w} + C \sum_{i=1}^{I} \xi_i \\ \text{subject to} \quad & y_i (\boldsymbol{w}^T \boldsymbol{x}_i + b) \geq 1 - \xi_i, \\ & \xi_i \geq 0, \ i = 1, \dots, I. \end{aligned}$$

• Kernel SVM:

$$\min_{\boldsymbol{w},b,\boldsymbol{\xi}} \quad \frac{1}{2} \boldsymbol{w}^T \boldsymbol{w} + C \sum_{i=1}^{I} \xi_i$$

subject to
$$y_i (\boldsymbol{w}^T \phi(\boldsymbol{x}_i) + b) \ge 1 - \xi_i,$$

$$\xi_i \ge 0, \ i = 1, \dots, I.$$

Kernel Logistic Regression

$$\min_{\boldsymbol{w},b} \quad \frac{1}{2} \boldsymbol{w}^T \boldsymbol{w} + C \sum_{i=1}^{l} \log \left(1 + e^{-y_i(\boldsymbol{w}^T \phi(\boldsymbol{x}_i) + b)} \right).$$

Difficulties After Mapping Data to a High-dimensional Space

- # variables in w = dimensions of $\phi(x)$
- Infinite variables if $\phi(x)$ is infinite dimensional
- Cannot do an infinite-dimensional inner product for predicting a test instance

$$sgn(\mathbf{w}^T\phi(\mathbf{x}))$$

 Use kernel trick to go back to a finite number of variables

- Mernel classification
 - Nonlinear mapping
 - Kernel tricks

Kernel Tricks

It can be shown at optimum

$$\mathbf{w} = \sum_{i=1}^{l} y_i \alpha_i \phi(\mathbf{x}_i)$$

Details not provided here

• Special $\phi(x)$ such that the decision function becomes

$$sgn(\mathbf{w}^{T}\phi(\mathbf{x})) = sgn\left(\sum_{i=1}^{I} y_{i}\alpha_{i}\phi(\mathbf{x}_{i})^{T}\phi(\mathbf{x})\right)$$
$$= sgn\left(\sum_{i=1}^{I} y_{i}\alpha_{i}K(\mathbf{x}_{i}, \mathbf{x})\right)$$

Kernel Tricks (Cont'd)

- $\phi(\mathbf{x}_i)^T \phi(\mathbf{x}_i)$ needs a closed form
- Example: $\mathbf{x}_i \in R^3, \phi(\mathbf{x}_i) \in R^{10}$

$$\phi(\mathbf{x}_i) = [1, \sqrt{2}(x_i)_1, \sqrt{2}(x_i)_2, \sqrt{2}(x_i)_3, (x_i)_1^2, (x_i)_2^2, (x_i)_3^2, \sqrt{2}(x_i)_1(x_i)_2, \sqrt{2}(x_i)_1(x_i)_3, \sqrt{2}(x_i)_2(x_i)_3]^T$$

Then
$$\phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j) = (1 + \mathbf{x}_i^T \mathbf{x}_j)^2$$
.

• Kernel: $K(\mathbf{x}, \mathbf{y}) = \phi(\mathbf{x})^T \phi(\mathbf{y})$; common kernels:

$$e^{-\gamma \|\mathbf{x}_i - \mathbf{x}_j\|^2}$$
, (Radial Basis Function) $(\mathbf{x}_i^T \mathbf{x}_i / a + b)^d$ (Polynomial kernel)

K(x, y) can be inner product in infinite dimensional space. Assume $x \in R^1$ and $\gamma > 0$.

$$e^{-\gamma ||x_{i}-x_{j}||^{2}} = e^{-\gamma(x_{i}-x_{j})^{2}} = e^{-\gamma x_{i}^{2}+2\gamma x_{i}x_{j}-\gamma x_{j}^{2}}$$

$$= e^{-\gamma x_{i}^{2}-\gamma x_{j}^{2}} \left(1 + \frac{2\gamma x_{i}x_{j}}{1!} + \frac{(2\gamma x_{i}x_{j})^{2}}{2!} + \frac{(2\gamma x_{i}x_{j})^{3}}{3!} + \cdots\right)$$

$$= e^{-\gamma x_{i}^{2}-\gamma x_{j}^{2}} \left(1 \cdot 1 + \sqrt{\frac{2\gamma}{1!}} x_{i} \cdot \sqrt{\frac{2\gamma}{1!}} x_{j} + \sqrt{\frac{(2\gamma)^{2}}{2!}} x_{i}^{2} \cdot \sqrt{\frac{(2\gamma)^{2}}{2!}} x_{j}^{2} + \sqrt{\frac{(2\gamma)^{3}}{3!}} x_{j}^{3} \cdot \sqrt{\frac{(2\gamma)^{3}}{3!}} x_{j}^{3} + \cdots\right) = \phi(x_{i})^{T} \phi(x_{j}),$$

where

$$\phi(x) = e^{-\gamma x^2} \left[1, \sqrt{\frac{2\gamma}{1!}} x, \sqrt{\frac{(2\gamma)^2}{2!}} x^2, \sqrt{\frac{(2\gamma)^3}{3!}} x^3, \cdots \right]^T.$$

- Linear classification
- Kernel classification
- Linear versus kernel classification
- Solving optimization problems
- Big-data linear classification
- O Discussion and conclusions

- Linear versus kernel classification
 - Comparison on the cost
 - Numerical comparisons

- Linear versus kernel classification
 - Comparison on the cost
 - Numerical comparisons

Linear and Kernel Classification

Now we see that methods such as SVM and logistic regression can used in two ways

 Kernel methods: data mapped to a higher dimensional space

$$\mathbf{x} \Rightarrow \phi(\mathbf{x})$$

 $\phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$ easily calculated; little control on $\phi(\cdot)$

• Linear classification + feature engineering: We have x without mapping. Alternatively, we can say that $\phi(x)$ is our x; full control on x or $\phi(x)$

Linear and Kernel Classification

- The cost of using linear and kernel classification is different
- Let's check the prediction cost

$$\mathbf{w}^T \mathbf{x}$$
 versus $\sum_{i=1}^l y_i \alpha_i K(\mathbf{x}_i, \mathbf{x})$

• If $K(x_i, x_i)$ takes O(n), then

$$O(n)$$
 versus $O(nl)$

- Linear is much cheaper
- A similar difference occurs for training

Linear and Kernel Classification (Cont'd)

- In fact, linear is a special case of kernel
- We can prove that accuracy of linear is the same as Gaussian (RBF) kernel under certain parameters (Keerthi and Lin, 2003)
- Therefore, roughly we have

```
accuracy: kernel \ge linear cost: kernel \gg linear
```

Speed is the reason to use linear

Linear and Kernel Classification (Cont'd)

- For some problems, accuracy by linear is as good as nonlinear
 - But training and testing are much faster
- This particularly happens for document classification Number of features (bag-of-words model) very large Data very sparse (i.e., few non-zeros)

- Linear versus kernel classification
 - Comparison on the cost
 - Numerical comparisons

Comparison Between Linear and Kernel (Training Time & Testing Accuracy)

	Linear		RBF Kernel	
Data set	Time	Accuracy	Time	Accuracy
MNIST38	0.1	96.82	38.1	99.70
ijcnn1	1.6	91.81	26.8	98.69
covtype	1.4	76.37	46,695.8	96.11
news20	1.1	96.95	383.2	96.90
real-sim	0.3	97.44	938.3	97.82
yahoo-japan	3.1	92.63	20,955.2	93.31
webspam	25.7	93.35	15,681.8	99.26

Size reasonably large: e.g., yahoo-japan: 140k instances

Comparison Between Linear and Kernel (Training Time & Testing Accuracy)

	Linear		RBF Kernel	
Data set	Time	Accuracy	Time	Accuracy
MNIST38	0.1	96.82	38.1	99.70
ijcnn1	1.6	91.81	26.8	98.69
covtype	1.4	76.37	46,695.8	96.11
news20	1.1	96.95	383.2	96.90
real-sim	0.3	97.44	938.3	97.82
yahoo-japan	3.1	92.63	20,955.2	93.31
webspam	25.7	93.35	15,681.8	99.26

Size reasonably large: e.g., yahoo-japan: 140k instances

Comparison Between Linear and Kernel (Training Time & Testing Accuracy)

	Linear		RBF Kernel	
Data set	Time	Accuracy	Time	Accuracy
MNIST38	0.1	96.82	38.1	99.70
ijcnn1	1.6	91.81	26.8	98.69
covtype	1.4	76.37	46,695.8	96.11
news20	1.1	96.95	383.2	96.90
real-sim	0.3	97.44	938.3	97.82
yahoo-japan	3.1	92.63	20,955.2	93.31
webspam	25.7	93.35	15,681.8	99.26

Size reasonably large: e.g., yahoo-japan: 140k instances

- Linear classification
- Kernel classification
- Linear versus kernel classification
- Solving optimization problems
- Big-data linear classification
- O Discussion and conclusions

- Solving optimization problems
 - Kernel: decomposition methods
 - Linear: coordinate descent method
 - Linear: second-order methods
 - Experiments

- Solving optimization problems
 - Kernel: decomposition methods
 - Linear: coordinate descent method
 - Linear: second-order methods
 - Experiments

Dual Problem

- Recall we said that the difficulty after mapping x to $\phi(x)$ is the huge number of variables
- We mentioned

$$\mathbf{w} = \sum_{i=1}^{I} \alpha_i \mathbf{y}_i \phi(\mathbf{x}_i)$$
 (8)

and used kernels for prediction

- Besides prediction, we must do training via kernels
- The most common way to train SVM via kernels is through its dual problem

Dual Problem (Cont'd)

The dual problem

$$\begin{aligned} \min_{\boldsymbol{\alpha}} & \quad \frac{1}{2} \boldsymbol{\alpha}^T Q \boldsymbol{\alpha} - \boldsymbol{e}^T \boldsymbol{\alpha} \\ \text{subject to} & \quad 0 \leq \alpha_i \leq C, i = 1, \dots, I \\ & \quad \boldsymbol{y}^T \boldsymbol{\alpha} = 0, \end{aligned}$$

where
$$Q_{ij} = y_i y_j \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$$
 and $\mathbf{e} = [1, \dots, 1]^T$

- From primal-dual relationship, at optimum (8) holds
- Dual problem has a finite number of variables

Example: Primal-dual Relationship

• Consider the earlier example:

• Now two data are $x_1 = 1, x_2 = 0$ with

$$\mathbf{y} = [+1, -1]^T$$

• The solution is (w, b) = (2, -1)

Example: Primal-dual Relationship (Cont'd)

• The dual objective function

$$\frac{1}{2} \begin{bmatrix} \alpha_1 & \alpha_2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} - \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} \\
= \frac{1}{2} \alpha_1^2 - (\alpha_1 + \alpha_2)$$

- In optimization, objective function means the function to be optimized
- Constraints are

$$\alpha_1 - \alpha_2 = 0, 0 \le \alpha_1, 0 \le \alpha_2.$$

Example: Primal-dual Relationship (Cont'd)

• Substituting $\alpha_2 = \alpha_1$ into the objective function,

$$\frac{1}{2}\alpha_1^2 - 2\alpha_1$$

has the smallest value at $\alpha_1 = 2$.

• Because $[2,2]^T$ satisfies constraints

$$0 \le \alpha_1$$
 and $0 \le \alpha_2$,

it is optimal

Example: Primal-dual Relationship (Cont'd)

Using the primal-dual relation

$$w = y_1 \alpha_1 x_1 + y_2 \alpha_2 x_2$$

= $1 \cdot 2 \cdot 1 + (-1) \cdot 2 \cdot 0$
= 2

 This is the same as that by solving the primal problem.

Decision function

At optimum

$$\mathbf{w} = \sum_{i=1}^{l} \alpha_i \mathbf{y}_i \phi(\mathbf{x}_i)$$

Decision function

$$w^{T}\phi(\mathbf{x}) + b$$

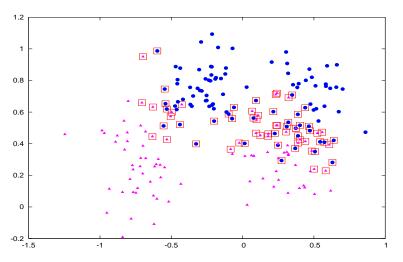
$$= \sum_{i=1}^{l} \alpha_{i} y_{i} \phi(\mathbf{x}_{i})^{T} \phi(\mathbf{x}) + b$$

$$= \sum_{i=1}^{l} \alpha_{i} y_{i} K(\mathbf{x}_{i}, \mathbf{x}) + b$$

• Recall $0 < \alpha_i < C$ in the dual problem

Support Vectors

Only x_i of $\alpha_i > 0$ used \Rightarrow support vectors



Large Dense Quadratic Programming

min
$$\frac{1}{2} \boldsymbol{\alpha}^T Q \boldsymbol{\alpha} - \mathbf{e}^T \boldsymbol{\alpha}$$

subject to $0 \le \alpha_i \le C, i = 1, \dots, I$
 $\mathbf{y}^T \boldsymbol{\alpha} = 0$

- $Q_{ii} \neq 0$, Q: an I by I fully dense matrix
- 50,000 training points: 50,000 variables: $(50,000^2 \times 8/2)$ bytes = 10GB RAM to store Q

Large Dense Quadratic Programming (Cont'd)

- Traditional optimization methods cannot be directly applied here because Q cannot even be stored
- Currently, decomposition methods (a type of coordinate descent methods) are what used in practice

Decomposition Methods

- Working on some variables each time (e.g., Osuna et al., 1997; Joachims, 1998; Platt, 1998)
- Similar to coordinate-wise minimization
- Working set B, $N = \{1, ..., I\} \setminus B$ fixed
- Sub-problem at the kth iteration:

$$\begin{aligned} & \min_{\boldsymbol{\alpha}_B} & & \frac{1}{2} \left[\boldsymbol{\alpha}_B^T \ (\boldsymbol{\alpha}_N^k)^T \right] \left[\begin{matrix} Q_{BB} & Q_{BN} \\ Q_{NB} & Q_{NN} \end{matrix} \right] \left[\begin{matrix} \boldsymbol{\alpha}_B \\ \boldsymbol{\alpha}_N^k \end{matrix} \right] - \\ & & & & & & & & & & & & \\ \left[\boldsymbol{e}_B^T \ (\boldsymbol{e}_N^k)^T \right] \left[\begin{matrix} \boldsymbol{\alpha}_B \\ \boldsymbol{\alpha}_N^k \end{matrix} \right] \\ & & & & & & & & \\ \text{subject to} & & & & & & & & & \\ 0 \leq \alpha_t \leq C, t \in B, \ \boldsymbol{y}_B^T \boldsymbol{\alpha}_B = -\boldsymbol{y}_N^T \boldsymbol{\alpha}_N^k \end{aligned}$$

Avoid Memory Problems

The new objective function

$$rac{1}{2} oldsymbol{lpha}_B^{\mathsf{T}} oldsymbol{\mathsf{Q}}_{\mathsf{BB}} oldsymbol{lpha}_B + (-oldsymbol{e}_B + oldsymbol{\mathsf{Q}}_{\mathsf{BN}} oldsymbol{lpha}_N^k)^{\mathsf{T}} oldsymbol{lpha}_B + \; \mathsf{constant}$$

- Only B columns of Q are needed
- In general $|B| \le 10$ is used. We need $|B| \ge 2$ because of the linear constraint

$$\mathbf{y}_{B}^{T} \boldsymbol{\alpha}_{B} = -\mathbf{y}_{N}^{T} \boldsymbol{\alpha}_{N}^{k}$$

- Calculated when used: trade time for space
- But is such an approach practical?

How Decomposition Methods Perform?

- Convergence not very fast. This is known because of using only first-order information
- ullet But, no need to have very accurate lpha

decision function:
$$\sum_{i=1}^{l} y_i \alpha_i K(\mathbf{x}_i, \mathbf{x}) + b$$

Prediction may still be correct with a rough lpha

ullet Further, in some situations, # support vectors $\ll \#$ training points Initial $oldsymbol{lpha}^1=0$, some instances never used

How Decomposition Methods Perform? (Cont'd)

• An example of training 50,000 instances using the software LIBSVM (|B| = 2)

```
svm-train -c 16 -g 4 -m 400 22features
Total nSV = 3370
Time 79.524s
```

- This was done on a typical desktop
- Calculating the whole Q takes more time
- #SVs = 3,370 ≪ 50,000

A good case where some remain at zero all the time

Outline

- Solving optimization problems
 - Kernel: decomposition methods
 - Linear: coordinate descent method
 - Linear: second-order methods
 - Experiments

Coordinate Descent Methods for Linear Classification

- We consider L1-loss SVM as an example here
- The same method can be extended to L2 and logistic loss
- More details in Hsieh et al. (2008); Yu et al. (2011)

SVM Dual (Linear without Kernel)

• From primal dual relationship

$$\min_{\alpha} f(\alpha)$$
 subject to $0 \le \alpha_i \le C, \forall i$,

where

$$f(\alpha) \equiv \frac{1}{2} \alpha^T Q \alpha - e^T \alpha$$

and

$$Q_{ij} = y_i y_j \mathbf{x}_i^T \mathbf{x}_j, \quad \mathbf{e} = [1, \dots, 1]^T$$

• No linear constraint $\mathbf{y}^T \boldsymbol{\alpha} = 0$ because of no bias term \boldsymbol{b}

Dual Coordinate Descent

- Very simple: minimizing one variable at a time
- ullet While lpha not optimal

For
$$i=1,\ldots,I$$

$$\min_{\alpha_i} f(\ldots,\alpha_i,\ldots)$$

- A classic optimization technique
- Traced back to Hildreth (1957) if constraints are not considered

The Procedure

• Given current α . Let $\boldsymbol{e}_i = [0, \dots, 0, 1, 0, \dots, 0]^T$.

$$\min_{m{d}} \ f(m{lpha} + dm{e}_i) = rac{1}{2}Q_{ii}d^2 +
abla_i f(m{lpha})d + ext{constant}$$

Without constraints

optimal
$$d = -rac{
abla_i f(oldsymbol{lpha})}{Q_{ii}}$$

• Now $0 \le \alpha_i + d \le C$

$$\alpha_i \leftarrow \min\left(\max\left(\alpha_i - \frac{\nabla_i f(\alpha)}{Q_{ii}}, 0\right), C\right)$$

The Procedure (Cont'd)

$$egin{aligned}
abla_i f(oldsymbol{lpha}) &= (Qoldsymbol{lpha})_i - 1 = \sum_{j=1}^I rac{Q_{ij}}{Q_{j}} lpha_j - 1 \ &= \sum_{j=1}^I rac{\mathbf{y}_i \mathbf{y}_j \mathbf{x}_i^\mathsf{T} \mathbf{x}_j lpha_j - 1 \end{aligned}$$

- Directly calculating gradients costs O(In)
 I:# data, n: # features
- For linear SVM, define

$$\mathbf{u} \equiv \sum_{j=1}^{I} y_j \alpha_j \mathbf{x}_j,$$

• Easy gradient calculation: costs O(n)

$$\nabla_i f(\alpha) = y_i \mathbf{u}^T \mathbf{x}_i - 1$$

The Procedure (Cont'd)

All we need is to maintain u

$$\mathbf{u} = \sum_{j=1}^{l} y_j \alpha_j \mathbf{x}_j,$$

If

$$\bar{\alpha}_i$$
: old; α_i : new

then

$$\mathbf{u} \leftarrow \mathbf{u} + (\alpha_i - \bar{\alpha}_i) y_i \mathbf{x}_i$$
.

Also costs O(n)

Algorithm: Dual Coordinate Descent

ullet Given initial lpha and find

$$\mathbf{u}=\sum_{i}y_{i}\alpha_{i}\mathbf{x}_{i}.$$

• While α is not optimal (Outer iteration) For $i=1,\ldots,l$ (Inner iteration)

(a)
$$\bar{\alpha}_i \leftarrow \alpha_i$$

(b)
$$G = y_i \mathbf{u}^T \mathbf{x}_i - 1$$

(c) If α_i can be changed

$$\alpha_i \leftarrow \min(\max(\alpha_i - G/Q_{ii}, 0), C)$$

$$\mathbf{u} \leftarrow \mathbf{u} + (\alpha_i - \bar{\alpha}_i) y_i \mathbf{x}_i$$

Difference from the Kernel Case

- We have seen that coordinate descent is also the main method to train kernel classifiers
- Recall the *i*-th element of gradient costs O(n) by

$$abla_i f(oldsymbol{lpha}) = \sum_{j=1}^I y_i y_j oldsymbol{x}_i^T oldsymbol{x}_j lpha_j - 1 = (y_i oldsymbol{x}_i)^T ig(\sum_{j=1}^I y_j oldsymbol{x}_j lpha_jig) - 1 \\ = (y_i oldsymbol{x}_i)^T oldsymbol{\mathsf{u}} - 1$$

but we cannot do this for kernel because

$$K(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$$

cannot be separated

Difference from the Kernel Case (Cont'd)

- If using kernel, the cost of calculating $\nabla_i f(\alpha)$ must be $O(\ln)$
- However, if $O(\ln)$ cost is spent, the whole $\nabla f(\alpha)$ can be maintained (details not shown here)
- In contrast, the setting of using \mathbf{u} knows $\nabla_i f(\alpha)$ rather than the whole $\nabla f(\alpha)$

Difference from the Kernel Case (Cont'd)

- In existing coordinate descent methods for kernel classifiers, people also use $\nabla f(\alpha)$ information to select variables (i.e., select the set B) for update
- In optimization there are two types of coordinate descent methods:
 - sequential or random selection of variables greedy selection of variables
- To do greedy selection, usually the whole gradient must be available

Difference from the Kernel Case (Cont'd)

Existing coordinate descent methods for linear ⇒
related to sequential or random selection
Existing coordinate descent methods for kernel ⇒
related to greedy selection

Bias Term b and Linear Constraint in Dual

- In our discussion, b is used for kernel but not linear
- Mainly history reason
- For kernel SVM, we can also omit b to get rid of the linear constraint $\mathbf{y}^T \alpha = 0$
- ullet Then for kernel decomposition method, |B|=1 can also be possible

Outline

- Solving optimization problems
 - Kernel: decomposition methods
 - Linear: coordinate descent method
 - Linear: second-order methods
 - Experiments

Optimization for Linear and Kernel Cases

Recall that

$$\mathbf{w} = \sum_{i=1}^{l} y_i \alpha_i \phi(\mathbf{x}_i)$$

- ullet Kernel: can only solve an optimization problem of lpha
- Linear: can solve either w or α
- We will show an example to minimize over w

Newton Method

Let's minimize a twice-differentiable function

$$\min_{\mathbf{w}} f(\mathbf{w})$$

• For example, logistic regression has

$$\min_{\mathbf{w}} \quad \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{i=1}^{I} \log \left(1 + e^{-y_i \mathbf{w}^T \mathbf{x}_i} \right).$$

• Newton direction at iterate \mathbf{w}^k

$$\min_{s} \quad \nabla f(\mathbf{w}^k)^T \mathbf{s} + \frac{1}{2} \mathbf{s}^T \nabla^2 f(\mathbf{w}^k) \mathbf{s}$$

Truncated Newton Method

 The above sub-problem is equivalent to solving Newton linear system

$$\nabla^2 f(\mathbf{w}^k) \mathbf{s} = -\nabla f(\mathbf{w}^k)$$

- Approximately solving the linear system ⇒ truncated Newton
- However, Hessian matrix $\nabla^2 f(\mathbf{w}^k)$ is too large to be stored

$$\nabla^2 f(\mathbf{w}^k) : n \times n, \quad n : \text{ number of features}$$

• For document data, *n* can be millions or more

Using Special Properties of Data Classification

• But Hessian has a special form

$$\nabla^2 f(\mathbf{w}) = \mathcal{I} + CX^T DX,$$

• D diagonal. For logistic regression,

$$D_{ii} = \frac{e^{-y_i \mathbf{w}^T \mathbf{x}_i}}{1 + e^{-y_i \mathbf{w}^T \mathbf{x}_i}}$$

• X: data, # instances × # features

$$X = [\mathbf{x}_1, \dots, \mathbf{x}_I]^T$$

Using Special Properties of Data Classification (Cont'd)

- Using Conjugate Gradient (CG) to solve the linear system.
- CG is an iterative procedure. Each CG step mainly needs one Hessian-vector product

$$\nabla^2 f(\mathbf{w})\mathbf{s} = \mathbf{s} + C \cdot X^T(D(X\mathbf{s}))$$

• Therefore, we have a Hessian-free approach

Using Special Properties of Data Classification (Cont'd)

- Now the procedure has two layers of iterations
 Outer: Newton iterations
 Inner: CG iterations per Newton iteration
- Past machine learning works used Hessian-free approaches include, for example, (Keerthi and DeCoste, 2005; Lin et al., 2008)
- Second-order information used: faster convergence than first-order methods

Outline

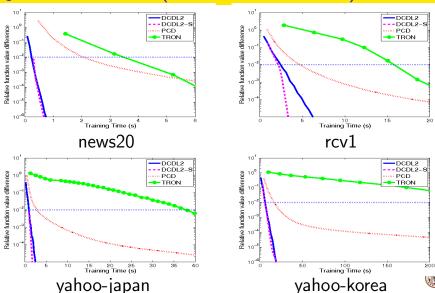
- Solving optimization problems
 - Kernel: decomposition methods
 - Linear: coordinate descent method
 - Linear: second-order methods
 - Experiments

Comparisons

L2-loss SVM is used

- DCDL2: Dual coordinate descent (Hsieh et al., 2008)
- DCDL2-S: DCDL2 with shrinking (Hsieh et al., 2008)
- PCD: Primal coordinate descent (Chang et al., 2008)
- TRON: Trust region Newton method (Lin et al., 2008)

Objective values (Time in Seconds)

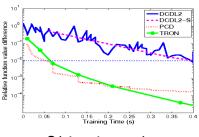


Analysis

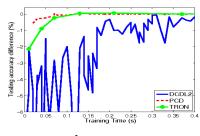
- Dual coordinate descents are very effective if # data and # features are both large
 Useful for document classification
- Half million data in a few seconds
- However, it is less effective if
 # features small: should solve primal; or
 large penalty parameter C; problems are more ill-conditioned

An Example When # Features Small

• # instance: 32,561, # features: 123



Objective value



Accuracy

Outline

- Linear classification
- Kernel classification
- Linear versus kernel classification
- Solving optimization problems
- Big-data linear classification
- O Discussion and conclusions

Outline

- 5
- Big-data linear classification
- Multi-core linear classification
- Distributed linear classification

Big-data Linear Classification

- Parallelization in shared-memory system: use the power of multi-core CPU if data can fit in memory
- Distributed linear classification: if data cannot be stored in one computer
- Example: we can parallelize the 2nd-order method (i.e., the Newton method) discussed earlier.
- Recall the bottleneck is the Hessian-vector product

$$abla^2 f(\mathbf{w}) \mathbf{s} = \mathbf{s} + C \cdot X^T (D(X\mathbf{s}))$$

See the analysis in the next slide

Matrix-vector Multiplications

Two sets:

Data set	1	n	#nonzeros
epsilon	400,000	2,000	800,000,000
webspam	350,000	16,609,143	1,304,697,446

 Matrix-vector multiplications occupy the majority of the running time

Data set	matrix-vector ratio
epsilson	99.88%
webspam	97.95%

- This is by Newton methods using one core
- We should parallelize matrix-vector multiplications

Outline

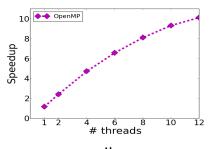
- Big-data linear classification
 - Multi-core linear classification
 - Distributed linear classification

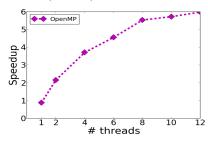
Parallelization by OpenMP

• The Hessian-vector product can be done by

$$X^T D X s = \sum_{i=1}^{I} x_i D_{ii} x_i^T s$$

- We can easily parallelize this loop by OpenMP
- Speedup; details in Lee et al. (2015)





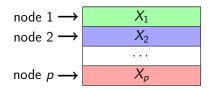
webspam

Outline

- Big-data linear classification
 - Multi-core linear classification
 - Distributed linear classification

Parallel Hessian-vector Product

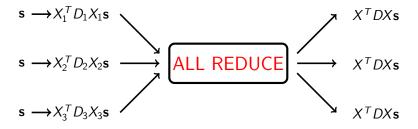
Now data matrix X is distributedly stored



$$X^T D X s = X_1^T D_1 X_1 s + \cdots + X_p^T D_p X_p s$$

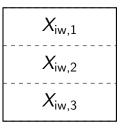
Parallel Hessian-vector Product (Cont'd)

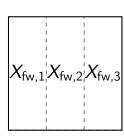
We use all reduce to let every node get $X^T D X \mathbf{s}$



Allreduce: reducing all vectors $(X_i^T D_i X_i \mathbf{x}, \forall i)$ to a single vector $(X^T D X \mathbf{s} \in R^n)$ and then sending the result to every node

Instance-wise and Feature-wise Data Splits





Instance-wise

Feature-wise

 Feature-wise: each machine calculates part of the Hessian-vector product

$$(\nabla^2 f(\boldsymbol{w})\boldsymbol{s})_{\mathsf{fw},1} = \boldsymbol{s}_1 + CX_{\mathsf{fw},1}^T D(X_{\mathsf{fw},1}\boldsymbol{s}_1 + \cdots + X_{\mathsf{fw},p}\boldsymbol{s}_p)$$

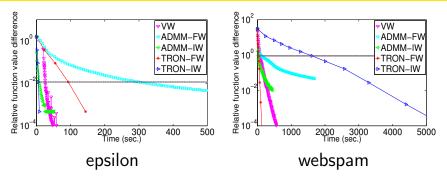
Instance-wise and Feature-wise Data Splits (Cont'd)

- $X_{\mathsf{fw},1}s_1 + \cdots + X_{\mathsf{fw},p}s_p \in R^I$ must be available on all nodes (by allreduce)
- Data moved per Hessian-vector product Instance-wise: O(n), Feature-wise: O(1)

Experiments

- We compare
 - TRON: Newton method
 - ADMM: alternating direction method of multipliers (Boyd et al., 2011; Zhang et al., 2012)
 - Vowpal_Wabbit (Langford et al., 2007)
- TRON and ADMM are implemented by MPI
- Details in Zhuang et al. (2015)

Experiments (Cont'd)



- 32 machines are used
- Horizontal line: test accuracy has stabilized
- Instance-wise and feature-wise splits useful for $l \gg n$ and $l \ll n$, respectively

- Linear classification
- Kernel classification
- Linear versus kernel classification
- Solving optimization problems
- Big-data linear classification
- Discussion and conclusions

- Discussion and conclusions
 - Some resources
 - Conclusions

- Discussion and conclusions
 - Some resources
 - Conclusions

Software

- Most materials in this talks are based on our experiences in developing two popular software
- Kernel: LIBSVM (Chang and Lin, 2011)
 http://www.csie.ntu.edu.tw/~cjlin/libsvm
- Linear: LIBLINEAR (Fan et al., 2008).
 http://www.csie.ntu.edu.tw/~cjlin/liblinear
 See also a survey on linear classification in Yuan et al. (2012)

Distributed LIBLINEAR

- An extension of the software LIBLINEAR
- See http://www.csie.ntu.edu.tw/~cjlin/ libsvmtools/distributed-liblinear
- We support both MPI (Zhuang et al., 2015) and Spark (Lin et al., 2014)
- The development is still in an early stage.

- Discussion and conclusions
 - Some resources
 - Conclusions

Conclusions

- Linear and kernel classification are old topics
- However, novel techniques are still being developed to handle large-scale data or new applications
- You are welcome to join to this interesting research area

References I

- B. E. Boser, I. Guyon, and V. Vapnik. A training algorithm for optimal margin classifiers. In *Proceedings of the Fifth Annual Workshop on Computational Learning Theory*, pages 144–152. ACM Press. 1992.
- S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical learning via the alternating direction method of multipliers. *Foundations and Trends in Machine Learning*, 3(1):1–122, 2011.
- C.-C. Chang and C.-J. Lin. LIBSVM: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2(3):27:1–27:27, 2011. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.
- K.-W. Chang, C.-J. Hsieh, and C.-J. Lin. Coordinate descent method for large-scale L2-loss linear SVM. *Journal of Machine Learning Research*, 9:1369-1398, 2008. URL http://www.csie.ntu.edu.tw/~cjlin/papers/cdl2.pdf.
- C. Cortes and V. Vapnik. Support-vector network. Machine Learning, 20:273-297, 1995.
- R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. LIBLINEAR: a library for large linear classification. *Journal of Machine Learning Research*, 9:1871-1874, 2008. URL http://www.csie.ntu.edu.tw/~cjlin/papers/liblinear.pdf.
- C. Hildreth. A quadratic programming procedure. Naval Research Logistics Quarterly, 4: 79–85, 1957.

References II

- C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. S. Keerthi, and S. Sundararajan. A dual coordinate descent method for large-scale linear SVM. In *Proceedings of the Twenty Fifth International Conference on Machine Learning (ICML)*, 2008. URL http://www.csie.ntu.edu.tw/~cjlin/papers/cddual.pdf.
- T. Joachims. Making large-scale SVM learning practical. In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, *Advances in Kernel Methods Support Vector Learning*, pages 169–184, Cambridge, MA, 1998. MIT Press.
- S. S. Keerthi and D. DeCoste. A modified finite Newton method for fast solution of large scale linear SVMs. *Journal of Machine Learning Research*, 6:341–361, 2005.
- S. S. Keerthi and C.-J. Lin. Asymptotic behaviors of support vector machines with Gaussian kernel. *Neural Computation*, 15(7):1667–1689, 2003.
- J. Langford, L. Li, and A. Strehl. Vowpal Wabbit, 2007. https://github.com/JohnLangford/vowpal_wabbit/wiki.
- M.-C. Lee, W.-L. Chiang, and C.-J. Lin. Fast matrix-vector multiplications for large-scale logistic regression on shared-memory systems. Technical report, National Taiwan University, 2015.
- C.-J. Lin, R. C. Weng, and S. S. Keerthi. Trust region Newton method for large-scale logistic regression. *Journal of Machine Learning Research*, 9:627-650, 2008. URL http://www.csie.ntu.edu.tw/~cjlin/papers/logistic.pdf.

References III

- C.-Y. Lin, C.-H. Tsai, C.-P. Lee, and C.-J. Lin. Large-scale logistic regression and linear support vector machines using Spark. In *Proceedings of the IEEE International Conference on Big Data*, pages 519–528, 2014. URL http: //www.csie.ntu.edu.tw/~cjlin/papers/spark-liblinear/spark-liblinear.pdf.
- E. Osuna, R. Freund, and F. Girosi. Training support vector machines: An application to face detection. In *Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 130–136, 1997.
- J. C. Platt. Fast training of support vector machines using sequential minimal optimization. In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods -Support Vector Learning, Cambridge, MA, 1998. MIT Press.
- H.-F. Yu, F.-L. Huang, and C.-J. Lin. Dual coordinate descent methods for logistic regression and maximum entropy models. *Machine Learning*, 85(1-2):41-75, October 2011. URL http://www.csie.ntu.edu.tw/~cjlin/papers/maxent_dual.pdf.
- G.-X. Yuan, C.-H. Ho, and C.-J. Lin. An improved GLMNET for l1-regularized logistic regression. Journal of Machine Learning Research, 13:1999–2030, 2012. URL http://www.csie.ntu.edu.tw/~cjlin/papers/11_glmnet/long-glmnet.pdf.
- C. Zhang, H. Lee, and K. G. Shin. Efficient distributed linear classification algorithms via the alternating direction method of multipliers. In *Proceedings of the 15th International Conference on Artificial Intelligence and Statistics*, 2012.

References IV

Y. Zhuang, W.-S. Chin, Y.-C. Juan, and C.-J. Lin. Distributed Newton method for regularized logistic regression. In *Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD)*, 2015.

