Optimization and Machine Learning

Chih-Jen Lin
Department of Computer Science
National Taiwan University

Outline

1. Introduction
2. Optimization methods for kernel support vector machines
3. Optimization methods for linear support vector machines
4. Discussion and conclusions
Outline

1. Introduction
2. Optimization methods for kernel support vector machines
3. Optimization methods for linear support vector machines
4. Discussion and conclusions
What is Machine Learning

- Extract knowledge from data
- Representative tasks: classification, clustering, and others

An old area, but many **new and interesting** applications/extensions: ranking, etc.
Data Classification

- Given training data in different classes (labels known)
- Predict test data (labels unknown)
- Classic example
 1. Find a patient’s blood pressure, weight, etc.
 2. After several years, know if he/she recovers
 3. Build a machine learning model
 4. New patient: find blood pressure, weight, etc
 5. Prediction
- Two main stages: training and testing
Data Classification (Cont’d)

- Representative methods
 - Nearest neighbor, naive Bayes
 - Decision tree, random forest
 - Neural networks, support vector machines
Why Is Optimization Used?

- Usually the goal of classification is to minimize the test error.
- Therefore, many classification methods solve optimization problems.
Optimization and Machine Learning

- Standard optimization packages may be directly applied to machine learning applications.
- However, efficiency and scalability are issues.
- Very often machine learning knowledge must be considered in designing suitable optimization methods.
- We will discuss some examples in this talk.
Outline

1. Introduction

2. Optimization methods for kernel support vector machines

3. Optimization methods for linear support vector machines

4. Discussion and conclusions
Kernel Methods

- Kernel methods are a class of classification techniques where major operations are conducted by kernel evaluations.
- A representative example is support vector machine.
Support Vector Classification

- **Training** data \((x_i, y_i), i = 1, \ldots, l, x_i \in \mathbb{R}^n, y_i = \pm 1\)

- Maximizing the margin (Boser et al., 1992; Cortes and Vapnik, 1995)

\[
\min_{w, b} \frac{1}{2} w^T w + C \sum_{i=1}^{l} \max(1 - y_i (w^T \phi(x_i) + b), 0)
\]

- **High dimensional** (maybe infinite) feature space

\[
\phi(x) = (\phi_1(x), \phi_2(x), \ldots).
\]

- **w**: maybe **infinite** variables
Support Vector Classification (Cont’d)

- The dual problem (finite # variables)

\[
\min_{\alpha} \quad \frac{1}{2} \alpha^T Q \alpha - e^T \alpha \\
\text{subject to} \quad 0 \leq \alpha_i \leq C, \ i = 1, \ldots, l \\
y^T \alpha = 0,
\]

where \(Q_{ij} = y_i y_j \phi(x_i)^T \phi(x_j) \) and \(e = [1, \ldots, 1]^T \)

- At optimum

\[
w = \sum_{i=1}^{l} \alpha_i y_i \phi(x_i)
\]

- Kernel: \(K(x_i, x_j) \equiv \phi(x_i)^T \phi(x_j) \); closed form

Example: Gaussian (RBF) kernel: \(e^{-\gamma \| x_i - x_j \|^2} \)
Only x_i of $\alpha_i > 0$ used \Rightarrow support vectors
Large Dense Quadratic Programming

\[
\min_{\alpha} \quad \frac{1}{2} \alpha^T Q \alpha - \mathbf{e}^T \alpha \\
\text{subject to} \quad 0 \leq \alpha_i \leq C, \ i = 1, \ldots, l \\
y^T \alpha = 0
\]

- \(Q_{ij} \neq 0\), \(Q\) : an \(l\) by \(l\) fully dense matrix
- 50,000 training points: 50,000 variables:
 \((50,000^2 \times 8/2)\) bytes = 10GB RAM to store \(Q\)
For quadratic programming problems, traditionally we would use Newton or quasi Newton.

However, they cannot be directly applied here because Q cannot even be stored.

Currently, decomposition methods (a type of coordinate descent methods) are what used in practice.
Decomposition Methods

- Working on some variables each time (e.g., Osuna et al., 1997; Joachims, 1998; Platt, 1998)
- Similar to coordinate-wise minimization
- Working set B, $N = \{1, \ldots, l\} \setminus B$ fixed
- Sub-problem at the kth iteration:

$$\min \limits_{\alpha_B} \frac{1}{2} \begin{bmatrix} \alpha_B^T & (\alpha_N^k)^T \end{bmatrix} \begin{bmatrix} Q_{BB} & Q_{BN} \\ Q_{NB} & Q_{NN} \end{bmatrix} \begin{bmatrix} \alpha_B \\ \alpha_N^k \end{bmatrix} - \begin{bmatrix} e_B^T & (e_N^k)^T \end{bmatrix} \begin{bmatrix} \alpha_B \\ \alpha_N^k \end{bmatrix}$$

subject to $0 \leq \alpha_t \leq C$, $t \in B$, $y_B^T \alpha_B = -y_N^T \alpha_N^k$
Avoid Memory Problems

- The new objective function

\[
\frac{1}{2} \alpha_B^T Q_{BB} \alpha_B + (\mathbf{-e}_B + Q_{BN} \alpha_N^k)^T \alpha_B + \text{constant}
\]

- Only \(B \) columns of \(Q \) are needed
- \(|B| \geq 2 \) due to the equality constraint and in general \(|B| \leq 10 \) is used
- Calculated when used: trade time for space
- But is such an approach practical?
How Decomposition Methods Perform?

- Convergence not very fast. This is known because of using only first-order information.
- But, no need to have very accurate α.

Decision function: $$\sum_{i=1}^{l} \alpha_i K(x_i, x) + b$$

Prediction may still be correct with a rough α.

- Further, in some situations, the number of support vectors is much smaller than the number of training points.
- Initial $\alpha^1 = 0$, some instances never used.
How Decomposition Methods Perform? (Cont’d)

- An example of training 50,000 instances using the software LIBSVM

 `$svm-train -c 16 -g 4 -m 400 22features`

 Total nSV = 3370
 Time 79.524s

- This was done on a typical desktop
- Calculating the whole Q takes more time

- $#SVs = 3,370 \ll 50,000$

 A good case where some remain at zero all the time
Because many $\alpha_i = 0$ in the end, we can develop a **shrinking** techniques. Variables are removed during the optimization procedure. **Smaller** problems are solved.
Machine Learning Properties are Useful in Designing Optimization Algorithms

We have seen that special properties of SVM did contribute to the viability of decomposition method

- For machine learning applications, no need to accurately solve the optimization problem
- Because some optimal $\alpha_i = 0$, decomposition methods may not need to update all the variables
- Also, we can use shrinking techniques to reduce the problem size during decomposition methods
Differences between Optimization and Machine Learning

- The two topics may have different focuses. We give the following example
- The decomposition method we just discussed converges more slowly when \(C \) is large
- Using \(C = 1 \) on a data set

 \# iterations: 508

- Using \(C = 5,000 \)

 \# iterations: 35,241
Optimization researchers may rush to solve difficult cases of large C
That’s what I did before
It turns out that large C less used than small C
Recall that SVM solves
$$\frac{1}{2}w^Tw + C(\text{sum of training losses})$$
A large C means to overfit training data
This does not give good testing accuracy
Outline

1. Introduction
2. Optimization methods for kernel support vector machines
3. Optimization methods for linear support vector machines
4. Discussion and conclusions
Linear and Kernel Classification

- We have
 - Kernel \Rightarrow map data to a higher space
 - Linear \Rightarrow use the original data
- Intuitively, kernel should give superior accuracy than linear
- There are even some theoretical results
- We optimization people may think there is no need to specially consider linear SVM
- However, this is wrong if we consider their practical use
Methods such as SVM and logistic regression can be used in two ways:

- **Kernel methods**: data mapped to a higher dimensional space
 \[\mathbf{x} \Rightarrow \phi(\mathbf{x}) \]

 \(\phi(\mathbf{x}_i)^T\phi(\mathbf{x}_j) \) easily calculated; little control on \(\phi(\cdot) \)

- **Linear classification + feature engineering**: We have \(\mathbf{x} \) without mapping. Alternatively, we can say that \(\phi(\mathbf{x}) \) is our \(\mathbf{x} \); full control on \(\mathbf{x} \) or \(\phi(\mathbf{x}) \)
For some problems, **accuracy** by linear is as good as nonlinear
But training and testing are much faster
This particularly happens for document classification
Number of features (bag-of-words model) very large
Data very **sparse** (i.e., few non-zeros)
Recently linear classification is a popular research topic.
Comparison Between Linear and Kernel (Training Time & Testing Accuracy)

<table>
<thead>
<tr>
<th>Data set</th>
<th>#data</th>
<th>#features</th>
<th>Linear</th>
<th>RBF Kernel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time</td>
<td>Accuracy</td>
<td>Time</td>
<td>Accuracy</td>
</tr>
<tr>
<td>MNIST38</td>
<td>0.1</td>
<td>96.82</td>
<td>38.1</td>
<td>99.70</td>
</tr>
<tr>
<td>ijcnn1</td>
<td>1.6</td>
<td>91.81</td>
<td>26.8</td>
<td>98.69</td>
</tr>
<tr>
<td>covtype</td>
<td>1.4</td>
<td>76.37</td>
<td>46,695.8</td>
<td>96.11</td>
</tr>
<tr>
<td>news20</td>
<td>1.1</td>
<td>96.95</td>
<td>383.2</td>
<td>96.90</td>
</tr>
<tr>
<td>real-sim</td>
<td>0.3</td>
<td>97.44</td>
<td>938.3</td>
<td>97.82</td>
</tr>
<tr>
<td>yahoo-japan</td>
<td>3.1</td>
<td>92.63</td>
<td>20,955.2</td>
<td>93.31</td>
</tr>
<tr>
<td>webspam</td>
<td>25.7</td>
<td>93.35</td>
<td>15,681.8</td>
<td>99.26</td>
</tr>
</tbody>
</table>

Therefore, there is a need to develop optimization methods for large linear classification.
Comparison Between Linear and Kernel (Training Time & Testing Accuracy)

<table>
<thead>
<tr>
<th>Data set</th>
<th>#data</th>
<th>#features</th>
<th>Linear Time</th>
<th>Linear Accuracy</th>
<th>RBF Kernel Time</th>
<th>RBF Kernel Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNIST38</td>
<td>11,982</td>
<td>752</td>
<td>0.1</td>
<td>96.82</td>
<td>38.1</td>
<td>99.70</td>
</tr>
<tr>
<td>ijcnn1</td>
<td>49,990</td>
<td>22</td>
<td>1.6</td>
<td>91.81</td>
<td>26.8</td>
<td>98.69</td>
</tr>
<tr>
<td>covtype</td>
<td>464,810</td>
<td>54</td>
<td>1.4</td>
<td>76.37</td>
<td>46,695.8</td>
<td>96.11</td>
</tr>
<tr>
<td>news20</td>
<td>15,997</td>
<td>1,355,191</td>
<td>1.1</td>
<td>96.95</td>
<td>383.2</td>
<td>96.90</td>
</tr>
<tr>
<td>real-sim</td>
<td>57,848</td>
<td>20,958</td>
<td>0.3</td>
<td>97.44</td>
<td>938.3</td>
<td>97.82</td>
</tr>
<tr>
<td>yahoo-japan</td>
<td>140,963</td>
<td>832,026</td>
<td>3.1</td>
<td>92.63</td>
<td>20,955.2</td>
<td>93.31</td>
</tr>
<tr>
<td>webspam</td>
<td>280,000</td>
<td>254</td>
<td>25.7</td>
<td>93.35</td>
<td>15,681.8</td>
<td>99.26</td>
</tr>
</tbody>
</table>

Therefore, there is a need to develop optimization methods for large linear classification.
Comparison Between Linear and Kernel (Training Time & Testing Accuracy)

<table>
<thead>
<tr>
<th>Data set</th>
<th>#data</th>
<th>#features</th>
<th>Linear Time</th>
<th>Linear Accuracy</th>
<th>RBF Kernel Time</th>
<th>RBF Kernel Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNIST38</td>
<td>11,982</td>
<td>752</td>
<td>0.1</td>
<td>96.82</td>
<td>38.1</td>
<td>99.70</td>
</tr>
<tr>
<td>ijcnn1</td>
<td>49,990</td>
<td>22</td>
<td>1.6</td>
<td>91.81</td>
<td>26.8</td>
<td>98.69</td>
</tr>
<tr>
<td>covtype</td>
<td>464,810</td>
<td>54</td>
<td>1.4</td>
<td>76.37</td>
<td>46,695.8</td>
<td>96.11</td>
</tr>
<tr>
<td>news20</td>
<td>15,997</td>
<td>1,355,191</td>
<td>1.1</td>
<td>96.95</td>
<td>383.2</td>
<td>96.90</td>
</tr>
<tr>
<td>real-sim</td>
<td>57,848</td>
<td>20,958</td>
<td>0.3</td>
<td>97.44</td>
<td>938.3</td>
<td>97.82</td>
</tr>
<tr>
<td>yahoo-japan</td>
<td>140,963</td>
<td>832,026</td>
<td>3.1</td>
<td>92.63</td>
<td>20,955.2</td>
<td>93.31</td>
</tr>
<tr>
<td>webspam</td>
<td>280,000</td>
<td>254</td>
<td>25.7</td>
<td>93.35</td>
<td>15,681.8</td>
<td>99.26</td>
</tr>
</tbody>
</table>

Therefore, there is a need to develop optimization methods for large linear classification.
Why Linear is Faster in Training and Testing?

Let’s check the prediction cost

\[w^T x + b \text{ versus } \sum_{i=1}^{l} \alpha_i K(x_i, x) + b \]

If \(K(x_i, x_j) \) takes \(O(n) \), then

\[O(n) \text{ versus } O(nl) \]

Linear is much cheaper; reason:

for linear, \(x_i \) is available

but

for kernel, \(\phi(x_i) \) is not
Optimization for Linear Classification

- Now a popular topic in both machine learning and optimization
- Most are based on first-order information: coordinate descent, stochastic gradient descent, or cutting plane
- The reason is again that no need to accurately solve optimization problems
- Let’s see another development for linear classification
Martens (2010) and Byrd et al. (2011) propose the so-called “Hessian free” approach.

Let’s rewrite linear SVM as the following form:

$$\min_w \frac{1}{2} w^T w + \frac{C}{l} \sum_{i=1}^{l} \max(1 - y_i w^T x_i, 0)$$

What if we use a subset in the second term:

$$\frac{C}{|B|} \sum_{i \in B} \max(1 - y_i w^T x_i, 0)$$
Optimization for Linear Classification (Cont’d)

- Then both gradient and Hessian-vector products can be cheaper
- That is, if there are enough data, then the average training loss should be similar
- This is a good example to take machine learning properties in designing optimization algorithms
Lessons

- We must know the practical use of machine learning in order to design suitable optimization algorithms.
- Here is how I started developing optimization algorithms for linear SVM.
- In 2006, I visited at Yahoo! for six months. I learned that:
 1. Document classification is heavily used.
 2. Accuracy of linear and nonlinear is similar for documents.
Outline

1 Introduction

2 Optimization methods for kernel support vector machines

3 Optimization methods for linear support vector machines

4 Discussion and conclusions
Machine Learning Software

- Algorithms discussed in this talk are related to my machine learning software
- LIBSVM (Chang and Lin, 2011): One of the most popular SVM packages; cited more than 11,000 times on Google Scholar
- LIBLINEAR (Fan et al., 2008): A library for large linear classification; popular in Internet companies
- The core of an SVM package is an optimization solver
But designing machine learning software is quite different from optimization packages.

You need to consider prediction, validation, and others.

Also, issues related to users (e.g., easy of use, interface, etc.) are very important for machine learning packages.
Conclusions

- Optimization has been very useful for machine learning
- We need to take machine learning knowledge into account for designing suitable optimization algorithms
- The interaction between optimization and machine learning is very interesting and exciting.