Large-scale Machine Learning in Distributed Environments

Chih-Jen Lin
National Taiwan University eBay Research Labs

Tutorial at ACM ICMR, June 5, 2012
Outline

1. Why distributed machine learning?
2. Distributed classification algorithms
 - Kernel support vector machines
 - Linear support vector machines
 - Parallel tree learning
3. Distributed clustering algorithms
 - k-means
 - Spectral clustering
 - Topic models
4. Discussion and conclusions
Why Distributed Machine Learning

The usual answer is that data are too big to be stored in one computer

Some say that because “Hadoop” and “MapReduce” are buzzwords

No, we should never believe buzzwords

I will argue that things are more complicated than we thought
In this talk I will consider only machine learning in data-center environments
That is, clusters using regular PCs
I will not discuss machine learning in other parallel environments:
GPU, multi-core, specialized clusters such as supercomputers
Slides of this talk are available at
Let’s Start with An Example

- Using a linear classifier LIBLINEAR (Fan et al., 2008) to train the rcv1 document data sets (Lewis et al., 2004).
- # instances: 677,399, # features: 47,236
- On a typical PC
 $\text{time} \ . ./\text{train} \ \text{rcv1}_\text{test}.\text{binary}$
- Total time: 50.88 seconds
 Loading time: 43.51 seconds
- For this example

 loading time \gg running time
Let’s assume the memory hierarchy contains only disk.

Assume \(\#\) instances is \(l\).

Loading time: \(l \times (\text{a big constant})\)

Running time: \(l^q \times (\text{some constant})\), where \(q \geq 1\).

Running time often larger because \(q > 1\) (e.g., \(q = 2\) or \(3\)) and

\[
l^{q-1} > \text{a big constant}
\]
Why distributed machine learning?

Loading Time Versus Running Time II

- Traditionally machine learning and data mining papers consider **only running time**
- For example, in this ICML 2008 paper (Hsieh et al., 2008), some training algorithms were compared for rcv1
Why distributed machine learning?

Loading Time Versus Running Time III

- DCDL1 is what LIBLINEAR used
- We see that in 2 seconds, final testing accuracy is achieved
- But as we said, this 2-second running time is misleading
- So what happened? Didn’t you say that

\[l^{q-1} > \text{a big constant} \]

- The reason is that when \(l \) is large, we usually can afford using only \(q = 1 \) (i.e., linear algorithm)
- Now we see different situations
Why distributed machine learning?

Loading Time Versus Running Time IV

- If running time dominates, then we should design algorithms to reduce number of operations
- If loading time dominates, then we should design algorithms to reduce number of data accesses

Distributed environment is another layer of memory hierarchy

So things become even more complicated
One apparent reason of using distributed clusters is that data are too large for one disk.

But in addition to that, what are other reasons of using distributed environments?

On the other hand, now disk is large. If you have several TB data, should we use one or several machines?

We will try to answer this question in the following slides.
Possible Advantages of Distributed Systems

- Parallel data loading
 Reading several TB data from disk ⇒ a few hours
 Using 100 machines, each has 1/100 data in its local disk ⇒ a few minutes

- Fault tolerance
 Some data replicated across machines: if one fails, others are still available
 Of course how to efficiently/effectively do this is a challenge
An Introduction of Distributed Systems I

Distributed file systems

- We need it because a file is now managed at different nodes
- A file split to chunks and each chunk is replicated
 \[\Rightarrow \text{if some nodes fail, data still available} \]
- Example: GFS (Google file system), HDFS (Hadoop file system)

Parallel programming frameworks

- A framework is like a language or a specification. You can then have different implementations
An Introduction of Distributed Systems II

- Example:
 - MPI (Snir and Otto, 1998): a parallel programming framework
 - MPICH2 (Gropp et al., 1999): an implementation

- Sample MPI functions

 - **MPI_Bcast**: Broadcasts to all processes.
 - **MPI_AllGather**: Gathers the data contributed by each process on all processes.
 - **MPI_Reduce**: A global reduction (e.g., sum) to the specified root.
 - **MPI_AllReduce**: A global reduction and sending result to all processes.
They are reasonable functions that we can think about

- MapReduce (Dean and Ghemawat, 2008). A framework now commonly used for large-scale data processing

 In MapReduce, every element is a (key, value) pair
 Mapper: a list of data elements provided. Each element transformed to an output element
 Reducer: values with same key presented to a single reducer
See the following illustration from Hadoop Tutorial
http://developer.yahoo.com/hadoop/tutorial
Why distributed machine learning?

An Introduction of Distributed Systems V

Diagram:
- Pre-loaded local input data
- Intermediate data from mappers
- Values exchanged by shuffle process
- Reducing process generates outputs
- Outputs stored locally

Chih-Jen Lin (National Taiwan Univ.)
Let’s compare MPI and MapReduce

MPI: communication explicitly specified
MapReduce: communication performed implicitly

In a sense, MPI is like an assembly language, but MapReduce is high-level

MPI: sends/receives data to/from a node’s memory
MapReduce: communication involves expensive disk I/O

MPI: no fault tolerance
MapReduce: support fault tolerance
Why distributed machine learning?

An Introduction of Distributed Systems

Because of disk I/O, MapReduce can be inefficient for iterative algorithms.
To remedy this, some modifications have been proposed.

Example: Spark (Zaharia et al., 2010) supports
- MapReduce and fault tolerance
- Cache data in memory between iterations

MapReduce is a framework; it can have different implementations.
Why distributed machine learning?

An Introduction of Distributed Systems

For example, shared memory (Talbot et al., 2011) and distributed clusters (Google’s and Hadoop)

- An algorithm implementable by a parallel framework

 You can easily have efficient implementations

- The paper (Chu et al., 2007) has the following title
 Map-Reduce for Machine Learning on Multicore

- The authors show that many machine learning algorithms can be implemented by MapReduce
These algorithms include linear regression, \(k \)-means, logistic regression, naive Bayes, SVM, ICA, PCA, EM, Neural networks, etc

But their implementations are on shared-memory machines; see the word "multicore" in their title

Many wrongly think that their paper implies that these methods can be efficiently implemented in a distributed environment. But this is wrong
Traditionally a parallel program is evaluated by scalability.
Why distributed machine learning?

Evaluation II

- We hope that when (machines, data size) doubled, the speedup also doubled.
 64 machines, 500k data ⇒ ideal speedup is 64
 128 machines, 1M data ⇒ ideal speedup is 128
- That is, a linear relationship in the above figure
- But in some situations we can simply check throughput.
 For example, # documents per hour.
Why distributed machine learning?

Data Locality I

- Transferring data across networks is slow.
- We should try to access data from local disk.
- Hadoop tries to move computation to the data. If data in node A, try to use node A for computation.
- But most machine learning algorithms are not designed to achieve good data locality.
- Traditional parallel machine learning algorithms distribute computation to nodes. This works well in dedicated parallel machines with fast communication among nodes.
Data Locality II

But in data-center environments this may not work ⇒ communication cost is very high
Now go back to machine learning algorithms
Classification and Clustering I

- They are the two major types of machine learning methods

- Distributed systems are more useful for which one?
The answer is **clustering**

- Clustering: if you have \(I \) instances, you need cluster all of them.
- Classification: you may not need to use all your training data.

Many training data + a so so method may not be better than

Some training data + an advanced method

- Usually it is easier to play with advanced methods on one computer
The difference between clustering and classification can also be seen on Apache Mahout, a machine learning library on Hadoop.

It has more clustering implementations than classification.

See http://mahout.apache.org/

Indeed, some classification implementations in Mahout are sequential rather than parallel.
A Brief Summary Now

Going to distributed or not is sometimes a difficult decision.

There are many considerations:
- Data already in distributed file systems or not
- The availability of distributed learning algorithms for your problems
- The efforts for writing a distributed code
- The selection of parallel frameworks
- And others

We use some simple examples to illustrate why the decision is not easy.
Example: A Multi-class Classification Problem I

- At eBay (I am currently a visitor there), I need to train 55M documents in 29 classes.
- The number of features ranges from 3M to 100 M, depending on the settings.
- I can tell you that I don’t want to run it in a distributed environment.
- Reasons
Example: A Multi-class Classification Problem II

- I can access machines with 75G RAM to run the data without problem
- Training is not too slow. Using one core, for 55M documents and 3M features, training multi-class SVM by LIBLINEAR takes only 20 minutes
- On one computer I can easily try various features. From 3M to 100M, accuracy is improved. It won’t be easy to achieve this by using more data in a distributed cluster.
Example: A Bagging Implementation

- Assume data is large, say 1TB. You have 10 machines with 100GB RAM each.
- One way to train this large data is a bagging approach

<table>
<thead>
<tr>
<th>Machine</th>
<th>Trains</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/10</td>
<td>data</td>
</tr>
<tr>
<td>2</td>
<td>1/10</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1/10</td>
<td></td>
</tr>
</tbody>
</table>

- Then use 10 models for prediction and combine results
Example: A Bagging Implementation II

- Reasons of doing so is obvious: parallel data loading and parallel computation
- But it is not that simple if using MapReduce and Hadoop.
- Hadoop file system is not designed so we can easily copy a subset of data to a node
 That is, you cannot say: block 10 goes to node 75
- A possible way is:
 1. Copy all data to HDFS
2. Let each n/p points to have the same key (assume p is \# of nodes). The reduce phase collects n/p points to a node. Then we can do the parallel training

- As a result, we may not get $1/10$ loading time
- In Hadoop, data are transparent to users
 We don’t know details of data locality and communication

Here is an interesting communication between me and a friend (called D here)
Example: A Bagging Implementation IV

- Me: If I have data in several blocks and would like to copy them to HDFS, it’s not easy to specifically assign them to different machines.
- D: Yes, that’s right.
- Me: So probably using a poor-man’s approach is easier. I use USB to copy block/code to 10 machines and hit return 10 times.
- D: Yes, but you can do better by `scp` and `ssh`. Indeed that’s usually how I do “parallel programming”.

This example is a bit extreme.
We are not saying that Hadoop or MapReduce are not useful.

The point is that they are not designed in particular for machine learning applications.

We need to know when and where they are suitable to be used.

Also whether your data are already in distributed systems or not is important.
There are many books about Hadoop and MapReduce. I don’t list them here.

For things related to machine learning, a collection of recent works is in the following book Scaling Up Machine Learning, edited by Bekkerman, Bilenko, and John Langford, 2011.

This book covers materials using various parallel environments. Many of them use distributed clusters.
Outline

1. Why distributed machine learning?

2. Distributed classification algorithms
 - Kernel support vector machines
 - Linear support vector machines
 - Parallel tree learning

3. Distributed clustering algorithms
 - k-means
 - Spectral clustering
 - Topic models

4. Discussion and conclusions
Support Vector Machines I

- A popular classification method developed in the past two decades (Boser et al., 1992; Cortes and Vapnik, 1995)
- Training data \(\{y_i, x_i\}, x_i \in \mathbb{R}^n, i = 1, \ldots, l, y_i = \pm 1 \)
- \(l \): # of data, \(n \): # of features
- SVM solves the following optimization problem

\[
\min_{w, b} \quad \frac{1}{2} w^T w + C \sum_{i=1}^{l} \max(0, 1 - y_i(w^T x_i + b))
\]

- \(w^T w / 2 \): regularization term
Support Vector Machines II

- C: regularization parameter
- Decision function

$$\text{sgn}(\mathbf{w}^T \phi(\mathbf{x}) + b)$$

- $\phi(\mathbf{x})$: data mapped to a higher dimensional space
Finding the Decision Function

- **w**: maybe infinite variables
- The dual problem: finite number of variables

\[
\begin{align*}
\min_{\alpha} & \quad \frac{1}{2} \alpha^T Q \alpha - \mathbf{e}^T \alpha \\
\text{subject to} & \quad 0 \leq \alpha_i \leq C, \ i = 1, \ldots, l \\
& \quad y^T \alpha = 0,
\end{align*}
\]

where \(Q_{ij} = y_i y_j \phi(x_i)^T \phi(x_j) \) and \(\mathbf{e} = [1, \ldots, 1]^T \)

- At optimum

\[
w = \sum_{i=1}^{l} \alpha_i y_i \phi(x_i)
\]

- A finite problem: \#variables = \#training data
Kernel Tricks

- $Q_{ij} = y_i y_j \phi(x_i)^T \phi(x_j)$ needs a **closed form**
- Example: $x_i \in \mathbb{R}^3$, $\phi(x_i) \in \mathbb{R}^{10}$

$$
\phi(x_i) = [1, \sqrt{2}(x_i)_1, \sqrt{2}(x_i)_2, \sqrt{2}(x_i)_3, (x_i)_1^2, (x_i)_2^2, (x_i)_3^2, \sqrt{2}(x_i)_1(x_i)_2, \sqrt{2}(x_i)_1(x_i)_3, \sqrt{2}(x_i)_2(x_i)_3]^T
$$

Then $\phi(x_i)^T \phi(x_j) = (1 + x_i^T x_j)^2$.

- **Kernel**: $K(x, y) = \phi(x)^T \phi(y)$; common kernels:
 - $e^{-\gamma \|x_i - x_j\|^2}$, (Gaussian and Radial Basis Function)
 - $(x_i^T x_j / a + b)^d$ (Polynomial kernel)
The square kernel matrix. Assume the Gaussian kernel is taken

$$e^{-\gamma \|x_i - x_j\|^2}$$

Then

$$O(l^2) \text{ memory and } O(l^2 n) \text{ computation}$$

If $$l = 10^6$$, then

$$10^{12} \times 8 \text{ bytes} = 8 \text{TB}$$

Existing methods (serial or parallel) try not to use the whole kernel matrix at the same time
Distributed implementations include, for example, Chang et al. (2008); Zhu et al. (2009)

We will look at ideas of these two implementations

Because the computational cost is high (not linear), the data loading and communication cost is less a concern.
The Approach by Chang et al. (2008) I

- Kernel matrix approximation.
- Original matrix Q with
 \[Q_{ij} = y_i y_j K(x_i, x_j) \]
- Consider
 \[\bar{Q} = \Phi^T \Phi \approx Q. \]
- $\Phi \equiv [\tilde{x}_1, \ldots, \tilde{x}_l]$ becomes new training data
- $\Phi \in \mathbb{R}^{d \times l}, d \ll l$. # features \ll # data
- Testing is an issue, but let’s not worry about it here
The Approach by Chang et al. (2008) II

- They follow Fine and Scheinberg (2001) to use incomplete Cholesky factorization

What is Cholesky factorization?
Any symmetric positive definite Q can be factorized as

$$Q = LL^T,$$

where $L \in R^{l \times l}$ is lower triangular
There are several ways to do Cholesky factorization. If we do it columnwisely

\[
\begin{bmatrix}
L_{11} \\
L_{21} \\
L_{31} \\
L_{41} \\
L_{51}
\end{bmatrix} \Rightarrow
\begin{bmatrix}
L_{11} & L_{21} \\
L_{31} & L_{32} \\
L_{41} & L_{42} \\
L_{51} & L_{52}
\end{bmatrix} \Rightarrow
\begin{bmatrix}
L_{11} & L_{21} & L_{22} \\
L_{31} & L_{32} & L_{33} \\
L_{41} & L_{42} & L_{43} \\
L_{51} & L_{52} & L_{53}
\end{bmatrix}
\]

and stop before it’s fully done, then we get incomplete Cholesky factorization.
The Approach by Chang et al. (2008) IV

- To get one column, we need to use previous columns:

\[
\begin{bmatrix}
 L_{43} \\
 L_{53}
\end{bmatrix}
\text{ needs }
\begin{bmatrix}
 Q_{43} \\
 Q_{53}
\end{bmatrix}
- \begin{bmatrix}
 L_{41} & L_{42} \\
 L_{51} & L_{52}
\end{bmatrix}
\begin{bmatrix}
 L_{31} \\
 L_{32}
\end{bmatrix}
\]

- This matrix-vector product is parallelized. Each machine is responsible for several rows.

- Using \(d = \sqrt{l} \), they report the following training time.
The Approach by Chang et al. (2008) V

<table>
<thead>
<tr>
<th>Nodes</th>
<th>Image (200k)</th>
<th>CoverType (500k)</th>
<th>RCV (800k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1,958</td>
<td>16,818</td>
<td>45,135</td>
</tr>
<tr>
<td>200</td>
<td>814</td>
<td>1,655</td>
<td>2,671</td>
</tr>
</tbody>
</table>

- We can see that communication cost is a concern.
- The reason they can get speedup is because the complexity of the algorithm is more than linear.
- They implemented MPI in Google distributed environments.
- If MapReduce is used, scalability will be worse.
A Primal Method by Zhu et al. (2009) I

- They consider stochastic gradient descent methods (SGD).
- SGD is popular for linear SVM (i.e., kernels not used).
- At the tth iteration, a training instance \mathbf{x}_{it} is chosen and \mathbf{w} is updated by

$$
\mathbf{w} \leftarrow \mathbf{w} - \eta_t \nabla^S \left(\frac{1}{2} \| \mathbf{w} \|_2^2 + C \max(0, 1 - y_{it} \mathbf{w}^T \mathbf{x}_{it}) \right),
$$

∇^S: a sub-gradient operator; η: learning rate.
Distributed classification algorithms

Kernel support vector machines

A Primal Method by Zhu et al. (2009) II

- The update rule becomes

\[
\text{If } 1 - y_{i_t} w^T x_{i_t} > 0, \text{ then } w \leftarrow (1 - \eta_t)w + \eta_t C y_{i_t} x_{i_t}.
\]

- For kernel SVM, \(w \) cannot be stored. So we need to store all \(\eta_1, \ldots, \eta_t \)

- The calculation of \(w^T x_{i_t} \) becomes

\[
\sum_{s=1}^{t-1} \text{(some coefficient)} K(x_{i_s}, x_{i_t}) \quad (1)
\]
A Primal Method by Zhu et al. (2009) III

- Parallel implementation.
 If x_{i_1}, \ldots, x_{i_t} are distributedly stored, then (1) can be computed in parallel.

- Two challenges
 1. x_{i_1}, \ldots, x_{i_t} must be evenly distributed to nodes, so (1) can be fast.
 2. The communication cost can be high
 - Each node must have x_{i_t}
 - Results from (1) must be summed up

- Zhu et al. (2009) propose some ways to handle these two problems
Note that Zhu et al. (2009) use a more sophisticated SGD by Shalev-Shwartz et al. (2011), though concepts are similar.

MPI rather than MapReduce is used

Again, if they use MapReduce, the communication cost will be a big concern
Discussion: Parallel Kernel SVM

- An attempt to use MapReduce is by Liu (2010)
 As expected, the speedup is not good
- From both Chang et al. (2008); Zhu et al. (2009), we know that algorithms must be carefully designed so that time saved on computation can compensate communication/loading
Outline

1. Why distributed machine learning?
2. Distributed classification algorithms
 - Kernel support vector machines
 - Linear support vector machines
 - Parallel tree learning
3. Distributed clustering algorithms
 - k-means
 - Spectral clustering
 - Topic models
4. Discussion and conclusions
Linear Support Vector Machines

- By linear we mean kernels are not used
- For certain problems, accuracy by linear is as good as nonlinear
 But training and testing are much faster
- Especially document classification
 Number of features (bag-of-words model) very large
- Recently linear classification is a popular research topic. Sample works in 2005-2008: Joachims (2006); Shalev-Shwartz et al. (2007); Hsieh et al. (2008)
- There are many other recent papers and software
Comparison Between Linear and Nonlinear (Training Time & Testing Accuracy)

<table>
<thead>
<tr>
<th>Data set</th>
<th>Linear</th>
<th>RBF Kernel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time</td>
<td>Accuracy</td>
</tr>
<tr>
<td>MNIST38</td>
<td>0.1</td>
<td>96.82</td>
</tr>
<tr>
<td>ijcnn1</td>
<td>1.6</td>
<td>91.81</td>
</tr>
<tr>
<td>covtype</td>
<td>1.4</td>
<td>76.37</td>
</tr>
<tr>
<td>news20</td>
<td>1.1</td>
<td>96.95</td>
</tr>
<tr>
<td>real-sim</td>
<td>0.3</td>
<td>97.44</td>
</tr>
<tr>
<td>yahoo-japan</td>
<td>3.1</td>
<td>92.63</td>
</tr>
<tr>
<td>webspam</td>
<td>25.7</td>
<td>93.35</td>
</tr>
</tbody>
</table>

Size reasonably large: e.g., yahoo-japan: 140k instances and 830k features
Comparison Between Linear and Nonlinear (Training Time & Testing Accuracy)

<table>
<thead>
<tr>
<th>Data set</th>
<th>Linear</th>
<th>RBF Kernel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time</td>
<td>Accuracy</td>
</tr>
<tr>
<td>MNIST38</td>
<td>0.1</td>
<td>96.82</td>
</tr>
<tr>
<td>ijcnn1</td>
<td>1.6</td>
<td>91.81</td>
</tr>
<tr>
<td>covtype</td>
<td>1.4</td>
<td>76.37</td>
</tr>
<tr>
<td>news20</td>
<td>1.1</td>
<td>96.95</td>
</tr>
<tr>
<td>real-sim</td>
<td>0.3</td>
<td>97.44</td>
</tr>
<tr>
<td>yahoo-japan</td>
<td>3.1</td>
<td>92.63</td>
</tr>
<tr>
<td>webspam</td>
<td>25.7</td>
<td>93.35</td>
</tr>
</tbody>
</table>

Size reasonably large: e.g., yahoo-japan: 140k instances and 830k features
Comparison Between Linear and Nonlinear (Training Time & Testing Accuracy)

<table>
<thead>
<tr>
<th>Data set</th>
<th>Linear</th>
<th></th>
<th>RBF Kernel</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time</td>
<td>Accuracy</td>
<td>Time</td>
<td>Accuracy</td>
</tr>
<tr>
<td>MNIST38</td>
<td>0.1</td>
<td>96.82</td>
<td>38.1</td>
<td>99.70</td>
</tr>
<tr>
<td>ijcnn1</td>
<td>1.6</td>
<td>91.81</td>
<td>26.8</td>
<td>98.69</td>
</tr>
<tr>
<td>covtype</td>
<td>1.4</td>
<td>76.37</td>
<td>46,695.8</td>
<td>96.11</td>
</tr>
<tr>
<td>news20</td>
<td>1.1</td>
<td>96.95</td>
<td>383.2</td>
<td>96.90</td>
</tr>
<tr>
<td>real-sim</td>
<td>0.3</td>
<td>97.44</td>
<td>938.3</td>
<td>97.82</td>
</tr>
<tr>
<td>yahoo-japan</td>
<td>3.1</td>
<td>92.63</td>
<td>20,955.2</td>
<td>93.31</td>
</tr>
<tr>
<td>webspam</td>
<td>25.7</td>
<td>93.35</td>
<td>15,681.8</td>
<td>99.26</td>
</tr>
</tbody>
</table>

Size reasonably large: e.g., yahoo-japan: 140k instances and 830k features
Parallel Linear SVM I

- It is known that linear SVM or logistic regression can easily train millions of data in a few seconds on one machine.
- This is a figure shown earlier.
Training linear SVM is faster than kernel SVM because w can be maintained.

Recall that SGD’s update rule is

\[
\text{If } 1 - y_{it} w^T x_{it} > 0, \quad \text{then} \\
\quad w \leftarrow (1 - \eta_t) w + \eta_t C y_{it} x_{it}.
\]

For linear, we directly calculate

\[w^T x_{it} \]
For kernel, \mathbf{w} cannot be stored. So we need to store all $\eta_1, \ldots, \eta_{t-1}$

\[
\sum_{s=1}^{t-1} (\text{some coefficient}) K(x_{is}, x_{it})
\]

- For linear SVM, each iteration is cheap.
- It is difficult to parallelize the code
- Issues for parallelization
 - Many methods (e.g., stochastic gradient descent or coordinate descent) are inherently sequential
 - Communication cost is a concern
Simple Distributed Linear Classification I

- Bagging: train several subsets and ensemble results; we mentioned this approach in earlier discussion
 - Useful in distributed environments; each node \(\Rightarrow \) a subset
 - Example: Zinkevich et al. (2010)
- Some results by averaging models

<table>
<thead>
<tr>
<th></th>
<th>yahoo-korea</th>
<th>kddcup10</th>
<th>webspam</th>
<th>epsilson</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using all</td>
<td>87.29</td>
<td>89.89</td>
<td>99.51</td>
<td>89.78</td>
</tr>
<tr>
<td>Avg. models</td>
<td>86.08</td>
<td>89.64</td>
<td>98.40</td>
<td>88.83</td>
</tr>
</tbody>
</table>
Simple Distributed Linear Classification II

- Using all: solves a single linear SVM
- Avg. models: each node solves a linear SVM on a subset
- Slightly worse but in general OK
Recall the SVM problem (bias term b omitted)

$$
\min_w \quad \frac{1}{2} w^T w + C \sum_{i=1}^l \max(0, 1 - y_i w^T x_i)
$$

An equivalent optimization problem

$$
\min_{w_1, \ldots, w_m, z} \quad \frac{1}{2} z^T z + C \sum_{j=1}^m \sum_{i \in B_j} \max(0, 1 - y_i w_j^T x_i) +
$$

$$
\frac{\rho}{2} \sum_{j=1}^m \| w_j - z \|^2
$$

subject to \quad w_j - z = 0, \quad \forall j
The key is that

\[z = w_1 = \cdots = w_m \]

are all optimal \(w \)

This optimization problem was proposed in 1970s, but is now applied to distributed machine learning

Each node has \(B_j \) and updates \(w_j \)

Only \(w_1, \ldots, w_m \) must be collected

Data not moved

Still, communication cost at each iteration is a concern
ADMM by Boyd et al. (2011) III

We cannot afford too many iterations

- An MPI implementation is by Zhang et al. (2012)
- I am not aware of any MapReduce implementation yet
Vowpal_Wabbit (Langford et al., 2007)

- It started as a linear classification package on a single computer
- After version 6.0, Hadoop support has been provided
- Parallel strategies SGD initially and then LBFGS (quasi Newton)
- The interesting point is that it argues that AllReduce is a more suitable operation than MapReduce
- What is AllReduce?
 Every node starts with a value and ends up with the sum at all nodes
In Agarwal et al. (2012), the authors argue that many machine learning algorithms can be implemented using AllReduce. LBFGS is an example.

In the following talk, Scaling Up Machine Learning, the authors train 17B samples with 16M features on 1K nodes ⇒ 70 minutes.
They consider the following SVM dual

\[
\min_{\alpha} \quad \frac{1}{2} \alpha^T Q \alpha - e^T \alpha \\
\text{subject to} \quad 0 \leq \alpha_i \leq C, \ i = 1, \ldots, l
\]

This is the SVM dual without considering the bias term "b"

Idea similar to ADMM

Data split to \(B_1, \ldots, B_m \)

Each node responsible for one block
The Approach by Pechyony et al. (2011) II

- If a block of variables B is updated and others $\bar{B} \equiv \{1, \ldots, l\} \setminus B$ are fixed, then the sub-problem is

$$\frac{1}{2} (\alpha + \mathbf{d})^T Q(\alpha + \mathbf{d}) - \mathbf{e}^T (\alpha + \mathbf{d})$$

$$= \frac{1}{2} \mathbf{d}_B^T Q_{BB} \mathbf{d}_B + (Q_{B,:), \alpha)^T \mathbf{d}_B - \mathbf{e}^T \mathbf{d}_B + \text{const} \tag{3}$$

- If

$$\mathbf{w} = \sum_{i=1}^l \alpha_i y_i \mathbf{x}_i$$

is maintained during iterations, then (3) becomes

$$\frac{1}{2} \mathbf{d}_B^T Q_{BB} \mathbf{d}_B + \mathbf{w}^T X_{B,:,}^T \mathbf{d}_B - \mathbf{e}^T \mathbf{d}_B$$
The Approach by Pechyony et al. (2011)

- They solve

\[
\frac{1}{2} d_{B_i}^T Q_{B_i} d_{B_i} + w^T X_{B_i}^T d_{B_i} - e^T d_{B_i}, \forall i
\]

in parallel

- They need to collect all \(d_{B_i}\) and then update \(w\)
- They have a MapReduce implementation
- Issues:
 - No convergence proof yet
Outline

1. Why distributed machine learning?
2. Distributed classification algorithms
 - Kernel support vector machines
 - Linear support vector machines
 - Parallel tree learning
3. Distributed clustering algorithms
 - k-means
 - Spectral clustering
 - Topic models
4. Discussion and conclusions
Parallel Tree Learning I

- We describe the work by Panda et al. (2009)
- It considers two parallel tasks
 - single tree generation
 - tree ensembles
- The main procedure of constructing a tree is to decide how to split a node
- This becomes difficult if data are larger than a machine’s memory
- Basic idea:
If A and B are finished, then we can generate C and D in parallel.

But a more careful design is needed. If data for C can fit in memory, we should generate all subsequent nodes on a machine.
Parallel Tree Learning III

- That is, when we are close to leaf nodes, no need to use parallel programs
 - If you have only few samples, a parallel implementation is slower than one single machine
- The concept looks simple, but generating a useful code is not easy
- The authors mentioned that they face some challenges
 - “MapReduce was not intended ... for highly iterative process .., MapReduce start and tear down costs were primary bottlenecks”
Parallel Tree Learning IV

- “cost ... in determining split points ... higher than expected”
- “… though MapReduce offers graceful handling of failures within a specific MapReduce ..., since our computation spans multiple MapReduce …”

The authors address these issues using engineering techniques.

In some places they even need RPCs (Remote Procedure Calls) rather than standard MapReduce.

For 314 million instances (> 50G storage), in 2009 they report
Parallel Tree Learning V

<table>
<thead>
<tr>
<th>nodes</th>
<th>time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>≈ 400</td>
</tr>
<tr>
<td>200</td>
<td>≈ 1,350</td>
</tr>
</tbody>
</table>

- This is good in 2009. At least they trained a set where one single machine cannot handle at that time.
- The running time does not decrease from 200 to 400 nodes.
- This study shows that...
Parallel Tree Learning VI

- Implementing a distributed learning algorithm is not easy. You may need to solve certain engineering issues
- But sometimes you must do it because of handling huge data
Outline

1. Why distributed machine learning?
2. Distributed classification algorithms
 - Kernel support vector machines
 - Linear support vector machines
 - Parallel tree learning
3. Distributed clustering algorithms
 - k-means
 - Spectral clustering
 - Topic models
4. Discussion and conclusions
One of the most basic and widely used clustering algorithms

The idea is very simple.

Finding k cluster centers and assign each data to the cluster of its closest center
Algorithm 1 \(k \)-means procedure

1. Find initial \(k \) centers
2. While not converge
 - Find each point’s closest center
 - Update centers by averaging all its members

We discuss difference between MPI and MapReduce implementations of \(k \)-means
k-means: MPI implementation I

- Broadcast initial centers to all machines
- While not converged
 - Each node assigns its data to k clusters and compute local sum of each cluster
 - An MPI_AllReduce operation obtains sum of all k clusters to find new centers
- Communication versus computation:
- **If** $x \in R^n$, **then**

 transfer kn elements after $kn \times l/p$ operations,

 l: total number of data and p: number of nodes.
We describe one implementation by Thomas Jungblut

You don’t specifically assign data to nodes
That is, data has been stored somewhere at HDFS

Each instance: a (key, value) pair
key: its associated cluster center
value: the instance
Map:
Each (key, value) pair find the closest center and update the key

Reduce:
For instances with the same key (cluster), calculate the new cluster center

As we said earlier, you don’t control where data points are. Therefore, it’s unclear how expensive loading and communication is.
Outline

1. Why distributed machine learning?
2. Distributed classification algorithms
 - Kernel support vector machines
 - Linear support vector machines
 - Parallel tree learning
3. Distributed clustering algorithms
 - k-means
 - Spectral clustering
 - Topic models
4. Discussion and conclusions
Spectral Clustering I

Input: Data points $\mathbf{x}_1, \ldots, \mathbf{x}_n$; k: number of desired clusters.

1. Construct similarity matrix $S \in \mathbb{R}^{n \times n}$.
2. Modify S to be a sparse matrix.
3. Compute the Laplacian matrix L by

$$L = I - D^{-1/2} SD^{-1/2},$$

4. Compute the first k eigenvectors of L; and construct $V \in \mathbb{R}^{n \times k}$, whose columns are the k eigenvectors.
Spectral Clustering II

5. Compute the normalized matrix U of V by

$$U_{ij} = \frac{V_{ij}}{\sqrt{\sum_{r=1}^{k} V_{ir}^2}}, \quad i = 1, \ldots, n, \quad j = 1, \ldots, k.$$

6. Use k-means algorithm to cluster n rows of U into k groups.

Early studies of this method were by, for example, Shi and Malik (2000); Ng et al. (2001)

We discuss the parallel implementation by Chen et al. (2011)
MPI and MapReduce

Similarity matrix

- Only done once: suitable for MapReduce
- But size grows in $O(n^2)$

First k Eigenvectors

- An iterative algorithm called implicitly restarted Arnoldi
- Iterative: not suitable for MapReduce
- MPI is used but no fault tolerance
Sample Results I

2,121,863 points and 1,000 classes

Chih-Jen Lin (National Taiwan Univ.)
Sample Results II

We can see that scalability of eigen decomposition is not good

<table>
<thead>
<tr>
<th>Nodes</th>
<th>Similarity</th>
<th>Eigen</th>
<th>kmeans</th>
<th>Total</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>752542s</td>
<td>25049s</td>
<td>18223s</td>
<td>795814s</td>
<td>16.00</td>
</tr>
<tr>
<td>32</td>
<td>377001s</td>
<td>12772s</td>
<td>9337s</td>
<td>399110s</td>
<td>31.90</td>
</tr>
<tr>
<td>64</td>
<td>192029s</td>
<td>8751s</td>
<td>4591s</td>
<td>205371s</td>
<td>62.00</td>
</tr>
<tr>
<td>128</td>
<td>101260s</td>
<td>6641s</td>
<td>2944s</td>
<td>110845s</td>
<td>114.87</td>
</tr>
<tr>
<td>256</td>
<td>54726s</td>
<td>5797s</td>
<td>1740s</td>
<td>62263s</td>
<td>204.50</td>
</tr>
</tbody>
</table>
How to Scale Up?

- We can see two bottlenecks
 - computation: $O(n^2)$ similarity matrix
 - communication: finding eigenvectors
- To handle even larger sets we may need to modify the algorithm
- For example, we can use only part of the similarity matrix (e.g., Nyström approximation)
 Slightly worse performance, but may scale up better
- The decision relies on your number of data and other considerations
Outline

1. Why distributed machine learning?
2. Distributed classification algorithms
 - Kernel support vector machines
 - Linear support vector machines
 - Parallel tree learning
3. Distributed clustering algorithms
 - k-means
 - Spectral clustering
 - Topic models
4. Discussion and conclusions
Latent Dirichlet Allocation I

- Basic idea
 each word $w_{ij} \Rightarrow$ an associated topic z_{ij}
- For a query
 “ice skating”
 LDA (Blei et al., 2003) can infer from “ice” that
 “skating” is closer to a topic “sports” rather than a topic “computer”
- The LDA model
Latent Dirichlet Allocation II

\[p(w, z, \Theta, \Phi | \alpha, \beta) = \]

\[
\prod_{i=1}^{m} \prod_{j=1}^{m_i} p(w_{ij} | z_{ij}, \Phi) p(z_{ij} | \theta_i) \prod_{i=1}^{m} p(\theta_i | \alpha) \prod_{j=1}^{k} p(\phi_j | \beta)
\]

- \(w_{ij}\): \(j\)th word from \(i\)th document
- \(z_{ij}\): the topic
- \(p(w_{ij} | z_{ij}, \Phi)\) and \(p(z_{ij} | \theta_i)\): multinomial distributions
 That is, \(w_{ij}\) is drawn from \(z_{ij}\), \(\Phi\) and \(z_{ij}\) is drawn from \(\theta_i\)
- \(p(\theta_i | \alpha), p(\phi_j | \beta)\): Dirichlet distributions
\(\alpha, \beta \): prior of \(\Theta, \Phi \), respectively

- Maximizing the likelihood is not easy, so Griffiths and Steyvers (2004) propose using Gipps sampling to iteratively estimate the posterior \(p(z|w) \).

- While the model looks complicated, \(\Theta \) and \(\Phi \) can be integrated out to

\[
p(w, z|\alpha, \beta)
\]

Then at each iteration only a counting procedure is needed.

- We omit details but essentially the algorithm is...
Latent Dirichlet Allocation IV

Algorithm 2 LDA Algorithm

For each iteration

For each document i

For each word j in document i

Sampling and counting

- Distributed learning seems straightforward
 - Divide data to several nodes
 - Each node counts local data
 - Models are summed up
However, an efficient implementation is not that simple

Some existing implementations
Wang et al. (2009): both MPI and MapReduce
Newman et al. (2009): MPI
Smola and Narayananmurthy (2010): Something else

Smola and Narayananmurthy (2010) claim higher throughputs.
These works all use same algorithm, but implementations are different
Latent Dirichlet Allocation VI

- A direct MapReduce implementation may not be efficient due to I/O at each iteration.
- Smola and Narayananmurthy (2010) use quite sophisticated techniques to get high throughputs:
 - They don’t partition documents to several machines. Otherwise machines need to wait for synchronization.
 - Instead, they consider several samplers and synchronize between them.
 - They use `memcached` so data stored in memory rather than disk.
- They use Hadoop streaming so C++ rather than Java is used
- And some other techniques

We can see that an efficient implementation is not easy
Conclusions

- Distributed machine learning is still an active research topic
- It is related to both machine learning and systems
- While machine learning people can’t develop systems, they need to know how to choose systems
- An important fact is that existing distributed systems or parallel frameworks are not particularly designed for machine learning algorithms
- Machine learning people can
 - help to affect how systems are designed
 - design new algorithms for existing systems
Acknowledgments

I thank comments from

- Wen-Yen Chen
- Dennis DeCoste
- Alex Smola
- Chien-Chih Wang
- Xiaoyun Wu
- Rong Yen

