
Training Support Vector Machines:
Status and Challenges

Chih-Jen Lin
Department of Computer Science

National Taiwan University

ICML Workshop on Large Scale Learning Challenge
July 9, 2008

Chih-Jen Lin (National Taiwan Univ.) 1 / 34

Outline

SVM is popular

But its training isn’t easy

We check existing techniques

Large data sets

We show several approaches, and discuss

various considerations

Will try to partially answer why

there are controversial comparisons

Chih-Jen Lin (National Taiwan Univ.) 2 / 34

Introduction to SVM

Outline

Introduction to SVM
Solving SVM Quadratic Programming Problem
Training large-scale data
Linear SVM
Discussion and Conclusions

Chih-Jen Lin (National Taiwan Univ.) 3 / 34

Introduction to SVM

Support Vector Classification

Training data (xi , yi), i = 1, . . . , l , xi ∈ Rn, yi = ±1
Maximizing the margin
[Boser et al., 1992, Cortes and Vapnik, 1995]

min
w,b,ξ

1

2
wTw + C

l∑
i=1

ξi

subject to yi(w
Tφ(xi) + b) ≥ 1− ξi ,

ξi ≥ 0, i = 1, . . . , l .

High dimensional (maybe infinite) feature space

φ(x) = (φ1(x), φ2(x), . . .).

Chih-Jen Lin (National Taiwan Univ.) 4 / 34

Introduction to SVM

Support Vector Classification (Cont’d)

w: maybe infinite variables
The dual problem (finite # variables)

min
α

1

2
αTQα− eTα

subject to 0 ≤ αi ≤ C , i = 1, . . . , l

yTα = 0,

where Qij = yiyjφ(xi)
Tφ(xj) and e = [1, . . . , 1]T

At optimum

w =
∑l

i=1 αiyiφ(xi)

Kernel: K (xi , xj) ≡ φ(xi)
Tφ(xj)

Chih-Jen Lin (National Taiwan Univ.) 5 / 34

Solving SVM Quadratic Programming Problem

Outline

Introduction to SVM
Solving SVM Quadratic Programming Problem
Training large-scale data
Linear SVM
Discussion and Conclusions

Chih-Jen Lin (National Taiwan Univ.) 6 / 34

Solving SVM Quadratic Programming Problem

Large Dense Quadratic Programming

min
α

1

2
αTQα− eTα

subject to 0 ≤ αi ≤ C , i = 1, . . . , l

yTα = 0

Qij 6= 0, Q : an l by l fully dense matrix

50,000 training points: 50,000 variables:

(50, 0002 × 8/2) bytes = 10GB RAM to store Q

Traditional methods:

Newton, Quasi Newton cannot be directly applied
Chih-Jen Lin (National Taiwan Univ.) 7 / 34

Solving SVM Quadratic Programming Problem

Decomposition Methods

Working on some variables each time (e.g.,
[Osuna et al., 1997, Joachims, 1998, Platt, 1998])

Similar to coordinate-wise minimization

Working set B , N = {1, . . . , l}\B fixed

Sub-problem at the kth iteration:

min
αB

1

2

[
αT

B (αk
N)T
] [QBB QBN

QNB QNN

] [
αB

αk
N

]
−

[
eT

B (ek
N)T
] [αB

αk
N

]
subject to 0 ≤ αt ≤ C , t ∈ B , yT

BαB = −yT
Nαk

N

Chih-Jen Lin (National Taiwan Univ.) 8 / 34

Solving SVM Quadratic Programming Problem

Avoid Memory Problems

The new objective function

1

2
αT

BQBBαB + (−eB + QBNαk
N)TαB + constant

Only B columns of Q needed (|B | ≥ 2)

Calculated when used

Trade time for space

Popular software such as SVM light , LIBSVM,
SVMTorch are of this type

Chih-Jen Lin (National Taiwan Univ.) 9 / 34

http://www.csie.ntu.edu.tw/~cjlin/libsvm

Solving SVM Quadratic Programming Problem

How Decomposition Methods Perform?

Convergence not very fast

But, no need to have very accurate α

Prediction not affected much

In some situations, # support vectors � # training
points

Initial α1 = 0, some instances never used

Chih-Jen Lin (National Taiwan Univ.) 10 / 34

Solving SVM Quadratic Programming Problem

An example of training 50,000 instances using
LIBSVM

$svm-train -c 16 -g 4 -m 400 22features

Total nSV = 3370

Time 79.524s

On a Xeon 2.0G machine

Calculating Q may have taken more time

#SVs = 3,370 � 50,000

A good case where some remain at zero all the time

Chih-Jen Lin (National Taiwan Univ.) 11 / 34

http://www.csie.ntu.edu.tw/~cjlin/libsvm

Solving SVM Quadratic Programming Problem

Issues of Decomposition Methods

Techniques for faster decomposition methods

store recently used kernel elements

working set size/selection

theoretical issues: convergence

and others (details not discussed here)

But training large data still difficult

Kernel square to the number of data

Training millions of data time consuming

Will discuss some possible approaches

Chih-Jen Lin (National Taiwan Univ.) 12 / 34

Training large-scale data

Outline

Introduction to SVM
Solving SVM Quadratic Programming Problem
Training large-scale data
Linear SVM
Discussion and Conclusions

Chih-Jen Lin (National Taiwan Univ.) 13 / 34

Training large-scale data

Parallel: Multi-core/Shared Memory

Most computation of decomposition methods:
kernel evaluations
Easily parallelized via openMP
One line change of LIBSVM
Each core/CPU calculates part of a kernel column

Multicore Shared-memory
1 80 1 100
2 48 2 57
4 32 4 36
8 27 8 28

Same 50,000 data (kernel evaluations: 80% time)
Using GPU [Catanzaro et al., 2008]

Chih-Jen Lin (National Taiwan Univ.) 14 / 34

http://www.csie.ntu.edu.tw/~cjlin/libsvm

Training large-scale data

Parallel: Distributed Environments

What if data data cannot fit into memory?

Use distributed environments

PSVM: [Chang et al., 2007]

http://code.google.com/p/psvm/

π-SVM: http://pisvm.sourceforge.net,

Parallel GPDT [Zanni et al., 2006]

All use MPI

They report good speed-up

But on certain environments, communication cost a
concern

Chih-Jen Lin (National Taiwan Univ.) 15 / 34

http://pisvm.sourceforge.net

Training large-scale data

Approximations

Subsampling

Simple and often effective

Many more advanced techniques

Incremental training: (e.g., [Syed et al., 1999])

Data ⇒ 10 parts

train 1st part ⇒ SVs, train SVs + 2nd part, . . .

Select and train good points: KNN or heuristics

e.g., [Bakır et al., 2005]

Chih-Jen Lin (National Taiwan Univ.) 16 / 34

Training large-scale data

Approximations (Cont’d)

Approximate the kernel; e.g.,
[Fine and Scheinberg, 2001,
Williams and Seeger, 2001]

Use part of the kernel; e.g.,
[Lee and Mangasarian, 2001, Keerthi et al., 2006]

And many others

Some simple but some sophisticated

Chih-Jen Lin (National Taiwan Univ.) 17 / 34

Training large-scale data

Parallelization or Approximation

Difficult to say

Parallel: general

Approximation: simpler in some cases

We can do both

For certain problems, approximation doesn’t easily
work

Chih-Jen Lin (National Taiwan Univ.) 18 / 34

Training large-scale data

Parallelization or Approximation (Cont’d)

covtype: 500k training and 80k testing

rcv1: 550k training and 14k testing

covtype rcv1
Training size Accuracy Training size Accuracy

50k 92.5% 50k 97.2%
100k 95.3% 100k 97.4%
500k 98.2% 550k 97.8%

For large sets, selecting a right approach is essential

We illustrate this point using linear SVM for
document classification

Chih-Jen Lin (National Taiwan Univ.) 19 / 34

Linear SVM

Outline

Introduction to SVM
Solving SVM Quadratic Programming Problem
Training large-scale data
Linear SVM
Discussion and Conclusions

Chih-Jen Lin (National Taiwan Univ.) 20 / 34

Linear SVM

Linear Support Vector Machines

Data not mapped to another space

In theory, RBF kernel with certain parameters

⇒ as good geleralization performance as linear
[Keerthi and Lin, 2003]

But sometimes can easily solve much larger linear
SVMs

Training of linear/nonlinear SVMs should be
separately considered

Chih-Jen Lin (National Taiwan Univ.) 21 / 34

Linear SVM

Linear Support Vector Machines (Cont’d)

Linear SVM useful if accuracy similar to nonlinear

Will discuss an example of linear SVM for document
classification

Chih-Jen Lin (National Taiwan Univ.) 22 / 34

Linear SVM

Linear SVM for Large Document Sets

Document classification

Bag of words model (TF-IDF or others)

A large # of features

Can solve larger problems than kernelized cases

Recently an active research topic

SVMperf [Joachims, 2006]

Pegasos [Shalev-Shwartz et al., 2007]

LIBLINEAR [Lin et al., 2007, Hsieh et al., 2008]

and others

Chih-Jen Lin (National Taiwan Univ.) 23 / 34

http://www.csie.ntu.edu.tw/~cjlin/liblinear

Linear SVM

Linear SVM

Primal without the bias term b

min
w

1

2
wTw + C

l∑
i=1

max
(
0, 1− yiw

Txi

)
Dual

min
α

f (α) =
1

2
αTQα− eTα

subject to 0 ≤ αi ≤ C ,∀i

No linear constraint yTα = 0

Qij = yiyjxT
i xj

Chih-Jen Lin (National Taiwan Univ.) 24 / 34

Linear SVM

A Comparison: LIBSVM and LIBLINEAR

rcv1: # data: > 600k, # features: > 40k

TF-IDF

Using LIBSVM (linear kernel)

> 10 hours

Using LIBLINEAR

Computation: < 5 seconds; I/O: 60 seconds

Same stopping condition

Accuracy similar to nonlinear

Chih-Jen Lin (National Taiwan Univ.) 25 / 34

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/liblinear
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/liblinear

Linear SVM

Revisit Decomposition Methods

The extreme: update one variable at a time

Reduced to

αi ← min

(
max

(
αi −

∇i f (α)

Qii
, 0

)
,C

)
where

∇i f (α) = (Qα)i − 1 =
l∑

j=1

Qijαj − 1

O(nl) to calculate ith row of Q

n: # features, l : # data
Chih-Jen Lin (National Taiwan Univ.) 26 / 34

Linear SVM

For linear SVM, define

w =
∑l

j=1
yjαjxj ,

Much easier: O(n)

∇i f (α) = yiw
Txi − 1

All we need is to maintain w. If

ᾱi ← αi

then
w← w + (αi − ᾱi)yixi

Still O(n)

Chih-Jen Lin (National Taiwan Univ.) 27 / 34

Linear SVM

Testing Accuracy (Time in Seconds)

L1-SVM: news20 L2-SVM: news20

L1-SVM: rcv1 L2-SVM: rcv1
Chih-Jen Lin (National Taiwan Univ.) 28 / 34

Linear SVM

Analysis

Other implementation details in [Hsieh et al., 2008]

Decomposition method for linear/nonlinear kernels:
O(nl) per iteration

New way for linear: O(n) per iteration

Faster if # iterations not l times more

A few seconds for million data; Any limitation?

Less effective if

features small: should solve primal

Large penalty parameter C

Chih-Jen Lin (National Taiwan Univ.) 29 / 34

http://largescale.first.fraunhofer.de/submission/evaluation/3/2/

Linear SVM

Analysis (Cont’d)

One must be careful on comparisons

Now we have two decomposition methods
(nonlinear and linear)

Similar theoretical convergence rates

Very different practical behaviors for certain
problems

This partially explains controversial comparisons in
some recent work

Chih-Jen Lin (National Taiwan Univ.) 30 / 34

Linear SVM

Analysis (Cont’d)

A lesson: different SVMs

To handle large data ⇒ may need different training
strategies

Even just for linear SVM

data � # features

data � # features

data, # features both large

Should use different methods

For example, # data � # features

primal based method; (but why not nonlinear?)

Chih-Jen Lin (National Taiwan Univ.) 31 / 34

Discussion and Conclusions

Outline

Introduction to SVM
Solving SVM Quadratic Programming Problem
Training large-scale data
Linear SVM
Discussion and Conclusions

Chih-Jen Lin (National Taiwan Univ.) 32 / 34

Discussion and Conclusions

Discussion and Conclusions

Linear versus nonlinear

In this competition, most use linear (wild track)

Even accuracy may be worse

Recall I mention “parallelization” &
“approximation”

Linear is essentially an approximation of nonlinear

For large data, selecting a right approach seems to
be essential

But finding a suitable one is difficult

Chih-Jen Lin (National Taiwan Univ.) 33 / 34

Discussion and Conclusions

Discussion and Conclusions (Cont’d)

This (i.e., “too many approaches”) is indeed bad
from the viewpoint of designing machine learning
software

The success of LIBSVM and SVM light

Simple and general

Developments in both directions (general and
specific) will help to advance SVM training

Chih-Jen Lin (National Taiwan Univ.) 34 / 34

http://www.csie.ntu.edu.tw/~cjlin/libsvm

	
	Introduction to SVM
	Solving SVM Quadratic Programming Problem
	Training large-scale data
	Linear SVM
	Discussion and Conclusions

