Training Large-scale Linear Classifiers

Chih-Jen Lin
Department of Computer Science
National Taiwan University
http://www.csie.ntu.edu.tw/~cjlin

Talk at Hong Kong University of Science and Technology
February 5, 2009
Outline

- Linear versus Nonlinear Classification
- Review of SVM Training
- Large-scale Linear SVM
- Discussion and Conclusions
Outline

- Linear versus Nonlinear Classification
- Review of SVM Training
- Large-scale Linear SVM
- Discussion and Conclusions
Kernel Methods and SVM

- Kernel methods became very popular in the past decade
- In particular, support vector machines (SVM)
- But slow in training large data due to nonlinear mapping (enlarge the # features)
- Example: \(x = [x_1, x_2, x_3]^T \in \mathbb{R}^3 \)
 \[
 \phi(x) = [1, \sqrt{2}x_1, \sqrt{2}x_2, \sqrt{2}x_3, x_1^2, x_2^2, x_3^2, \sqrt{2}x_1x_2, \sqrt{2}x_1x_3, \sqrt{2}x_2x_3]^T \in \mathbb{R}^{10}
 \]
- If data are very large \(\Rightarrow \) often need approximation e.g., sub-sampling and many other ways
Linear Classification

- Certain problems: \# features large
- Often similar accuracy with/without nonlinear mappings
- Linear classification: no mapping
 Stay in the original input space
- We can efficiently train very large data
- Document classification is of this type
 Very important for Internet companies
An Example

- **rcv1**: # data: > 600k, # features: > 40k
- Using LIBSVM (linear kernel)
 > 10 hours
- Using LIBLINEAR
 Computation: < 5 seconds; I/O: 60 seconds
- Same stopping condition in solving SVM optimization problems
- Will show how this is achieved and discuss if there are any concerns
Outline

- Linear versus Nonlinear Classification
- Review of SVM Training
- Large-scale Linear SVM
- Discussion and Conclusions
Support Vector Classification

- Training data \((x_i, y_i), \ i = 1, \ldots, l, \ x_i \in \mathbb{R}^n, y_i = \pm 1\)

\[
\min_w \frac{1}{2} w^T w + C \sum_{i=1}^{l} \max(0, 1 - y_i w^T \phi(x_i))
\]

- \(C\): regularization parameter
- High dimensional (maybe infinite) feature space

\[
\phi(x) = [\phi_1(x), \phi_2(x), \ldots]^T
\]

- We omit the bias term \(b\)
- \(w\): may have infinite variables
Support Vector Classification (Cont’d)

- The dual problem (finite \# variables)

\[
\min_{\alpha} \quad f(\alpha) = \frac{1}{2} \alpha^T Q \alpha - e^T \alpha \\
\text{subject to} \quad 0 \leq \alpha_i \leq C, \ i = 1, \ldots, l,
\]

where \(Q_{ij} = y_i y_j \phi(x_i)^T \phi(x_j) \) and \(e = [1, \ldots, 1]^T \)

- At optimum

\[
w = \sum_{i=1}^{l} \alpha_i y_i \phi(x_i)
\]

- Kernel:

\[
K(x_i, x_j) \equiv \phi(x_i)^T \phi(x_j)
\]
Large Dense Quadratic Programming

- $Q_{ij} \neq 0$, Q: an l by l fully dense matrix

$$\min_{\alpha} f(\alpha) = \frac{1}{2} \alpha^T Q \alpha - e^T \alpha$$
subject to
$$0 \leq \alpha_i \leq C, \ i = 1, \ldots, l$$

- 50,000 training points: 50,000 variables:
 $(50,000^2 \times 8/2)$ bytes = 10GB RAM to store Q

- Traditional methods:
 Newton, Quasi Newton cannot be directly applied

- Now most use decomposition methods
Review of SVM Training

Decomposition Methods

- We consider a **one-variable** version
- Similar to **coordinate descent** methods
- Select the ith component for update:

$$\min_{d} \frac{1}{2} (\alpha + d e_i)^T Q (\alpha + d e_i) - e^T (\alpha + d e_i)$$

subject to $0 \leq \alpha_i + d \leq C$

where

$$e_i \equiv [0 \ldots 0\ 1\ 0\ldots 0]^T_{i-1}$$

- α: current solution; the ith component is changed
Avoid Memory Problems

- The new objective function

\[\frac{1}{2} Q_{ii} d^2 + (Q\alpha - e)_i d + \text{constant} \]

- To get \((Q\alpha - e)_i\), only \(Q\)'s \(i\)th row is needed

\[(Q\alpha - e)_i = \sum_{j=1}^{l} Q_{ij}\alpha_j - 1 \]

- Calculated when needed. Trade time for space
- Used by popular software (e.g., \(SVM^{light}\), LIBSVM)
 - They update 10 and 2 variables at a time
Decomposition Methods: Algorithm

- Optimal d:

$$-(Q\alpha - e)_i = -\sum_{j=1}^{J} Q_{ij}\alpha_j - 1$$

- Consider lower/upper bounds: $[0, C]$

- Algorithm:

 While α is not optimal
 1. Select the ith element for update
 2. $\alpha_i \leftarrow \min \left(\max \left(\alpha_i - \frac{\sum_{j=1}^{J} Q_{ij}\alpha_j - 1}{Q_{ii}}, 0 \right), C \right)$
Select an Element for Update

Many ways

- Sequential (easiest)
- Permuting 1, . . . , l every l steps
- Random
- **Existing software check gradient information**

$$\nabla_1 f(\alpha), \ldots, \nabla_l f(\alpha)$$

But is $\nabla f(\alpha)$ available?
Select an Element for Update (Cont’d)

- We can easily maintain gradient

\[\nabla f(\alpha) = Q\alpha - e \]
\[\nabla_s f(\alpha) = (Q\alpha)_s - 1 = \sum_{j=1}^{l} Q_{sj}\alpha_j - 1 \]

- Initial \(\alpha = 0 \)

\[\nabla f(0) = -e \]

- \(\alpha_i \) updated to \(\bar{\alpha}_i \)

\[\nabla_s f(\alpha) \leftarrow \nabla_s f(\alpha) + Q_{si}(\bar{\alpha}_i - \alpha_i), \quad \forall s \]

- \(O(l) \) if \(Q_{si} \) \(\forall s \) (ith column) are available
Select an Element for Update (Cont’d)

- No matter maintaining $\nabla f(\alpha)$ or not, Q’s ith row (column) always needed

$$\bar{\alpha}_i \leftarrow \min \left(\max \left(\alpha_i - \frac{\sum_{j=1}^{l} Q_{ij} \alpha_j - 1}{Q_{ii}}, 0 \right), C \right)$$

Q is symmetric

- Using $\nabla f(\alpha)$ to select i: faster convergence i.e., fewer iterations
Decomposition Methods: Using Gradient

The new procedure

- $\alpha = 0$, $\nabla f(\alpha) = -e$
- While α is not optimal
 1. Select the ith element using $\nabla f(\alpha)$
 2. $\bar{\alpha}_i \leftarrow \min \left(\max \left(\alpha_i - \frac{\sum_{j=1}^{l} Q_{ij} \alpha_j - 1}{Q_{ii}}, 0 \right), C \right)$
 3. $\nabla_s f(\alpha) \leftarrow \nabla_s f(\alpha) + Q_{si}(\bar{\alpha}_i - \alpha_i)$, $\forall s$

Cost per iteration

- $O(l \ln n)$, l: # instances, n: # features
- Assume each $Q_{ij} = y_i y_j K(x_i, x_j)$ takes $O(n)$
Outline

- Linear versus Nonlinear Classification
- Review of SVM Training
- Large-scale Linear SVM
- Discussion and Conclusions
Linear SVM for Large Document Sets

Document classification
- Bag of words model (TF-IDF or others)
 A large # of features
- Testing accuracy: linear/nonlinear SVMs similar
 nonlinear SVM: we mean SVM via kernels

Recently an active research topic
- SVM^{perf} [Joachims, 2006]
- Pegasos [Shalev-Shwartz et al., 2007]
- LIBLINEAR [Lin et al., 2007, Hsieh et al., 2008]
- and others
Large-scale Linear SVM

Linear SVM

- **Primal** without the bias term b

 \[
 \min_w \quad \frac{1}{2} w^T w + C \sum_{i=1}^{l} \max \left(0, 1 - y_i w^T x_i\right)
 \]

- **Dual**

 \[
 \min_{\alpha} \quad f(\alpha) = \frac{1}{2} \alpha^T Q \alpha - e^T \alpha
 \]

 subject to

 \[
 0 \leq \alpha_i \leq C, \forall i
 \]

- $Q_{ij} = y_i y_j x_i^T x_j$
While α is not optimal

1. Select the ith element for update

2. $\alpha_i \leftarrow \min \left(\max \left(\alpha_i - \frac{\sum_{j=1}^{l} Q_{ij} \alpha_j - 1}{Q_{ii}}, 0 \right), C \right)$

$O(ln)$ per iteration; n: # features, l: # data

For linear SVM, define

$$w \equiv \sum_{j=1}^{l} y_j \alpha_j x_j \in R^n$$

$O(n)$ per iteration

$$\sum_{j=1}^{l} Q_{ij} \alpha_j - 1 = \sum_{j=1}^{l} y_i y_j x_i^T x_j \alpha_j - 1 = y_i w^T x_i - 1$$
All we need is to maintain \mathbf{w}. If

$$\tilde{\alpha}_i \leftarrow \alpha_i$$

then $O(n)$ for

$$\mathbf{w} \leftarrow \mathbf{w} + (\tilde{\alpha}_i - \alpha_i) y_i \mathbf{x}_i$$

Initial \mathbf{w}

$$\alpha = 0 \implies \mathbf{w} = 0$$

Give up maintaining $\nabla f(\alpha)$

Select i for update

Sequential, random, or

Permuting $1, \ldots, l$ every l steps
Algorithms for Linear and Nonlinear SVM

Linear:
- While α is not optimal
 1. Select the ith element for update
 2. $\bar{\alpha}_i \leftarrow \min \left(\max \left(\alpha_i - \frac{y_i w^T x_i - 1}{Q_{ii}}, 0 \right), C \right)$
 3. $w \leftarrow w + (\bar{\alpha}_i - \alpha_i)y_i x_i$

Nonlinear:
- While α is not optimal
 1. Select the ith element using $\nabla f(\alpha)$
 2. $\bar{\alpha}_i \leftarrow \min \left(\max \left(\alpha_i - \frac{\sum_{j=1}^{L} Q_{ij} \alpha_j - 1}{Q_{ii}}, 0 \right), C \right)$
 3. $\nabla_s f(\alpha) \leftarrow \nabla_s f(\alpha) + Q_{si}(\bar{\alpha}_i - \alpha_i), \forall s$
Analysis

- Decomposition method for nonlinear (also linear): $O(ln)$ per iteration (used in LIBSVM)
- New way for linear: $O(n)$ per iteration (used in LIBLINEAR)
- Faster if # iterations not l times more

Experiments

<table>
<thead>
<tr>
<th>Problem</th>
<th>l: # data</th>
<th>n: # features</th>
</tr>
</thead>
<tbody>
<tr>
<td>news20</td>
<td>19,996</td>
<td>1,355,191</td>
</tr>
<tr>
<td>yahoo-japan</td>
<td>176,203</td>
<td>832,026</td>
</tr>
<tr>
<td>rcv1</td>
<td>677,399</td>
<td>47,236</td>
</tr>
<tr>
<td>yahoo-korea</td>
<td>460,554</td>
<td>3,052,939</td>
</tr>
</tbody>
</table>
Testing Accuracy versus Training Time

- news20
- yahoo-japan
- rcv1
- yahoo-korea
Outline

- Linear versus Nonlinear Classification
- Review of SVM Training
- Large-scale Linear SVM
- Discussion and Conclusions
Limitation

- A few seconds for million data; Too good to be true?
- Less effective if C is large (or data not scaled)
 - Same problem occurs for training nonlinear SVMs
- **But no need to use large C**
 - Same model after $C \geq \bar{C}$ [Keerthi and Lin, 2003]
 - \bar{C} is small for document data (if scaled)
Limitation (Cont’d)

- Less effective if \# features small
- Should solve \textit{primal}: \# variables = \# features
- Why not using kernels with \textit{nonlinear} mappings?
Comparing Different Training Methods

- $O(ln)$ versus $O(n)$ per iteration
- Generally, the new method for linear is much faster
 Especially for document data
- But can always find weird cases where LIBSVM faster than LIBLINEAR
- Apply the right approach to the right problem is essential
- One must be careful on comparing training algorithms
Software Issue

- Large data \Rightarrow may need different training strategies for different problems
- But we pay the price of complicating software packages
- The success of LIBSVM and SVM^{light}
 - Simple and general
- They cover both linear/nonlinear
- General versus special: always an issue
Other Methods for Linear SVM

- \(\mathbf{w} \) is the key to reduce \(O(ln) \) to \(O(n) \) per iteration

\[
\mathbf{w} = \sum_{j=1}^{l} y_j \alpha_j \mathbf{x}_j \in \mathbb{R}^n
\]

- Many optimization methods can be used

- We can now solve primal: \(\mathbf{w} \) not infinite any more

\[
\min_{\mathbf{w}} \quad \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{i=1}^{l} \max \left(0, 1 - y_i \mathbf{w}^T \mathbf{x}_i \right)
\]

- We used decomposition method as an example as it works for both linear and nonlinear

Easily see the striking difference with/without \(\mathbf{w} \)
Other Linear Classifiers

- Logistic regression, maximum entropy, conditional random fields (CRF)

All linear classifiers

- In the past, SVM training is considered very different from them
- For the linear case, things are very related
- Many interesting findings; but no time to show details
What if Data Are Even Larger?

- We see I/O costs more than computing
- Large-scale document classification on a single computer essentially a solved problem
- Challenges:
 - What if data larger than computer RAM?
 - What if data distributedly stored?
- Document classification in a data center environment is an interesting research direction
Conclusions

- For certain problems, linear classifiers as accurate as nonlinear, and more efficient for training/testing.
- However, we are not claiming you shouldn’t use kernels any more.
- For large data, right approaches are essential.
 Machine learning researchers should clearly tell people when to use which methods.
- You are welcome to try our software:
 http://www.csie.ntu.edu.tw/~cjlin/libsvm
 http://www.csie.ntu.edu.tw/~cjlin/liblinear