Support Vector Machines for Data Classification

Chih-Jen Lin

Department of Computer Science
National Taiwan University

Talk at Centrum voor Wiskunde en Informatica, February 9, 2004
Outline

• Support vector classification
• Example: engine misfire detection
• Discussion and conclusions
Data Classification

- Given training data in different classes (labels known)
 Predict test data (labels unknown)

- Examples
 - Handwritten digits recognition
 - Spam filtering

- Training and testing

- Methods:
 - Nearest Neighbor
 - Neural Networks
 - Decision Tree
• Support vector machines: a new method
 Becoming more and more popular
 We will discuss its current status

• A good classification method:
 – Avoid underfitting: small training error
 – Avoid overfitting: small testing error
Support Vector Classification

- **Training** vectors: $x_i, i = 1, \ldots, l$
- Consider a simple case with two classes:
 Define a vector y

 $$y_i = \begin{cases}
 1 & \text{if } x_i \text{ in class 1} \\
 -1 & \text{if } x_i \text{ in class 2},
 \end{cases}$$

- A hyperplane which separates all data
• A separating hyperplane: $w^T x + b = 0$

\[(w^T x_i) + b > 0 \quad \text{if } y_i = 1\]
\[(w^T x_i) + b < 0 \quad \text{if } y_i = -1\]

• Decision function $f(x) = \text{sign}(w^T x + b)$, x: test data

Variables: w and b : Need to know coefficients of a plane

Many possible choices of w and b
• Select \(w, b \) with the maximal margin.

Maximal distance between \(w^T x + b = \pm 1 \)

Vapnik’s statistical learning theory.

\[
\begin{align*}
(w^T x_i) + b &\geq 1 \quad \text{if } y_i = 1 \\
(w^T x_i) + b &\leq -1 \quad \text{if } y_i = -1
\end{align*}
\]

(1)

• Distance between \(w^T x + b = 1 \) and \(-1 \):

\[
\frac{2}{\|w\|} = \frac{2}{\sqrt{w^T w}}
\]

\[
\text{max } \frac{2}{\|w\|} \equiv \min \frac{1}{2} w^T w
\]

subject to \(y_i((w^T x_i) + b) \geq 1 \), \quad \text{from (1)}

\(i = 1, \ldots, l. \)
Higher Dimensional Feature Spaces

• Earlier we tried to find a linear separating hyperplane
 Data may not be linear separable

• Non-separable case: allow training errors

\[
\begin{align*}
\min_{w,b,\xi} & \quad \frac{1}{2}w^Tw + C \sum_{i=1}^{l} \xi_i \\
\text{subject to} & \quad y_i((w^Tx_i) + b) \geq 1 - \xi_i, \\
& \quad \xi_i \geq 0, \; i = 1, \ldots, l
\end{align*}
\]

• \(\xi_i > 1 \), \(x_i \) not on the correct side of the separating plane

• \(C \): large penalty parameter, most \(\xi_i \) are zero

Chih-Jen Lin, National Taiwan University
• Avoid underfitting; nonlinear separating hyperplane linear separable in other spaces?

• Higher dimensional (maybe infinite) feature space

\[\phi(x) = (\phi_1(x), \phi_2(x), \ldots). \]

• Example: \(x \in \mathbb{R}^3, \phi(x) \in \mathbb{R}^{10} \)

\[
\phi(x) = (1, \sqrt{2}x_1, \sqrt{2}x_2, \sqrt{2}x_3, x_1^2, x_2^2, x_3^2, \sqrt{2}x_1x_2, \sqrt{2}x_1x_3, \sqrt{2}x_2x_3)\]

Chih-Jen Lin, National Taiwan University
• A standard problem [Cortes and Vapnik, 1995]:

$$\min_{w,b,\xi} \quad \frac{1}{2} w^T w + C \sum_{i=1}^{l} \xi_i$$

subject to $$y_i(w^T \phi(x_i) + b) \geq 1 - \xi_i,$$

$$\xi_i \geq 0, \quad i = 1, \ldots, l$$

• C: adjust “training error” and “generalization”
Finding the Decision Function

- w: a vector in a high dimensional space
 \Rightarrow maybe infinite variables

- The dual problem

\[
\min_{\alpha} \quad \frac{1}{2} \alpha^T Q \alpha - e^T \alpha \\
\text{subject to} \quad 0 \leq \alpha_i \leq C, i = 1, \ldots, l \\
y^T \alpha = 0,
\]

where $Q_{ij} = y_i y_j \phi(x_i)^T \phi(x_j)$ and $e = [1, \ldots, 1]^T$

\[
w = \sum_{i=1}^{l} \alpha_i y_i \phi(x_i)
\]

- Primal and dual: optimization theory. Not trivial.

Infinite dimensional programming.

Chih-Jen Lin, National Taiwan University
• A finite problem:
 \#variables = \#training data

• \(Q_{ij} = y_i y_j \phi(x_i)^T \phi(x_j) \) needs a closed form
 Efficient calculation of high dimensional inner products
 Kernel trick, \(K(x_i, x_j) = \phi(x_i)^T \phi(x_j) \)

• Example: \(x_i \in \mathbb{R}^3, \phi(x_i) \in \mathbb{R}^{10} \)

\[
\phi(x_i) = (1, \sqrt{2}(x_i)_1, \sqrt{2}(x_i)_2, \sqrt{2}(x_i)_3, (x_i)_1^2, \\
(x_i)_2^2, (x_i)_3^2, \sqrt{2}(x_i)_1(x_i)_2, \sqrt{2}(x_i)_1(x_i)_3, \sqrt{2}(x_i)_2(x_i)_3),
\]

Then \(\phi(x_i)^T \phi(x_j) = (1 + x_i^T x_j)^2 \).
• Popular methods: $K(x_i, x_j) = e^{-\gamma \|x_i - x_j\|^2}$, (Radial Basis Function)

 $(x_i^T x_j / a + b)^d$ (Polynomial kernel)

• Decision function:

$$w^T \phi(x) + b = \sum_{i=1}^{l} \alpha_i y_i \phi(x_i)^T \phi(x) + b$$

No need to have w

• > 0: 1st class, < 0: 2nd class

• Only $\phi(x_i)$ of $\alpha_i > 0$ used
Support Vectors: More Important Data

Chih-Jen Lin, National Taiwan University
Example: Engine Misfire Detection

- First problem of IJCNN Challenge 2001, data from Ford
- Given time series length $T = 50,000$
- The kth data
 \[x_1(k), x_2(k), x_3(k), x_4(k), x_5(k), y(k) \]
- Example:
 \[
 \begin{align*}
 &0.000000 -0.999991 0.169769 0.000000 1.000000 \\
 &0.000000 -0.659538 0.169769 0.000292 1.000000 \\
 &0.000000 -0.660738 0.169128 -0.020372 1.000000 \\
 &1.000000 -0.660307 0.169128 0.007305 1.000000 \\
 &0.000000 -0.660159 0.169525 0.002519 1.000000 \\
 &0.000000 -0.659091 0.169525 0.018198 1.000000 \\
 &0.000000 -0.660532 0.169525 -0.024526 1.000000 \\
 &0.000000 -0.659798 0.169525 0.012458 1.000000
 \end{align*}
 \]
- $y(k) = \pm 1$: output, affected only by $x_1(k), \ldots, x_4(k)$
• $x_5(k)$: not related to the output
 $x_5(k) = 1$, kth data considered for evaluating accuracy
 i.e., not used for testing; can still be used in training

• 50,000 training data, 100,000 testing data (in two sets)

• Past and future information may affect $y(k)$

• $x_1(k)$: periodically nine 0s, one 1, nine 0s, one 1, and so on.

• $x_4(k)$ more important
Background: Engine Misfire Detection

- Known after the competition
- Engine misfire: a substantial fraction of a cylinder’s air-fuel mixture fails to ignite
- Frequent misfires: pollutants and costly replacement
- On-board detection:
 Engine crankshaft rational dynamics with a position sensor
- Training data: from some expensive experimental environment
Encoding Schemes

• For SVM: each data is a vector
 • $x_1(k)$: periodically nine 0s, one 1, nine 0s, one 1, ...
 - 10 binary attributes
 $x_1(k-5), \ldots, x_1(k+4)$ for the kth data
 - $x_1(k)$: an integer in 1 to 10
 - Which one is better
 - We think 10 binaries better for SVM
 • $x_4(k)$ more important
 Including $x_4(k-5), \ldots, x_4(k+4)$ for the kth data
• Each training data: 22 attributes
Training SVM

- Selecting parameters; generating a good model for prediction
- RBF kernel $K(x_i, x_j) = \phi(x_i)^T \phi(x_j) = e^{-\gamma \|x_i - x_j\|^2}$
- Two parameters: γ and C
- Five-fold cross validation on 50,000 data
 Data randomly separated to five groups.
 Each time four as training and one as testing
- Use $C = 2^4, \gamma = 2^2$ and train 50,000 data for the final model

Chih-Jen Lin, National Taiwan University
Chih-Jen Lin, National Taiwan University
• Test set 1: 656 errors, Test set 2: 637 errors
• About 3000 support vectors of 50,000 training data
 A good case for SVM
• This is just the outline. There are other details.
• It is essential to do model selection.
A General Procedure

1. Conduct simple scaling on the data
2. Consider RBF kernel \(K(x, y) = e^{-\gamma \|x-y\|^2} \)
3. Use cross-validation to find the best parameter \(C \) and \(\gamma \)
4. Use the best \(C \) and \(\gamma \) to train the whole training set
5. Test

- Best \(C \) and \(\gamma \) by training \(k - 1 \) and the whole?

 In theory, a minor difference

 No problem in practice

- If accuracy still not satisfactory, further techniques needed

Chih-Jen Lin, National Taiwan University
A Software: LIBSVM

- A library for SVM (in both C++ and Java)

 http://www.csie.ntu.edu.tw/~cjlin/libsvm

 - Classification and regression
 - Scripts for procedures mentioned above

- Interfaces:

 - Matlab: developed at Ohio State University
 - R (and S-Plus): developed at Technische Universität Wien
 - Python: developed at HP Labs.
 - Perl: developed at Simon Fraser University
 - Ruby: developed at CWI
• Used in many integrated machine learning/data mining packages
Current Status of SVM

• In my opinion, after careful data pre-processing
 Appropriately use NN or SVM \Rightarrow similar accuracy

• But, users may not use them properly

• The chance of SVM
 Easier for users to appropriately use it

• The ambition: replacing part of NN
 (i.e., replacing it on some applications)
Discussion and Conclusions

- SVM: a simple and effective classification method
- Applications: key to improve SVM
- All my research results can be found at http://www.csie.ntu.edu.tw/~cjlin