
Large-scale Linear Classification:
Status and Challenges

Chih-Jen Lin
Department of Computer Science

National Taiwan University

Talk at Criteo Machine Learning Workshop, November 8, 2017

Chih-Jen Lin (National Taiwan Univ.) 1 / 45

Outline

1 Introduction

2 Optimization methods

3 Multi-core linear classification

4 Distributed linear classification

5 Conclusions

Chih-Jen Lin (National Taiwan Univ.) 2 / 45

Introduction

Outline

1 Introduction

2 Optimization methods

3 Multi-core linear classification

4 Distributed linear classification

5 Conclusions

Chih-Jen Lin (National Taiwan Univ.) 3 / 45

Introduction

Linear Classification

Although many new and advanced techniques are
available (e.g., deep learning), linear classifiers
remain to be useful because of their simplicity

We have fast training/prediction for large-scale data

A large-scale optimization problem is solved

The focus of this talk is on how to solve this
optimization problem

Chih-Jen Lin (National Taiwan Univ.) 4 / 45

Introduction

The Software LIBLINEAR

My talk will be very related to research done in
developing the software LIBLINEAR for linear
classification

www.csie.ntu.edu.tw/~cjlin/liblinear

It is now one of the most used linear classification
tools

Chih-Jen Lin (National Taiwan Univ.) 5 / 45

www.csie.ntu.edu.tw/~cjlin/liblinear

Introduction

Linear and Kernel Classification

Methods such as SVM and logistic regression are often
used in two ways

Kernel methods: data mapped to another space

x ⇒ φ(x)

φ(x)Tφ(y) easily calculated; no good control on
φ(·)
Feature engineering + linear classification:

Directly use x without mapping. But x may have
been carefully generated. Full control on x

Chih-Jen Lin (National Taiwan Univ.) 6 / 45

Introduction

Comparison Between Linear and Kernel

For certain problems, accuracy by linear is as good
as kernel

But training and testing are much faster

Especially document classification

Number of features (bag-of-words model) very large

Large and sparse data

Training millions of data in just a few seconds

Chih-Jen Lin (National Taiwan Univ.) 7 / 45

Introduction

Comparison Between Linear and Nonlinear
(Training Time & Testing Accuracy)

Linear RBF Kernel
Data set Time Accuracy Time Accuracy
MNIST38 0.1 96.82 38.1 99.70
ijcnn1 1.6 91.81 26.8 98.69
covtype multiclass 1.4 76.37 46,695.8 96.11
news20 1.1 96.95 383.2 96.90
real-sim 0.3 97.44 938.3 97.82
yahoo-japan 3.1 92.63 20,955.2 93.31
webspam 25.7 93.35 15,681.8 99.26

Size reasonably large: e.g., yahoo-japan: 140k instances
and 830k features

Chih-Jen Lin (National Taiwan Univ.) 8 / 45

Introduction

Comparison Between Linear and Nonlinear
(Training Time & Testing Accuracy)

Linear RBF Kernel
Data set Time Accuracy Time Accuracy
MNIST38 0.1 96.82 38.1 99.70
ijcnn1 1.6 91.81 26.8 98.69
covtype multiclass 1.4 76.37 46,695.8 96.11
news20 1.1 96.95 383.2 96.90
real-sim 0.3 97.44 938.3 97.82
yahoo-japan 3.1 92.63 20,955.2 93.31
webspam 25.7 93.35 15,681.8 99.26

Size reasonably large: e.g., yahoo-japan: 140k instances
and 830k features

Chih-Jen Lin (National Taiwan Univ.) 8 / 45

Introduction

Comparison Between Linear and Nonlinear
(Training Time & Testing Accuracy)

Linear RBF Kernel
Data set Time Accuracy Time Accuracy
MNIST38 0.1 96.82 38.1 99.70
ijcnn1 1.6 91.81 26.8 98.69
covtype multiclass 1.4 76.37 46,695.8 96.11
news20 1.1 96.95 383.2 96.90
real-sim 0.3 97.44 938.3 97.82
yahoo-japan 3.1 92.63 20,955.2 93.31
webspam 25.7 93.35 15,681.8 99.26

Size reasonably large: e.g., yahoo-japan: 140k instances
and 830k features

Chih-Jen Lin (National Taiwan Univ.) 8 / 45

Introduction

Binary Linear Classification

Training data {yi , x i}, x i ∈ Rn, i = 1, . . . , l , yi = ±1

l : # of data, n: # of features

min
w

f (w), where f (w) ≡

C
l∑

i=1

ξ(w ; x i , yi) +

{
1
2w

Tw L2 regularization

‖w‖1 L1 regularization

ξ(w ; x , y): loss function: we hope ywTx > 0

C : regularization parameter

Chih-Jen Lin (National Taiwan Univ.) 9 / 45

Introduction

Loss Functions

Some commonly used loss functions.

ξL1(w ; x , y) ≡ max(0, 1− ywTx), (1)

ξL2(w ; x , y) ≡ max(0, 1− ywTx)2, (2)

ξLR(w ; x , y) ≡ log(1 + e−yw
Tx). (3)

SVM (Boser et al., 1992; Cortes and Vapnik, 1995):
(1)-(2)

Logistic regression (LR): (3)

Chih-Jen Lin (National Taiwan Univ.) 10 / 45

Optimization methods

Outline

1 Introduction

2 Optimization methods

3 Multi-core linear classification

4 Distributed linear classification

5 Conclusions

Chih-Jen Lin (National Taiwan Univ.) 11 / 45

Optimization methods

Optimization Methods

A difference between linear and kernel is that for
kernel, optimization must be over a variable α
(usually through the dual problem) where

w =
∑l

i=1
αiφ(x i)

We cannot minimize over w , which may be infinite
dimensional

However, for linear, minimizing over w or α is ok

Chih-Jen Lin (National Taiwan Univ.) 12 / 45

Optimization methods

Optimization Methods (Cont’d)

Unconstrained optimization methods can be categorized
to

Low-order methods: quickly get a model, but slow
final convergence
High-order methods: more robust and useful for
ill-conditioned situations

We will show both types of optimization methods are
useful for linear classification

Further, to handle large problems, the algorithms must
take problem structure into account

Let’s discuss a low-order method (coordinate descent) in
detail

Chih-Jen Lin (National Taiwan Univ.) 13 / 45

Optimization methods

Coordinate Descent

We consider L1-loss and the dual SVM problem

min
α

f (α)

subject to 0 ≤ αi ≤ C ,∀i ,

where

f (α) ≡ 1

2
αTQα− eTα

and
Qij = yiyjxT

i x j , e = [1, . . . , 1]T

We will apply coordinate descent (CD) methods

The situation for L2 or LR loss is very similar
Chih-Jen Lin (National Taiwan Univ.) 14 / 45

Optimization methods

Coordinate Descent (Cont’d)

For current α, change αi by fixing others
Let

e i = [0, . . . , 0, 1, 0, . . . , 0]T

The sub-problem is

min
d

f (α + de i) =
1

2
Qiid

2 +∇i f (α)d + constant

subject to 0 ≤ αi + d ≤ C

Without constraints

optimal d = −∇i f (α)

Qii

Chih-Jen Lin (National Taiwan Univ.) 15 / 45

Optimization methods

Coordinate Descent (Cont’d)

Now 0 ≤ αi + d ≤ C

αi ← min

(
max

(
αi −

∇i f (α)

Qii
, 0

)
,C

)
Note that

∇i f (α) = (Qα)i − 1 =
∑l

j=1
Qijαj − 1

=
∑l

j=1
yiyjxT

i x jαj − 1

Expensive: O(ln), l : # instances, n: features

Chih-Jen Lin (National Taiwan Univ.) 16 / 45

Optimization methods

Coordinate Descent (Cont’d)

A trick in Hsieh et al. (2008) is to define and
maintain

u ≡
∑l

j=1
yjαjx j ,

Easy gradient calculation: the cost is O(n)

∇i f (α) = yiu
Tx i − 1

Note that this cannot be done for kernel as x i is
high dimensional

Chih-Jen Lin (National Taiwan Univ.) 17 / 45

Optimization methods

Coordinate Descent (Cont’d)

The procedure

While α is not optimal (Outer iteration)

For i = 1, . . . , l (Inner iteration)
(a) ᾱi ← αi

(b) G = yiuTx i − 1
(c) αi ← min(max(αi − G/Qii , 0),C)
(d) If αi needs to be changed

u← u + (αi − ᾱi)yix i

Maintaining u also costs

O(n)

Chih-Jen Lin (National Taiwan Univ.) 18 / 45

Optimization methods

Coordinate Descent (Cont’d)

Having

u ≡
∑l

j=1
yjαjx j ,

∇i f (α) = yiu
Tx i − 1

and
ᾱi : old ; αi : new

u← u + (αi − ᾱi)yix i .

is very essential
This isn’t the vanilla CD dated back to Hildreth
(1957)
We take the problem structure into account

Chih-Jen Lin (National Taiwan Univ.) 19 / 45

Optimization methods

Comparisons

L2-loss SVM is used

DCDL2: Dual coordinate descent

DCDL2-S: DCDL2 with shrinking

PCD: Primal coordinate descent

TRON: Trust region Newton method

This result is from Hsieh et al. (2008) with C = 1

Chih-Jen Lin (National Taiwan Univ.) 20 / 45

Optimization methods

Objective values (Time in Seconds)

news20 rcv1

yahoo-japan yahoo-korea
Chih-Jen Lin (National Taiwan Univ.) 21 / 45

Optimization methods

Low- versus High-order Methods

We see low-order methods are efficient, but
high-order methods are useful for difficult situations
CD for dual
$ time ./train -c 1 news20.scale

2.528s

$ time ./train -c 100 news20.scale

28.589s

Newton for primal
$ time ./train -c 1 -s 2 news20.scale

8.596s

$ time ./train -c 100 -s 2 news20.scale

11.088s
Chih-Jen Lin (National Taiwan Univ.) 22 / 45

Optimization methods

Training Median-sized Data: Status

Basically a solved problem

However, as data and memory continue to grow,
new techniques are needed for large-scale sets.

Two possible strategies are
1 Multi-core linear classification
2 Distributed linear classification

Chih-Jen Lin (National Taiwan Univ.) 23 / 45

Multi-core linear classification

Outline

1 Introduction

2 Optimization methods

3 Multi-core linear classification

4 Distributed linear classification

5 Conclusions

Chih-Jen Lin (National Taiwan Univ.) 24 / 45

Multi-core linear classification

Multi-core Linear Classification

Nowadays each CPU has several cores

However, parallelizing algorithms to use multiple
cores may not be that easy

In fact, algorithms may need to be redesigned

Since two years ago we have been working on
multi-core LIBLINEAR

Chih-Jen Lin (National Taiwan Univ.) 25 / 45

Multi-core linear classification

Multi-core Linear Classification (Cont’d)

Three multi-core solvers have been released
1 Newton method for primal L2-regularized

problem (Lee et al., 2015)
2 Coordinate descent method for dual

L2-regularized problem (Chiang et al., 2016)
3 Coordinate descent method for primal

L1-regularized problem (Zhuang et al., 2017)

They are practically useful. For example, one user
from USC thanked us because “a job (taking >30
hours using one core) now can finish within 5 hours”

We will briefly discuss the 2nd and the 3rd

Chih-Jen Lin (National Taiwan Univ.) 26 / 45

Multi-core linear classification

Multi-core CD for Dual

Recall the CD algorithm for dual is

While α is not optimal (Outer iteration)

For i = 1, . . . , l (Inner iteration)

(a) ᾱi ← αi

(b) G = yiuTx i − 1

(c) αi ← min(max(αi − G/Qii , 0),C)

(d) If αi needs to be changed

u← u + (αi − ᾱi)yix i

Chih-Jen Lin (National Taiwan Univ.) 27 / 45

Multi-core linear classification

Multi-core CD for Dual (Cont’d)

The algorithm is inherently sequential

Suppose
αi ′ is updated after αi

Then αi ′ must wait until the latest u is obtained

The parallelization is difficult

Chih-Jen Lin (National Taiwan Univ.) 28 / 45

Multi-core linear classification

Multi-core CD for Dual (Cont’d)

Asynchronous CD is possible (Hsieh et al., 2015),
but may diverge

We note that for a given set B̄

∇i f (w) = wTx i ,∀i ∈ B̄

can be calculated in parallel

We then propose a framework

Chih-Jen Lin (National Taiwan Univ.) 29 / 45

Multi-core linear classification

Multi-core CD for Dual (Cont’d)

While α is not optimal

(a) Select a set B̄

(b) Calculate ∇B̄ f (α) in parallel

(c) Select B ⊂ B̄ with |B | � |B̄ |
(d) Sequentially update αi , i ∈ B

Chih-Jen Lin (National Taiwan Univ.) 30 / 45

Multi-core linear classification

Multi-core CD for Dual (Cont’d)

The selection of

B ⊂ B̄ with |B | � |B̄ |

is by ∇B̄ f (w)

The idea is simple, but needs efforts to have a
practical setting (details omitted)

Chih-Jen Lin (National Taiwan Univ.) 31 / 45

Multi-core linear classification

Multi-core CD for Dual (Cont’d)

webspam url combined

Alg-4: the method in Chiang et al. (2016)

Asynchronous CD (Hsieh et al., 2015)

Chih-Jen Lin (National Taiwan Univ.) 32 / 45

Multi-core linear classification

Multi-core CD for L1 Regularization

Currently, primal CD (Yuan et al., 2010) or its
variants (Yuan et al., 2012) is the state-of-the-art
for L1

Each CD step involves one feature

Some attempts of parallel CD for L1 include

Asynchronous CD (Bradley et al., 2011)
Block CD (Bian et al., 2013)

These methods are not satisfactory for either

divergence issue, or
poor speedup

Chih-Jen Lin (National Taiwan Univ.) 33 / 45

Multi-core linear classification

Multi-core CD for L1 Regularization
(Cont’d)

We struggled for years for find a solution

Recently, in a work (Zhuang et al., 2017) we have
an effective setting

It’s partially supported by Criteo Faculty Research
Award

Our idea is simple: direct parallelization of CD

But wait.. This shouldn’t work because each CD
iteration is cheap

Chih-Jen Lin (National Taiwan Univ.) 34 / 45

Multi-core linear classification

Direct Parallelization of CD

Let’s consider a simple setting to decide if one CD
step should be parallelized or not

if #non-zeros in an instance/feature ≥ a threshold

then

multi-core

else

single-core

Idea: a CD step is parallelized if there are enough
operations

Chih-Jen Lin (National Taiwan Univ.) 35 / 45

Multi-core linear classification

Direct Parallelization of CD (Cont’d)

Speedup of CD for dual, L2 regularization

Data set
#threads

2 4 8

sparse
sets

avazu-app 0.4 0.3 0.2
criteo 0.5 0.3 0.2

dense
sets

epsilon normalized 1.3 1.3 1.1
splice site.t.10% 1.8 2.8 4.1

CD for dual: one instance at a time

Threshold: 0 (sparse), 500 (dense)

If 500 for sparse, no instance parallelized

The speedup is poor
Chih-Jen Lin (National Taiwan Univ.) 36 / 45

Multi-core linear classification

% of instances/features containing 50% and 80%
#non-zeros

Data set Instance Feature
avazu-app 50% 80% 0.2% 1%
criteo 50% 80% 0.01% 0.2%
kdd2010-a 40% 73% 0.03% 2%
kdd2012 50% 80% 0.003% 0.5%
rcv1 test 24% 54% 1% 5%
splice site.t.10% 50% 80% 9% 57%
url combined 44% 76% 0.002% 0.006%
webspam 29% 55% 0.6% 2%
yahoo-korea 20% 48% 0.07% 0.5%

Features’ non-zero distribution is extremely skewed

Non-zeros are in few dense (and parallelizable) features
Chih-Jen Lin (National Taiwan Univ.) 37 / 45

Multi-core linear classification

Speedup of CD for L1 Regularization
LR loss used Naive Block CD Async. CD
Data set 2 4 8 2 4 8 2 4 8
avazu-app 1.9 3.4 5.6 0.4 0.7 1.0 1.4 2.7 3.4
criteo 1.8 3.3 5.5 0.7 1.2 1.9 1.5 2.9 4.8
epsilon normalized 2.0 4.0 7.9 x x x 1.3 2.1 x
HIGGS 2.0 3.9 7.5 0.7 0.8 0.9 1.0 1.3 x
kdd2010-a 1.7 2.4 3.1 0.8 1.4 2.4 1.5 2.7 4.8
kdd2012 1.9 2.8 3.9 0.2 0.4 0.6 2.1 4.7 7.0
rcv1 test 1.9 3.4 5.9 x x x 1.3 2.5 4.5
splice site.t.10% 1.9 3.6 6.2 x x x 1.6 2.7 4.3
url combined 2.0 3.5 6.2 0.5 0.9 1.3 1.0 1.7 1.7
webspam 1.8 3.2 4.8 0.1 0.3 0.5 1.4 2.5 4.1
yahoo-korea 1.9 3.5 5.9 0.2 0.3 0.5 1.3 2.4 4.4

Chih-Jen Lin (National Taiwan Univ.) 38 / 45

Distributed linear classification

Outline

1 Introduction

2 Optimization methods

3 Multi-core linear classification

4 Distributed linear classification

5 Conclusions

Chih-Jen Lin (National Taiwan Univ.) 39 / 45

Distributed linear classification

Distributed Linear Classification

It’s even more complicated than multi-core

I don’t have time to discuss this topic in detail, but
let me share some lessons

A big mistake was that we worked on distributed
before multi-core

Chih-Jen Lin (National Taiwan Univ.) 40 / 45

Distributed linear classification

Distributed Linear Classification (Cont’d)

A few years ago, big data was hot. So we extended
a Newton solver in LIBLINEAR to MPI (Zhuang
et al., 2015) and Spark (Lin et al., 2014)

We were a bit ahead of time; Spark MLlib wasn’t
even available then

Unfortunately, very few people use our code,
especially the Spark one

We moved to multi-core. Immediately, multi-core
LIBLINEAR has many users

Chih-Jen Lin (National Taiwan Univ.) 41 / 45

Distributed linear classification

Distributed Linear Classification (Cont’d)

Why we failed? Several possible reasons

Not many people have big data??

System issues are more important than we thought.

At that time Spark wasn’t easy to use and was
being actively changed

System configuration and application scenarios may
significantly vary

An algorithm useful for systems with fast network
speed may be useless for systems with slow
communication

Chih-Jen Lin (National Taiwan Univ.) 42 / 45

Distributed linear classification

Distributed Linear Classification (Cont’d)

Application dependency is stronger.

L2 and L1 regularization often give similar accuracy.
On a single machine, we may not want to use L1
because training is more difficult and the smaller
model size isn’t that important

However, for distributed applications many have
told me that they need L1

A lesson is that for people from academia, it’s
better to collaborate with industry for research on
distributed machine learning

Chih-Jen Lin (National Taiwan Univ.) 43 / 45

Conclusions

Outline

1 Introduction

2 Optimization methods

3 Multi-core linear classification

4 Distributed linear classification

5 Conclusions

Chih-Jen Lin (National Taiwan Univ.) 44 / 45

Conclusions

Conclusions

Linear classification is an old topic, but it remains to
be useful for many applications

Efficient training relies on designing optimization
algorithms by incorporating the problem structure

Many issues about multi-core and distributed linear
classification still need to be studied

Chih-Jen Lin (National Taiwan Univ.) 45 / 45

	Introduction
	Optimization methods
	Multi-core linear classification
	Distributed linear classification
	Conclusions

