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Part of this talk is based on our survey paper (Yuan
et al., 2012)

Recent Advances of Large-scale Linear
Classification. Proceedings of IEEE, 2012

It’s also related to our development of the software
LIBLINEAR

www.csie.ntu.edu.tw/~cjlin/liblinear

Due to time constraints, we will give overviews
instead of deep technical details.
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Introduction

Linear and Nonlinear Classification

Linear Nonlinear

By linear we mean a linear function is used to separate
data in the original input space

Original: [height, weight]

Nonlinear: [height, weight, weight/height2]

Kernel is one of the methods for nonlinear
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Introduction

Linear and Nonlinear Classification
(Cont’d)

Methods such as SVM and logistic regression can be
used in two ways

Kernel methods: data mapped to another space

x⇒ φ(x)

φ(x)Tφ(y) easily calculated; no good control on φ(·)
Linear classification + feature engineering:

We have x without mapping. Alternatively, we can
say that φ(x) is our x; full control on x or φ(x)

We will focus on linear here
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Introduction

Why Linear Classification?

• If φ(x) is high dimensional, decision function

sgn(wTφ(x))

is expensive. So kernel methods use

w ≡
∑l

i=1
αiφ(xi) for some α,K (xi , xj) ≡ φ(xi)

Tφ(xj)

Then new decision function is sgn
(∑l

i=1 αiK (xi , x)
)

• Special φ(x) so calculating K (xi , xj) is easy. Example:

K (xi , xj) ≡ (xTi xj + 1)2 = φ(xi)
Tφ(xj), φ(x) ∈ RO(n2)
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Introduction

Why Linear Classification? (Cont’d)

However, kernel is still expensive

Prediction

wTx versus
∑l

i=1
αiK (xi , x)

If K (xi , xj) takes O(n), then

O(n) versus O(nl)

Nonlinear: more powerful to separate data

Linear: cheaper and simpler
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Introduction

Linear is Useful in Some Places

For certain problems, accuracy by linear is as good
as nonlinear

But training and testing are much faster

Especially document classification

Number of features (bag-of-words model) very large

Large and sparse data

Training millions of data in just a few seconds
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Introduction

Comparison Between Linear and Nonlinear
(Training Time & Testing Accuracy)

Linear RBF Kernel
Data set Time Accuracy Time Accuracy
MNIST38 0.1 96.82 38.1 99.70
ijcnn1 1.6 91.81 26.8 98.69
covtype 1.4 76.37 46,695.8 96.11
news20 1.1 96.95 383.2 96.90
real-sim 0.3 97.44 938.3 97.82
yahoo-japan 3.1 92.63 20,955.2 93.31
webspam 25.7 93.35 15,681.8 99.26

Size reasonably large: e.g., yahoo-japan: 140k instances
and 830k features
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Introduction

Binary Linear Classification

Training data {yi , xi}, xi ∈ Rn, i = 1, . . . , l , yi = ±1

l : # of data, n: # of features

min
w

f (w), f (w) ≡ wTw

2
+ C

l∑
i=1

ξ(w; xi , yi)

wTw/2: regularization term (we have no time to
talk about L1 regularization here)

ξ(w; x, y): loss function: we hope ywTx > 0

C : regularization parameter
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Introduction

Loss Functions

Some commonly used ones:

ξL1(w; x, y) ≡ max(0, 1− ywTx), (1)

ξL2(w; x, y) ≡ max(0, 1− ywTx)2, (2)

ξLR(w; x, y) ≡ log(1 + e−yw
Tx). (3)

SVM (Boser et al., 1992; Cortes and Vapnik, 1995):
(1)-(2)

Logistic regression (LR): (3); no reference because
it can be traced back to 19th century
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Introduction

Loss Functions (Cont’d)

−ywTx

ξ(w; x, y)

ξL1

ξL2

ξLR

Their performance is usually similar
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Introduction

Loss Functions (Cont’d)

However, optimization methods for them may be
different

ξL1: not differentiable
ξL2: differentiable but not twice differentiable
ξLR: twice differentiable
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Optimization Methods

Optimization: 2nd Order Methods

Newton direction

min
s

∇f (wk)T s +
1

2
sT∇2f (wk)s

This is the same as solving Newton linear system

∇2f (wk)s = −∇f (wk)

Hessian matrix ∇2f (wk) too large to be stored

∇2f (wk) : n × n, n : number of features

But Hessian has a special form

∇2f (w) = I + CXTDX ,
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Optimization Methods

Optimization: 2nd Order Methods
(Cont’d)

X : data matrix. D diagonal. For logistic regression,

Dii =
e−yiwTxi

1 + e−yiwTxi

Using CG to solve the linear system. Only
Hessian-vector products are needed

∇2f (w)s = s + C · XT (D(X s))

Therefore, we have a Hessian-free approach
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Optimization Methods

2nd-order Methods (Cont’d)

In LIBLINEAR, we use the trust-region + CG
approach by Steihaug (1983); see details in Lin
et al. (2008)

What if we use L2 loss? It’s differentiable but not
twice differentiable

ξL2(w; x, y) ≡ max(0, 1− ywTx)2

We can use generalized Hessian (Mangasarian,
2002). Details not discussed here
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Optimization Methods

Optimization: 1st Order Methods

We consider L1-loss and the dual SVM problem

min
α

f (α)

subject to 0 ≤ αi ≤ C ,∀i ,

where

f (α) ≡ 1

2
αTQα− eTα

and
Qij = yiyjx

T
i xj , e = [1, . . . , 1]T

We will apply coordinate descent methods

The situation for L2 or LR loss is very similar
Chih-Jen Lin (National Taiwan Univ.) 19 / 42



Optimization Methods

1st Order Methods (Cont’d)

Coordinate descent: a simple and classic technique
Change one variable at a time
Given current α. Let ei = [0, . . . , 0, 1, 0, . . . , 0]T .

min
d

f (α + dei) =
1

2
Qiid

2 +∇i f (α)d + constant

Without constraints

optimal d = −∇i f (α)

Qii

Now 0 ≤ αi + d ≤ C

αi ← min

(
max

(
αi −

∇i f (α)

Qii
, 0

)
,C

)
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Optimization Methods

1st Order Methods (Cont’d)

∇i f (α) = (Qα)i − 1 =
∑l

j=1
Qijαj − 1

=
∑l

j=1
yiyjx

T
i xjαj − 1

O(ln) cost; l :# data, n: # features. But we can
define

u ≡
∑l

j=1
yjαjxj ,

Easy gradient calculation: costs O(n)

∇i f (α) = (yixi)
T
∑l

j=1
yjxjαj − 1 = yiu

Txi − 1
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Optimization Methods

1st Order Methods (Cont’d)

All we need is to maintain u

u =
∑l

j=1
yjαjxj ,

If
ᾱi : old ; αi : new

then
u← u + (αi − ᾱi)yixi .

Also costs O(n)

References: first use for SVM probably by Mangasarian
and Musicant (1999); Friess et al. (1998), but
popularized for linear SVM by Hsieh et al. (2008)
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Optimization Methods

1st Order Methods (Cont’d)

Summary of the dual coordinate descent method

Given initial α and find u =
∑

i yiαixi .

While α is not optimal (Outer iteration)

For i = 1, . . . , l (Inner iteration)

(a) ᾱi ← αi

(b) G = yiuTxi − 1

(c) If αi can be changed

αi ← min(max(αi − G/Qii , 0),C )

u← u + (αi − ᾱi)yixi
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Optimization Methods

Comparisons

L2-loss SVM is used

DCDL2: Dual coordinate descent

DCDL2-S: DCDL2 with shrinking

PCD: Primal coordinate descent

TRON: Trust region Newton method

This result is from Hsieh et al. (2008)
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Optimization Methods

Objective values (Time in Seconds)

news20 rcv1

yahoo-japan yahoo-korea
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Optimization Methods

Analysis

First-order methods can quickly get a model

But second-order methods are more robust and
faster for ill-conditioned situations

Both type of optimization methods are useful for
linear classification

Chih-Jen Lin (National Taiwan Univ.) 26 / 42



Optimization Methods

An Example When # Features Small

# instance: 32,561, # features: 123

Objective value Accuracy

If number of features is small, solving primal is more
suitable
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Extension of Linear Classification

Extension of Linear Classification

Linear classification can be extended in different
ways

An important one is to approximate nonlinear
classifiers

Goal: better accuracy of nonlinear but faster
training/testing

Examples

1. Explicit data mappings + linear classification

2. Kernel approximation + linear classification

I will focus on the first
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Extension of Linear Classification

Linear Methods to Explicitly Train φ(xi)

Example: low-degree polynomial mapping:

φ(x) = [1, x1, . . . , xn, x
2
1 , . . . , x

2
n , x1x2, . . . , xn−1xn]T

For this mapping, # features = O(n2)

When is it useful?

Recall O(n) for linear versus O(nl) for kernel

Now O(n2) versus O(nl)

Sparse data

n⇒ n̄, average # non-zeros for sparse data

n̄� n⇒ O(n̄2) may be much smaller than O(l n̄)
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Extension of Linear Classification

Example: Dependency Parsing

A multi-class problem with sparse data

n Dim. of φ(x) l n̄ w’s # nonzeros
46,155 1,065,165,090 204,582 13.3 1,438,456

n̄: average # nonzeros per instance

Degree-2 polynomial is used

Dimensionality of w is too large, but w is sparse

Some interesting Hashing techniques are used to
handle sparse w

Chih-Jen Lin (National Taiwan Univ.) 31 / 42



Extension of Linear Classification

Example: Dependency Parsing (Cont’d)

LIBSVM LIBLINEAR
RBF Poly Linear Poly

Training time 3h34m53s 3h21m51s 3m36s 3m43s
Parsing speed 0.7x 1x 1652x 103x
UAS 89.92 91.67 89.11 91.71
LAS 88.55 90.60 88.07 90.71

We get faster training/testing, but maintain good
accuracy

See detailed discussion in Chang et al. (2010)
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Extension of Linear Classification

Example: Classifier in a Small Device

In a sensor application (Yu et al., 2013), the
classifier must use less than 16KB of RAM

Classifiers Test accuracy Model Size
Decision Tree 77.77 76.02KB
AdaBoost (10 trees) 78.84 1,500.54KB
SVM (RBF kernel) 85.33 1,287.15KB

Number of features: 5

We consider a degree-3 mapping

dimensionality =

(
5 + 3

3

)
+ bias term = 57.
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Extension of Linear Classification

Example: Classifier in a Small Device
(Cont’d)

One-against-one strategy for 5-class classification(
5

2

)
× 57× 4bytes = 2.28KB

Assume single precision

Results
SVM method Test accuracy Model Size
RBF kernel 85.33 1,287.15KB
Polynomial kernel 84.79 2.28KB
Linear kernel 78.51 0.24KB
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Extension of Linear Classification

Example: Classifier in a Small Device
(Cont’d)

Running time (in seconds)

LIBSVM
LIBLINEAR

Primal Dual
Training time 30,519.10 1,368.25 4,039.20

LIBSVM: polynomial kernel

LIBLINEAR: training polynomial expansions

primal: 2nd-order method; dual: 1st-order

LIBLINEAR dual: slow convergence. Now

#data� #features = 57
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Extension of Linear Classification

Discussion

Unfortunately, polynomial mappings easily cause
high dimensionality. Some have proposed
“projection” techniques to use fewer features as
approximations

Examples: Kar and Karnick (2012); Pham and Pagh
(2013)

Recently, ensemble of tree models (e.g., random
forests or GBDT) become very useful. But under
model-size constraints (the 2nd application), linear
may still be the way to go
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Discussion and Conclusions
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Discussion and Conclusions

Big-data Linear Classification

Shared and distributed scenarios are very different

Here I discuss more about distributed classification

The major saving is parallel data loading

But high communication cost is a big concern
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Discussion and Conclusions

Big-data Linear Classification (Cont’d)

Data classification if often only one component of
the whole workflow

Example: distributed feature generation may be
more time consuming than classification

This explains why so far not many effective
packages are available for big-data classification

Many research and engineering issues remain to be
solved
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Discussion and Conclusions

Conclusions

Linear classification is an old topic; but recently
there are new and interesting applications

Kernel methods are still useful for many
applications, but linear classification + feature
engineering are suitable for some others

Advantages of linear: because of working on x,
easier for feature engineering

We expect that linear classification can be widely
used in situations ranging from small-model to
big-data classification
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