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1. INTRODUCTION

This document presents some materials not included in the
paper. In Section 2] the details of applying the distributed
TRON algorithm to solve L2-loss SVM are described. We
then conduct empirical investigations on SVM in Section [3}

2. DISTRIBUTED ALGORITHM FOR L2-L0ss SVM

The distributed TRON algorithm for L2-Loss SVM is the
same as that for LR, except the objective function and its
derivatives are different. Note that (T) with L2 loss can be
rewritten in the following form.
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Note that f is differentiable but not twice-differentiable. There-
fore, we follow [1I], [2] to consider a generalized Hessian for

TRON.
V2 f(w) = I +2CX" Dg(y X.

Then in our distributed TRON algorithm, the function, gradient
and Hessian-vector products for L2-loss SVM can be com-

puted in the same way of (12)-(T4), except fi(w),V fir(w)
and V2 f;,(w) are replaced by the following functions.

fk(w) = (ek — Ykaw)TDk(ek — Ykaw)7 (1)
V fr(w) = 2(X} Dy Xpw + X[ Yi.Drey), (2)
V2 fr(w)v = 2XF (D (Xpv)), 3)

where Dy is the diagonal block of Dg(,,) corresponding to
the k-th partition.

DS(w) = diag(Dl, ceey Dp).

3. EXPERIMENTS FOR L2-L0OSS LINEAR SUPPORT
VECTOR MACHINE

We conduct experiments on L2-loss SVM with the same
settings of LR. Figure | shows the scalability using 2, 4, 8 and
16 nodes. The comparisons with MLIlib and MPI LIBLINEAR
are shown in Figures [[I] and respectively. The comparison
with MLIlib has very close results to the case of using LR.
For the experiment comparing with MPI LIBLINEAR, the
conclusion is in general similar to that of LR in the paper.
The only exception is that Spark LIBLINEAR with multiple
cores does not possess better training speed in comparison
with Spark LIBLINEAR using only a single core per node in
most cases. We can only observe significantly faster training
of mult-core Spark LIBLINEAR in the dense data epsilon.

—N-2 cluster —N-2 cluster —N-2 cluster
0 ---N-4 cluster o ---N-4 cluster o ---N-4 cluster
5 --N-8 cluster --N-8 cluster --N-8 cluster

2 N-16 cluster ? N-16 cluster i N-16 cluster

Relative function value difference (log)
Relative function value difference (log)
Relative function value difference (log)

50 100 150 200
Training time (seconds)

(a) covtype

o) o a0 e a0 000 10
Training time (seconds)

(c) yahoo-japan

10 2 50
Training time (seconds)

(b) webspam

e —N-=2 cluster 3 —N-2 cluster 3 ---N-4 cluster
2 €
£ ---N—4 cluster 89 ---N-4 cluster s -~ N-8 cluster
E -~N=8 cluster g i -~N-8 cluster N-16 cluster
Eh N-16 cluster ER N-16 cluster BN
g g g
5~ 5 5
24 £ 5.
2 2 2
k] 5 2 5
2% o _7on o mm mw e 2% w0 @ w0 w0 @ % 3 I 200
Training time (seconds) Training time (seconds) Training time (seconds)
(d) yahoo-korea (e) revit (f) epsilon

Fig. I. Scalability: We present running time (in seconds) versus the relative
objective value difference. We run SVM with C' = 1.
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Fig. I. Comparison with MLIib: We present running time (in seconds, log
scale) versus the relative objective value difference. We run SVM with C' =1
on 16 nodes.
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Fig. Ill. Comparison with MPI LIBLINEAR: We present running time (in
seconds) versus the relative objective value difference. We run SVM with

C=1
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