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Abstract. We analyze a trust region version of Newton’s method for bound-constrained prob-
lems. Our approach relies on the geometry of the feasible set, not on the particular representation
in terms of constraints. The convergence theory holds for linearly constrained problems and yields
global and superlinear convergence without assuming either strict complementarity or linear inde-
pendence of the active constraints. We also show that the convergence theory leads to an efficient
implementation for large bound-constrained problems.
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1. Introduction. We analyze a trust region version of Newton’s method for the
optimization problem

min {f(x) : x ∈ Ω} ,(1.1)

where f : Rn → R is a continuously differentiable mapping on the bound-constrained
set

Ω = {x ∈ Rn : l ≤ x ≤ u}.(1.2)

Our analysis relies on the geometry of Ω and applies, without change, to the case
where Ω is the linearly constrained set

Ω = {x ∈ Rn : li ≤ 〈ci, x〉 ≤ ui, i ∈ I}.(1.3)

The convergence theory yields results that are independent of the representation of
Ω in terms of constraints; in particular, we assume neither strict complementarity
(nonzero multipliers) nor linear independence of the active constraints.

Our main interest is in algorithms for large optimization problems. Thus the
convergence theory that we develop emphasizes algorithms that use iterative tech-
niques to solve the trust region subproblem while retaining superlinear convergence
of the trust region method. We show, in particular, how the convergence theory leads
to an efficient implementation of Newton’s method when the feasible set Ω is the
bound-constrained set (1.2).
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Our development of a convergence theory for Newton’s method yields three main
results. We first establish global convergence to a stationary point; that is, if {xk}
is the sequence generated by the trust region method, then every limit point of the
sequence is a stationary point for problem (1.1). We then establish the identification
properties of the algorithm by showing that if {xk} converges to some x∗, then there
is an integer k0 such that xk lands in the face exposed by −∇f(x∗) for all k ≥ k0.
Finally, we establish the local convergence properties of the algorithm. The main
result shows that if a strong second-order sufficiency condition holds at a limit point
x∗ of the trust region iterates, then the whole sequence {xk} converges to x∗ at a
superlinear rate.

Global and superlinear convergence for linearly constrained problems has been es-
tablished, in almost all cases, under the assumption of strict complementarity. More-
over, the algorithms that have been analyzed usually require the exact solution of
systems of linear equations. See, for example, [2, 22, 33, 18] for algorithms that use
ε-active constraints, [23, 20] for active set methods, [13, 25, 12, 21] for trust region
methods, and [9, 16, 11, 10] for interior-point methods. In recent work Heinkenschloss,
Ulbrich, and Ulbrich [24] analyzed an interior-point method without assuming strict
complementarity, but they proved only local convergence.

Lescrenier [25] and Facchinei and Lucidi [19] were the first to analyze algorithms
for bound-constrained problems that are superlinearly convergent without assuming
strict complementarity. Lescrenier analyzes the trust region method of Conn, Gould,
and Toint [13]. Facchinei and Lucidi analyze a line search algorithm based on a
differentiable exact penalty function that, unlike the algorithms for bound-constrained
problems that we have reviewed, generates iterates that need not be feasible.

We analyze a trust region method for the linearly constrained optimization prob-
lem (1.3) based on the convergence theory of Moré [27] and Burke, Moré, and Toraldo
[7]. The analysis relies on the geometric approach of Burke and Moré [6] for general
linearly constrained problems. We use projected searches [30] during the subspace
minimization phase, and thus we are able to add many constraints during this phase.
We show that global and superlinear convergence hold even if strict complementarity
fails for the general linearly constrained optimization problem (1.3).

The convergence theory for trust region methods presented in section 2 depends
on the definition of the Cauchy step sCk . The main result in this section shows that
global convergence to a stationary point is guaranteed if the step sk in the trust region
method achieves a fraction of the reduction achieved by the Cauchy step.

The standard development of identification properties for an optimization algo-
rithm shows that the active set settles down if the iterates converge to a stationary
point x∗. This approach is not possible if strict complementarity does not hold at
x∗. In section 3 we show that the sequence generated by the trust region method is
trapped by the face exposed by −∇f(x∗); section 3 provides a precise definition of
the face of a convex set exposed by a vector. If strict complementarity holds at x∗,
this result implies that the active set settles down.

In section 3 we also explore the concept of strict complementarity and its relation-
ship to the concept of an exposed face. In this paper we use the term nondegenerate
stationary point x∗ if strict complementarity holds at x∗ or, equivalently, if x∗ is in
the relative interior of the face exposed by −∇f(x∗).

Section 4 defines the projected searches that are used to explore the current face
of the feasible set. Projected searches are an important ingredient of the optimization
algorithm because they allow wider latitude in the choice of the next iterate. In
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particular, the active constraints are allowed to change arbitrarily while requiring
only the approximate solution of a linear system.

Section 5 contains the major convergence results for the trust region Newton’s
method. We show that if a strong second-order sufficiency condition holds at a limit
point x∗ of the trust region iterates, then the whole sequence {xk} converges to x∗.
Previous results assumed strict complementarity and that the problem was bound-
constrained. We also show that if the sequence {xk} converges to x∗, then the rate of
convergence is at least superlinear.

Section 6 briefly outlines the implementation of TRON (version 1.0), a trust re-
gion Newton method for bound-constrained problems. Interesting features of this
implementation include the use of projected searches and a preconditioned conjugate
gradient method to determine the minor iterates and the use of a limited-memory
preconditioner. We use the incomplete Cholesky factorization icfs of Lin and Moré
[26] as a preconditioner since this factorization does not require the choice of a drop
tolerance, and the amount of storage can be specified in advance.

Section 7 presents the results of a comparison between TRON and the LANCELOT

[14] and L-BFGS-B [36] codes. These results show that on the problems described in this
section, TRON is generally more efficient, in terms of computing time, than LANCELOT

and L-BFGS-B. Caution must be exercised in drawing conclusions from these results
since, as noted in section 7, there are many differences between TRON and LANCELOT.

2. Trust region methods. In this section we present a trust region method for
the solution of optimization problems subject to linear constraints, but we emphasize
the case where Ω is the bound-constrained set (1.2). The algorithm that we present
was proposed by Moré [27] as a modification of the algorithm of Toint [35]. The
development in this section follows Moré [27] and Burke, Moré, and Toraldo [7].

At each iteration of a trust region method there is an approximation xk ∈ Ω
to the solution, a bound ∆k, and a model ψk : Rn → R of the possible reduction
f(xk + w)− f(xk) for ‖w‖ ≤ ∆k. We assume that the model ψk is the quadratic

ψk(w) = 〈∇f(xk), w〉+ 1
2 〈w,Bkw〉

for some symmetric matrix Bk. The matrix Bk is arbitrary for many of the results,
but the rate of convergence results usually requires that Bk be the Hessian matrix
∇2f(xk). Of course, it is possible to choose Bk = 0, and then the model is linear.

The description of the algorithm in terms of the quadratic ψk is appropriate when
we are interested in the step sk. However, we also use the quadratic

qk(x) = ψk(x− xk) = 〈∇f(xk), x− xk〉+ 1
2 〈x− xk, Bk(x− xk)〉

to describe the algorithm in terms of the iterates xk.
The iterate xk and the bound ∆k are updated according to rules that are standard

in trust region methods for unconstrained minimization. Given a step sk such that
xk + sk ∈ Ω and ψk(sk) < 0, these rules depend on the ratio

ρk =
f(xk + sk)− f(xk)

ψk(sk)
(2.1)

of the actual reduction in the function to the predicted reduction in the model. Since
the step sk is chosen so that ψk(sk) < 0, a step with ρk > 0 yields a reduction in the
function. Given η0 > 0, the iterate xk is updated by setting

xk+1 =

{
xk + sk if ρk > η0,
xk if ρk ≤ η0.

(2.2)
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Any step sk with ρk > η0 is successful ; otherwise the step in unsuccessful. Under
suitable conditions, all steps (iterations) are eventually successful.

Updating rules for ∆k depends on positive constants η1 and η2 with η1 < η2 < 1,
while the rate at which ∆k is updated depends on positive constants σ1, σ2, and σ3

such that σ1 < σ2 < 1 < σ3. The trust region bound ∆k is updated by setting

∆k+1 ∈ [σ1 min{‖sk‖,∆k}, σ2∆k] if ρk ≤ η1,
∆k+1 ∈ [σ1∆k, σ3∆k] if ρk ∈ (η1, η2),
∆k+1 ∈ [∆k, σ3∆k] if ρk ≥ η2.

(2.3)

Similar rules are used in most modern trust region methods.
We choose a step sk that gives as much reduction in the model ψk as the Cauchy

step sCk generated by the gradient projection method applied to the subproblem

min {ψk(w) : xk + w ∈ Ω, ‖w‖ ≤ ∆k} .

The Cauchy step sCk is of the form sk(αk), where the function sk : R 7→ Rn is defined
by

sk(α) = P [xk − α∇f(xk)]− xk,

where P : Rn 7→ Ω is the projection into the feasible set Ω. If Ω is the bound-
constrained set (1.2), then the projection can be computed with at most 2n compar-
isons by

P (x) = mid (l, x, u) ,

where mid(·) is the componentwise median (middle) of the three vectors in the ar-
gument. The trust region method that we describe can be implemented efficiently if
there is an efficient algorithm for computing the projection P .

The scalar αk that determines the Cauchy step sCk is chosen so that sk(αk) pro-
duces a sufficient reduction. We require that

ψk(sk(αk)) ≤ µ0 〈∇f(xk), sk(αk)〉 , ‖sk(αk)‖ ≤ µ1∆k,(2.4)

for positive constants µ0 and µ1 such that µ0 <
1
2 . We also require that there are

positive constants γ1, γ2, and γ3 such that

αk ∈ [γ1, γ3] or αk ∈ [γ2α̃k, γ3],

where α̃k > 0 satisfies

ψk(sk(α̃k)) ≥ (1− µ0) 〈∇f(xk), sk(α̃k)〉 or ‖sk(α̃k)‖ ≥ µ1∆k.

The requirements on the Cauchy step sCk can be satisfied [27, 7] with a finite number
of evaluations of ψk. For additional details, see section 6.

We have described the requirements on the Cauchy step sCk in terms of the
quadratic ψk, but we could also use qk. In particular,

qk(xk + sCk ) ≤ qk(xk) + µ0

〈∇qk(xk), sCk
〉

is the sufficient reduction condition (2.4).
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Given the Cauchy step sCk , we require that the step sk satisfy

ψk(sk) ≤ µ0ψk(sCk ), ‖sk‖ ≤ µ1∆k, xk + sk ∈ Ω.(2.5)

This requirement is quite natural and can always be satisfied by choosing sk = sCk .
However, this choice is likely to lead to slow convergence, because the method would
then reduce to a version of steepest descent. In the next section we explore other
choices that lead to superlinear and quadratic convergence.

Algorithm 2.1 summarizes the computations required to implement the trust re-
gion method. We assume that f : Rn 7→ R is continuously differentiable on Ω and
that ∆0 > 0 has been specified.

algorithm 2.1 (Trust region method).

For k = 0, . . . ,

Compute the model ψk.
Compute the Cauchy step sCk .
Compute a step sk that satisfies (2.5).
Compute the ratio ρk and update xk by (2.2).
Update ∆k according to (2.3).

Burke, Moré, and Toraldo [7] analyzed the trust region method of Algorithm 2.1
in terms of the Cauchy point

xCk ≡ P [xk + αk∇f(xk)] = xk + sCk .

Convergence results depend on a bound on the predicted decrease for the quadratic
ψk. This bound is based on the inequality

− 〈∇f(xk), sCk
〉 ≥ κ0

[‖xCk − xk‖
αk

]
min

{
∆k,

1

‖Bk‖
[‖xCk − xk‖

αk

]}
,(2.6)

where κ0 is a positive constant. This bound was obtained by Moré [27]. Other bounds
obtained for problems with bound constraints and, more generally, convex constraints
[13, 35, 12] do not yield the same information because they are not expressed in terms
of the Cauchy point.

The choice of sCk is an important ingredient in the trust region method. Our
choice of sCk is simple and can be implemented efficiently provided there is an efficient
algorithm for computing the projection P . For other choices, see [13, 35, 12].

Many of the convergence results in Burke, Moré, and Toraldo [7] are expressed in
terms of the projected gradient

∇Ωf(x) ≡ PT (x) [−∇f(x)] = argmin{‖v +∇f(x)‖ : v ∈ T (x)},

where the tangent cone T (x) is the closure of the cone of all feasible directions at
x ∈ Ω, and Ω is a general convex set. The term projected gradient is not entirely
appropriate. Indeed, since

min {〈∇f(x), v〉 : v ∈ T (x), ‖v‖ ≤ 1} = −‖∇Ωf(x)‖,(2.7)

it might be more appropriate to call ∇Ωf(x) the projected steepest descent direction.
The optimality property (2.7) follows from the properties of the projection on convex
cones; Calamai and Moré [8] provide a direct proof of (2.7).
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The projected gradient should not be confused with the reduced gradient. When Ω
is the bound-constrained set (1.2), the reduced gradient is the vector with components
∂if(x) if li < xi < ui, while for the projected gradient

−[∇Ωf(x)]i =

 ∂if(x) if xi ∈ (li, ui),
min{∂if(x), 0} if xi = li,
max{∂if(x), 0} if xi = ui

(2.8)

if li < ui, with [∇Ωf(x)]i = 0 in the exceptional case where li = ui. The appearance
of the minus sign in this expression for the projected gradient is only a minor nuisance
because in our work we need only an expression for ‖∇Ωf(x)‖.

The projected gradient ∇Ωf can be used to characterize stationary points because
if Ω is a convex set, then x ∈ Ω is a stationary point of problem (1.1) if and only if
∇Ωf(x) = 0. In general, ∇Ωf is discontinuous, but as proved by Calamai and Moré
[8], if f : Rn → R is continuously differentiable on Ω, then the mapping x 7→ ‖∇Ωf(x)‖
is lower semicontinuous on Ω. This property implies that if {xk} is a sequence in Ω
that converges to x∗, and if {∇Ωf(xk)} converges to zero, then x∗ is a stationary point
of problem (1.1). In section 3 we show that the continuity properties of the projected
gradient are closely associated with the behavior of the optimization algorithm.

Theorem 2.1. Let f : Rn 7→ R be continuously differentiable on a closed, convex
set Ω, and let {xk} be the sequence generated by the trust region method. Assume that
{Bk} is uniformly bounded. If x∗ is a limit point of {xk}, then there is a subsequence
{xki} of successful steps that converges to x∗ with

lim
i→∞

‖∇Ωf(xCki)‖ = 0.(2.9)

Moreover, {xCki} also converges to x∗, and thus x∗ is a stationary point for problem
(1.1).

This result is due to Burke, Moré, and Toraldo [7, Theorem 5.5]. Similar conver-
gence results for bound-constrained and linearly constrained optimization algorithms
assert that every limit point of the algorithm is stationary, but they do not yield
any information on the projected gradient; in sections 3 and 5 we show that (2.9) in
Theorem 2.1 plays an important role in the convergence analysis. For a sampling of
recent convergence results, see [12, 18, 9, 16, 20, 33].

3. Exposing constraints. Identification properties are an important compo-
nent of the convergence analysis of an algorithm for linearly constrained problems.
We show that if x∗ is a stationary point and Ω is the polyhedral set (1.3), then the
iterates {xk} generated by the trust region method tend to lie in the face exposed by
the direction −∇f(x∗).

The notion of an exposed face arises in convex analysis, where the face of a convex
set Ω exposed by the vector d ∈ Rn is

E[d] ≡ argmax {x ∈ Ω : 〈d, x〉} .
A short computation shows that when Ω = [l, u] is the bound-constrained set (1.2)
and d = −∇f(x∗), then

E [−∇f(x∗)] = {x ∈ [l, u] : xi = li if ∂if(x∗) > 0 and xi = ui if ∂if(x∗) < 0}
is the face of (1.2) exposed by the direction −∇f(x∗). A similar expression holds if Ω
is the polyhedral set defined by (1.3). If x∗ is a stationary point of the optimization
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problem (1.1), then there are Lagrange multipliers such that

∇f(x∗) =
∑

i∈A(x∗)

λ∗i ci,

where λ∗i is unrestricted in sign if li = ui, but

λ∗i ≥ 0 if 〈ci, x∗〉 = li, λ∗i ≤ 0 if 〈ci, x∗〉 = ui,

and A(x) is the set of active constraints at x ∈ Ω defined by

A(x) = {i ∈ I : 〈ci, x〉 ∈ {li, ui}}.

Since this definition of the active set does not distinguish between lower and upper
bounds, we avoid this problem by interpreting the inclusion A(x) ⊂ A(y) to mean

Al(x) ⊂ Al(y), Au(x) ⊂ Au(y),

where

Al(x) = {i ∈ I : 〈ci, x〉 = li}, Au(x) = {i ∈ I : 〈ci, x〉 = ui}.

With this interpretation, if 〈ci, x〉 = li and A(x) ⊂ A(y), then 〈ci, y〉 = li. For most
results we need to know only that 〈ci, x〉 ∈ {li, ui}, and then the first definition of the
active set is suitable.

The face exposed by −∇f(x∗) is determined by the nonzero multipliers. Indeed,
a computation based on the definition of a face shows that

E [−∇f(x∗)] = {x ∈ Ω : 〈ci, x〉 = li if λ∗i > 0 and 〈ci, x〉 = ui if λ∗i < 0}.(3.1)

Note that this expression for E [−∇f(x∗)] is valid for any choice of Lagrange multi-
pliers.

Burke and Moré [6] provide additional information on exposed faces. In particular,
they note that for Ω convex, x∗ is a stationary point for the optimization problem
(1.1) if and only if x∗ ∈ E [−∇f(x∗)].

Dunn [17] defines x∗ to be a nondegenerate stationary point if −∇f(x∗) lies in
the relative interior of the normal cone

N(x∗) = {u ∈ Rn : 〈u, y − x∗〉 ≤ 0, y ∈ Ω} .

Burke and Moré [6] relate nondegeneracy to the geometry of E [−∇f(x∗)] by proving
that x∗ is nondegenerate if and only if x∗ lies in the relative interior of the face
E [−∇f(x∗)]. These two definitions rely only on the geometry of Ω. If Ω is expressed
in terms of constraints, then nondegeneracy can be shown [5] to be equivalent to the
existence of a set of nonzero Lagrange multipliers. Thus, a stationary point x∗ is
nondegenerate as defined by Dunn [17] if and only if strict complementarity holds at
x∗. We can also show [6, Theorem 5.3] that

x ∈ E [−∇f(x∗)] ⇐⇒ A(x∗) ⊂ A(x)(3.2)

whenever x∗ is nondegenerate. Thus, for nondegenerate problems, landing in the face
E [−∇f(x∗)] can be described in terms of active sets.
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−∇f(x∗)

Fig. 3.1. The exposed face E [−∇f(x∗)] for a degenerate problem.

Figure 3.1 illustrates some of the properties of exposed faces. In this case x∗ is in
the relative boundary of the face, so this problem is degenerate. Note that in this case
(3.2) fails because A(x∗) may not be a subset of A(x) for x ∈ E [−∇f(x∗)]. Finally,
note that x− y is orthogonal to ∇f(x∗) whenever x and y are in E [−∇f(x∗)]. This
last observation holds for any convex set Ω because the mapping x 7→ 〈∇f(x∗), x〉 is
constant on E [−∇f(x∗)].

For nondegenerate problems we can show that eventually all iterates land in the
relative interior of E [−∇f(x∗)]. For degenerate problems this is not possible, but we
can show that eventually all iterates land in E [−∇f(x∗)]. We first prove a technical
result that shows that if {xk} is any sequence that converges to a stationary point
x∗, and xk lands in E [−∇f(x∗)], then xCk remains in E [−∇f(x∗)]. We need the
following result of Burke and Moré [6, Theorem 4.2].

Theorem 3.1. Let f : Rn 7→ R be continuously differentiable on the polyhedral
set Ω, and let {xk} be any sequence in Ω that converges to a stationary point x∗. Then

lim
k→+∞

‖∇Ωf(xk)‖ = 0

if and only if there is an index k0 with xk ∈ E [−∇f(x∗)] for k ≥ k0.
Theorem 3.1 is of interest because it provides a means to show that iterates land

in the exposed face E [−∇f(x∗)]. Note that in this result {xk} can be any sequence
in Ω. We now show that if xk lands in E [−∇f(x∗)], then xCk remains in E [−∇f(x∗)].

Theorem 3.2. Let f : Rn 7→ R be continuously differentiable on the polyhedral
set Ω, and let {xk} be any sequence that converges to a stationary point x∗. If xk is
in E [−∇f(x∗)] for k ≥ k0, then

P [xk − αk∇f(xk)] ∈ E [−∇f(x∗)]

for k sufficiently large.
Proof. The proof relies on Theorem 3.1 of Burke and Moré [6], which shows that

for any sequence {dk} in Rn that converges to d∗

E[dk] ⊂ E[d∗](3.3)

for all k sufficiently large. If N(x) is the normal cone at x ∈ Ω, the definition of the
projection operator implies that

xk − αk∇f(xk)− P [xk − αk∇f(xk)] ∈ N(P [xk − αk∇f(xk)]).
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The definition of the exposed face shows that x ∈ E[d] if and only if d ∈ N(x), and
thus

P [xk − αk∇f(xk)] ∈ E[−αk∇f(xk) + xk − P [xk − αk∇f(xk)]] = E[dk],(3.4)

where we have defined the sequence {dk} by

dk = −∇f(xk) +
xk − P [xk − αk∇f(xk)]

αk
.

We now claim that ∥∥∥∥P [xk − αk∇f(xk)]− xk
αk

∥∥∥∥ ≤ ‖∇Ωf(xk)‖.(3.5)

If we accept this claim, we can complete the proof by noting that, since {xk} converges
to x∗ and xk ∈ E [−∇f(x∗)], Theorem 3.1 and inequality (3.5) show that the sequence
{dk} converges to −∇f(x∗). Hence, (3.3) and (3.4) imply that P [xk − αk∇f(xk)]
belongs to E [−∇f(x∗)] for all k sufficiently large.

The proof of (3.5) requires two inequalities. First note that the optimality prop-
erty (2.7) of the projected gradient ∇Ωf implies that

−〈∇f(x), v〉 ≤ ‖∇Ωf(x)‖ ‖v‖,

for any feasible direction v at x. In particular,

−〈∇f(x), s(α)〉 ≤ ‖∇Ωf(x)‖ ‖s(α)‖,

where we have defined s(α) = P [x − α∇f(x)] − x. Next, note that the definition of
the projection operator, 〈P (x)− x, y − P (x)〉 ≥ 0 for any y ∈ Ω, implies that

−〈∇f(x), s(α)〉 ≥ ‖s(α)‖2
α

.

The last two displayed inequalities imply (3.5) as desired.
We want to show that all iterates eventually stay in the exposed face E [−∇f(x∗)].

Theorems 2.1 and 3.1 show that if the sequence {xk} converges to x∗, then xCk lands
in E [−∇f(x∗)] for some subsequence of successful iterates. We now restrict the step
sk so that the next iterate does not leave E [−∇f(x∗)]. The following result makes
use of the observation that

x ∈ E [−∇f(x∗)], A(x) ⊂ A(y) =⇒ y ∈ E [−∇f(x∗)].

This observation follows directly from the expression (3.1) for E [−∇f(x∗)].
Theorem 3.3. Let f : Rn 7→ R be continuously differentiable on the polyhedral

set Ω, and let {xk} be the sequence generated by the trust region method. Assume that
{Bk} is uniformly bounded and that the step sk satisfies

A(xCk ) ⊂ A(xk + sk), k ≥ 0.(3.6)

If {xk} converges to x∗, then there is an index k0 such that

xk ∈ E [−∇f(x∗)], xk + sk ∈ E [−∇f(x∗)], k ≥ k0.
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Proof. Theorem 2.1 shows that there is a sequence K of successful iterates such
that if k ∈ K, then {xCk } converges to x∗ and {∇Ωf(xCk )} converges to zero. Hence,
Theorem 3.1 shows that

xCk ∈ E [−∇f(x∗)], k ∈ K.

Since every iterate in K is successful, assumption (3.6) implies that xk+1 = xk + sk
belongs to E [−∇f(x∗)]. In particular, there is an index k0 such that xk0 belongs to
E [−∇f(x∗)]. We now show that xk belongs to E [−∇f(x∗)] for all k ≥ k0.

Assume that xk belongs to E [−∇f(x∗)] for some k ≥ k0. Theorem 3.2 shows
that xCk ∈ E [−∇f(x∗)]. Hence, assumption (3.6) on the step yields that xk + sk is
in E [−∇f(x∗)]. If xk+1 = xk, then xk+1 clearly belongs to E [−∇f(x∗)], while if
xk+1 = xk + sk, then we also have xk+1 in E [−∇f(x∗)]. Hence, in all cases xk+1

belongs to E [−∇f(x∗)].
We have shown that xk ∈ E [−∇f(x∗)] for all k ≥ k0. Hence, Theorem 3.2 shows

that xCk ∈ E [−∇f(x∗)], and thus assumption (3.6) on the step yields that xk + sk is
in E [−∇f(x∗)].

4. Projected searches. The convergence theory of the trust region Newton
method depends on generating the step sk so that conditions (2.5) and (3.6) are
satisfied. We determine sk by computing m+1 minor iterates xk,1, . . . , xk,m+1, where
xk,1 = xCk . We require that

xk,j ∈ Ω, A(xCk ) ⊂ A(xk,j), ‖xk,j − xk‖ ≤ µ1∆k,(4.1)

and that the decrease condition

qk(xk,j+1) ≤ qk(xk,j), 1 ≤ j ≤ m,(4.2)

be satisfied. If the step is defined by sk = xk,m+1 − xk, then (2.5) and (3.6) are
satisfied. Also note that there is no loss in generality in fixing m independent of the
iteration; this imposes only an upper bound on the number of minor iterates because
we can set xk,j+1 = xk,j .

We can compute minor iterates that satisfy (4.1) and (4.2) by computing a descent
direction for the subproblem

min {qk(xk,j + w) : 〈ci, w〉 = 0, i ∈ A(xk,j)} .(4.3)

Given a descent direction wk,j with 〈ci, wk,j〉 = 0 for i ∈ A(xk,j), we examine qk
in the ray xk,j + βwk,j , with β ≥ 0, and use a line search to choose βk,j so that
qk is minimized. The minor iterate xk,j+1 = xk,j + βk,jwk,j may not be acceptable
either because xk,j+1 is not feasible or because xk,j+1 does not satisfy the trust region
constraint ‖xk,j+1 − xk‖ ≤ ∆k. Thus, if necessary, we modify βk,j so that both
constraints are satisfied.

Instead of using a line search to determine xk,j+1, we can use a projected search
along the path defined by P [xk,j + βwk,j ]. The advantage of this approach is that
we would be able to add several constraints at once. For a line search we normally
require a decrease of qk on the line segment [xk,j , xk,j+1], but for a projected search
we need only require a decrease at xk,j+1 with respect to the base point xk,j . We
require that

qk(xk,j+1) ≤ qk(xk,j) + µ0 min {〈∇qk(xk,j), xk,j+1 − xk,j〉, 0} .(4.4)
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xk,1

xk,2

wk,2

Fig. 4.1. The minor iterates for a projected search.

In most cases we require only (4.2), but for rate of convergence results we need (4.4).
For additional details on projected searches, see Moré and Toraldo [30, section 4].

Figure 4.1 illustrates the projected search when Ω is the bound-constrained set
(1.2). In this figure the iterate xk,2 has been computed and a direction wk,2 is de-
termined that is orthogonal to the active constraint normals. If a line search is used,
the search would be restricted to points in the ray xk,2 +βwk,2 that lie in the feasible
region. With a projected search, the search would continue along the piecewise linear
path P [xk,2 + βwk,2]. In either case, we require only that xk,3 satisfy the decrease
condition (4.4).

When Ω is the bound-constrained set (1.2), Lescrenier [25] determines the step sk
by computing minor iterates, but he requires that the line segment αxk,j+1+(1−α)xk,j
be feasible for α ∈ [0, 1] and that

qk(xk,j+1) ≤ qk(αxk,j+1 + (1− α)xk,j), α ∈ [0, 1].(4.5)

This requirement can be satisfied if a line search is used to choose the minor iter-
ates, but it rules out the projected searches that we have proposed. Also note that
assumption (4.5) on the minor iterates is stronger than (4.2). This observation can
be verified by proving that if φ : R 7→ R is a quadratic on [0, 1] with φ′(0) < 0, and
φ(1) ≤ φ(α) for α in [0, 1], then

φ(1) ≤ φ(0) + 1
2φ
′(0) ≤ φ(0) + µφ′(0)

for any µ ∈ [0, 1
2 ].

5. Convergence results. We have been analyzing the trust region method un-
der the assumption that {Bk} is uniformly bounded. We now consider a trust region
version of Newton’s method so that Bk is the Hessian matrix ∇2f(xk). The as-
sumption that {Bk} is uniformly bounded is then satisfied if Ω is bounded or, more
generally, if ∇2f is bounded on the level set

L(x0) ≡ {x ∈ Ω : f(x) ≤ f(x0)} .

We also assume that Ω is the polyhedral set (1.3).
The local convergence analysis for the trust region version of Newton’s method

requires that we assume that some subsequence of the iterates {xk} generated by
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the trust region method converges to a stationary point x∗ that satisfies a regularity
condition. We assume that the Hessian matrix ∇2f(x∗) is positive definite on the
subspace

S(x∗) = aff{E [−∇f(x∗)]− x∗},(5.1)

where aff{S} denotes the affine hull of the set S. Thus, we require that the Hessian
matrix be positive definite on the smallest subspace that contains E [−∇f(x∗)]− x∗.
In the convergence analysis we use this regularity condition in the equivalent form〈

v,∇2f(x∗)v
〉 ≥ κ‖v‖2, v ∈ S(x∗), κ > 0.(5.2)

The strong second-order sufficiency condition (5.2) is equivalent to the standard
second-order sufficiency condition if x∗ is nondegenerate, but it is stronger than the
standard second-order sufficiency condition for degenerate problems.

The strong second-order condition (5.2) is satisfied if ∇2f(x∗) is positive definite
on the subspace

{v ∈ Rn : 〈cj , v〉 = 0, j ∈ B(x∗)} ,(5.3)

where B(x∗) is the set of strictly binding constraints

B(x∗) = {i ∈ I : λ∗i > 0 if 〈ci, x∗〉 = li and λ∗i < 0 if 〈ci, x∗〉 = ui}.

Gay [23], Lescrenier [25], and Robinson [32] use this condition in their work. A
disadvantage of working with (5.3) is that B(x∗) depends on the representation of Ω
and the choice of multipliers. On the other hand, (5.2) depends only on the geometry
of Ω.

Burke and Moré [6] provide additional information on the regularity condition
(5.2). In particular, they present an example where (5.2) holds but the Hessian
matrix is not positive definite on (5.3).

The strong second-order sufficiency condition simplifies considerably when Ω is
the bound-constrained set (1.2). In this case (5.2) requires that ∇2f(x∗) be positive
definite on the subspace

S(x∗) = {w ∈ Rn : wi = 0, i ∈ B(x∗)}

of vectors orthogonal to the strictly binding constraints

B(x∗) = {i ∈ A(x∗) : ∂if(x∗) 6= 0} .

Theorem 5.1. Let f : Rn 7→ R be twice continuously differentiable on the
polyhedral set Ω, and let {xk} be the sequence generated by the trust region Newton
method. Assume that ∇2f is bounded on the level set L(x0) and that the step sk
satisfies (3.6). If {xk} has a limit point x∗ that satisfies the strong second-order
sufficiency condition (5.2), then {xk} converges to x∗.

Proof. We first claim that (5.2) implies that x∗ is an isolated limit point of {xk}.
This claim follows by noting that (5.2) implies that x∗ is an isolated stationary point,
and that every limit point of {xk} is stationary.

The proof is by contradiction. If we assume that {xk} does not converge to x∗,
then Lemma 4.10 of Moré and Sorensen [29] shows that when x∗ is an isolated limit
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point of {xk}, there is a subsequence K such that {xk} converges to x∗ for k ∈ K,
and an ε > 0 with

‖xk+1 − xk‖ ≥ ε, k ∈ K.

In particular, ‖sk‖ ≥ ε for k ∈ K. We now prove that if the sequence {wk} is defined
by

wk =
sk
‖sk‖ , k ∈ K,

then any limit point w∗ is a feasible direction at x∗. Note that ‖sk‖ ≥ ε implies that
xk + τwk belongs to Ω for τ in [0, ε], and hence x∗ + τw∗ also belongs to Ω. This
shows that w∗ is a feasible direction at x∗.

We now show that 〈∇f(x∗), w∗〉 = 0. Note that requirements (2.4), (2.5), and
(2.6) on sk show that if the iteration is successful, then

f(xk)− f(xk+1) ≥ η0µ0κ0

[‖xCk − xk‖
αk

]
min

{
∆k,

1

‖∇2f(xk)‖
[‖xCk − xk‖

αk

]}
.(5.4)

Our assumptions guarantee that the Hessian matrices∇2f(xk) are bounded, and since
‖sk‖ ≤ µ1∆k, and ‖sk‖ ≥ ε for k ∈ K, the trust region bounds ∆k are bounded away
from zero. Hence, inequality (5.4) implies that

lim
k∈K,k→∞

‖xCk − xk‖
αk

= 0.

Moreover, since {αk} is bounded above, {‖xCk −xk‖} also converges to zero for k ∈ K.
Hence, Lemma 5.1 in Burke, Moré, and Toraldo [7] implies that

lim
k∈K,k→∞

∥∥∇Ωf(xCk )
∥∥ = 0.

Theorem 3.1 now shows that xCk is in E [−∇f(x∗)] for k ∈ K, and thus assumption
(3.6) on the step sk implies that xk + sk belongs to E [−∇f(x∗)] for k ∈ K. In
particular,

〈∇f(x∗), (xk + sk − x∗)〉 = 0, k ∈ K.

A computation using ‖sk‖ ≥ ε now shows that 〈∇f(x∗), w∗〉 = 0.
We have shown that w∗ is a feasible direction at x∗ with 〈∇f(x∗), w∗〉 = 0. Thus,

w∗ belongs to S(x∗), and
〈
w∗,∇2f(x∗)w∗

〉
> 0. On the other hand, ψk(sk) ≤ 0

implies that

1
2‖sk‖

〈
wk,∇2f(xk)wk

〉 ≤ −〈∇f(xk), wk〉 .

Since {xk} converges to x∗, {wk} converges to w∗, and ‖sk‖ ≥ ε for k ∈ K, this
inequality implies that

0 < 1
2ε
〈
w∗,∇2f(x∗)w∗

〉 ≤ −〈∇f(x∗), w∗〉 = 0.

This contradiction proves the result.
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Theorems 5.1 improves on previous convergence results for linearly constrained
optimization algorithms because it does not assume strict complementarity. For recent
convergence results, see [19, 12, 18, 9, 16, 20, 33].

Rate of convergence results depend on showing that eventually the trust region
bound is not active. These results require additional assumptions on the step sk. We
assume that the minor iterates satisfy (4.1) and the decrease condition (4.4). We
now estimate the decrease of the quadratic qk if the minor iterates satisfy (4.4). The
following result appears in Moré [28], but for completeness we provide the proof.

Lemma 5.2. Assume that φ : R 7→ R is twice differentiable on [0, 1] and that
φ′′(α) ≥ ε on [0, 1] for some ε > 0. If

φ(1) ≤ φ(0) + µφ′(0)(5.5)

for some µ ∈ (0, 1), then

φ(0)− φ(1) ≥ µ

2(1− µ)
ε.

Proof. The mean value theorem shows that

φ(1) = φ(0) + φ′(0) + 1
2φ
′′(θ)

for some θ ∈ (0, 1), and thus (5.5) implies that 1
2φ
′′(θ) ≤ (1− µ)(−φ′(0)). Hence,

φ(0)− φ(1) ≥ µ(−φ′(0)) ≥ µ

2(1− µ)
φ′′(θ) ≥ µ

2(1− µ)
ε,

as desired.
If we assume that the sequence {xk} converges to x∗, then Theorem 3.3 guarantees

that all iterates belong to E [−∇f(x∗)], and hence (4.1) shows that all the minor
iterates also belong to E [−∇f(x∗)]. Now define

φ(α) = qk (αxk,j+1 + (1− α)xk,j)

and note that the decrease condition (4.4) guarantees that

qk(xk,j+1) ≤ qk(xk,j) + µ0〈∇qk(xk,j), xk,j+1 − xk,j〉,

and thus (5.5) holds. Hence, if we assume that the strong second-order condition (5.2)
holds, then Lemma 5.2 implies that there is a κ0 > 0 such that

qk(xk,j)− qk(xk,j+1) ≥ κ0‖xk,j+1 − xk,j‖2.(5.6)

We need this estimate for our next result.
Theorem 5.3. Let f : Rn 7→ R be twice continuously differentiable on the polyhe-

dral set Ω, and let {xk} be the sequence generated by the trust region Newton method.
Assume that {xk} converges to a solution x∗ of (1.1) that satisfies the regularity con-
dition (5.2). If the minor iterates satisfy (4.1) and (4.4), then there is an index k0

such that all steps sk with k ≥ k0 are successful and the trust region bound ∆k is
bounded away from zero.

Proof. In the proof we bound |ρk − 1|, where ρk is defined by (2.1), and we show
that the bounds converge to zero; the rules for updating ∆k then show that all steps
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sk are ultimately successful and that ∆k is bounded away from zero. We begin by
noting that

ρk − 1 =
f(xk + sk)− f(xk)− ψk(sk)

ψk(sk)
.(5.7)

The denominator of (5.7) is estimated by noting that (5.6) implies that the decrease
generated by sk satisfies

−ψk(sk) = qk(xk)− qk(xk + sk) ≥ κ0

m∑
j=0

‖xk,j+1 − xk,j‖2

≥ κ0 max
0≤j≤m

{‖xk,j+1 − xk,j‖2
}
.

On the other hand,

‖sk‖ ≤
m∑
j=0

‖xk,j+1 − xk,j‖ ≤ (m+ 1) max
0≤j≤m

{‖xk,j+1 − xk,j‖} .

Hence, −ψk(sk) ≥ κ1‖sk‖2 for κ1 = κ0/(m+ 1)2. We estimate the numerator of (5.7)
by noting that the mean value theorem implies that

|f(xk + sk)− f(xk)− ψk(sk)| ≤ σk‖sk‖2,

where

σk = sup
0≤θ≤1

{‖∇2f(xk + θsk)−∇2f(xk)‖} .
These estimates show that |ρk − 1| ≤ σk/κ0, so that our result will be established if
we show that {σk} converges to zero.

Since {xk} converges to x∗, the sequence {σk} converges to zero if {sk} converges
to zero. Theorem 3.3 shows that xk and xk + sk belong to E [−∇f(x∗)], and thus the
definition (5.1) implies that sk ∈ S(x∗). In particular, sk = PS(x∗)sk, where PS(x∗) is
the orthogonal projection onto S(x∗). Since ψk(sk) ≤ 0,

1
2

〈
sk,∇2f(xk)sk

〉 ≤ −〈∇f(xk), sk〉 ,

and thus sk = PS(x∗)sk and the regularity condition (5.2) imply that there is a ν0 > 0
with

‖sk‖ ≤ ν0‖PS(x∗)∇f(xk)‖.

The gradient ∇f(x∗) is orthogonal to S(x∗) because 〈∇f(x∗), x〉 = 〈∇f(x∗), x∗〉
whenever x is in E [−∇f(x∗)], and since {xk} converges to x∗, this implies that
{PS(x∗)∇f(xk)} converges to zero. Thus, the previous estimate shows that {sk} con-
verges to zero, as desired.

Lescrenier [25] proved an analogous result, but he assumed that the feasible
set was bound constrained, that the quadratic was decreasing on the line segment
[xk,j , xk,j+1], and that the minor iterates satisfied (4.5). In particular, his result
did not cover projected searches. Our assumptions in Theorem 5.3 are considerably
weaker.
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When the iterate xk is far from the solution, the step sk is usually determined
because the trust region bound ‖xk,j−xk‖ ≤ µ1∆k is encountered during the compu-
tation of xk,j+1. However, as we converge, Theorem 5.3 shows that the trust region
does not interfere with the computation of the step, so we are free to reduce qk further
by searching the feasible set.

We propose to compute the step sk by computing minor iterates xk,j that satisfy
(4.1) and the decrease condition (4.4). For each minor iterate xk,j let the columns of
Zk,j form an orthonormal basis for the subspace

Vk,j = {w ∈ Rn : 〈ci, w〉 = 0, i ∈ A(xk,j)} .
Given xk,j , we find an approximate minimizer of qk on xk,j + Vk,j . We require that
if xk,m+1 is the final iterate generated according to (4.1) and (4.4), then the step
sk = xk,m+1 − xk satisfies∥∥ZTk,m[∇f(xk) +∇2f(xk)sk]

∥∥ ≤ ξk ∥∥ZTk,m∇f(xk)
∥∥ , xk + sk ∈ Ω.(5.8)

We motivate these requirements by noting that if Ψk,m(v) = qk (xk,m + Zk,mv), then

∇Ψk,m(v) = ZTk,m[∇f(xk) +∇2f(xk)(xk,m − xk + Zk,mv)],

where we have set xk,0 = xk. Thus, the first condition in (5.8) is equivalent to finding
vk,m such that

‖∇Ψk,m(vk,m)‖ ≤ ξk
∥∥ZTk,m∇f(xk)

∥∥ ,
and setting sk = xk,m − xk + Zk,mvk,m. In particular, xk,m+1 = xk,m + Zk,mvk,m is
a minimizer of qk on xk,m + Vk,m if we choose ξk = 0.

At first sight it is not clear that we can always find a step that satisfies (5.8) since
satisfying the first condition in (5.8) may violate the second condition. The simplest
method of generating minor iterates xk,j that guarantees (5.8) is to set xk,j+1 to the
minimizer of qk on xk,j + Vk,j . With this choice sk = xk,j+1 − xk satisfies the first
condition in (5.8). If xk + sk lies in Ω for this choice of xk,j+1, then we are done.
Otherwise, we can set xk,j+1 to any point in Ω that satisfies (4.4) and such that
A(xk,j+1) has at least one more active variable. This choice guarantees that, after
computing at most n minor iterates, we reach a minor iterate with all variables active,
and then (5.8) is trivially satisfied.

The procedure that we have outlined generates iterates xk,j that satisfy (4.1) and
(4.4) with A(xk,j) ⊂ A(xk,j+1). The step sk = xk,m+1 − xk satisfies (5.8), where
Zk,m is defined by xk,m. Geometrically this procedure searches for an approximate
minimizer in the face defined by the active set A(xk,j), terminating if the approximate
minimizer is on the relative interior of this face; otherwise, the search continues on
the lower dimensional face defined by A(xk,j+1).

We have already noted that the step sk is usually determined because the trust
region bound ‖xk,j − xk‖ ≤ µ1∆k is encountered during the computation of xk,j+1.
Thus, we need only assume that the step sk satisfies (5.8) if ‖sk‖ ≤ µ∗∆k for some
µ∗ < µ1.

Rate of convergence results when strict complementarity holds depend on the
result that A(xk) = A(x∗) for all k sufficiently large. This result fails without strict
complementarity. In this case the proof relies on showing that

V (x) ≡ {w ∈ Rn : 〈ci, w〉 = 0, i ∈ A(x)} ⊂ S(x∗), x ∈ E [−∇f(x∗)].(5.9)
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The subspace V (x) is the largest subspace contained in the tangent cone T (x).
For the rate of convergence results we assume that the sequence {xk} generated

by the trust region Newton method converges to x∗. Theorems 3.2 and 3.3 show that
xk and xCk eventually land in E [−∇f(x∗)] for all k ≥ k0. Since (4.1) guarantees that
A(xCk ) is a subset of A(xk,j) for any minor iterate xk,j , we also have that xk,j is in
E [−∇f(x∗)]. In particular, xk,m ∈ E [−∇f(x∗)]. We shall need this result in the
proof.

Theorem 5.4. Let f : Rn 7→ R be twice continuously differentiable on the
polyhedral set Ω, and let {xk} be the sequence generated by the trust region Newton
method. Assume that {xk} converges to a solution x∗ of (1.1) that satisfies the strong
second-order sufficiency condition (5.2). If the step sk is calculated by the algorithm
outlined above, and (5.8) holds whenever ‖sk‖ ≤ µ∗∆k for some µ∗ < µ1, then {xk}
converges Q-linearly to x∗ when ξ∗ is sufficiently small, where

ξ∗ = lim sup
k→+∞

ξk.

The rate of convergence is Q-superlinear when ξ∗ = 0.
Proof. We first prove that (5.9) holds. The proof begins by noting that expression

(3.1) for E [−∇f(x∗)] shows that if λ∗i are Lagrange multipliers, then

{i : λ∗i 6= 0} ⊂ A(x), x ∈ E [−∇f(x∗)].

Hence, if w ∈ V (x), then 〈∇f(x∗), w〉 = 0. Since any w ∈ V (x) is a feasible direction,
we also have that x+ αw for all α sufficiently small. Hence, 〈∇f(x∗), w〉 = 0 implies
that x+ αw belongs to E [−∇f(x∗)]. Moreover, since x ∈ E [−∇f(x∗)] and S(x∗) is
a subspace,

αw = ([x+ αw − x∗]− [x− x∗]) ∈ S(x∗).

Hence, w ∈ S(x∗) as desired, and thus (5.9) holds.
We proved (5.9) for any x ∈ E [−∇f(x∗)] because this result sheds light on the

geometry behind the rate of convergence results, but for this proof we need only show
that

Vk,m ⊂ S(x∗).(5.10)

Since we have already noted that xk,m ∈ E [−∇f(x∗)], (5.9) implies that (5.10) holds.
We analyze the convergence rate in terms of the projection Pk = Zk,mZ

T
k,m onto

the subspace Vk,m. Note, in particular, that since Vk,m is a subspace of S(x∗), an
orthogonal basis for Vk,m can be extended to a basis for S(x∗), and thus

‖Pkw‖ ≤ ‖PS(x∗)w‖, w ∈ Rn.(5.11)

The main estimate needed for the rate of convergence result is obtained by noting
that

‖Pk∇f(xk+1)‖ ≤ ∥∥Pk[∇f(xk+1)−∇f(xk)−∇2f(xk)sk]
∥∥

+
∥∥Pk[∇f(xk) +∇2f(xk)sk]

∥∥ ,
assumption (5.8) on the step, and standard bounds yield that

‖Pk∇f(xk+1)‖ ≤ εk‖sk‖+ ξk ‖Pk∇f(xk)‖(5.12)
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for some sequence {εk} converging to zero. Also note that the argument at the end
of Theorem 5.3 shows that there is a constant ν0 with

‖sk‖ ≤ ν0‖PS(x∗)∇f(xk)‖.(5.13)

If we make use of this estimate and (5.11) in (5.12) we obtain that

lim sup
k→+∞

‖Pk∇f(xk+1)‖
‖PS(x∗)∇f(xk)‖ ≤ lim sup

k→+∞
ξk.(5.14)

We complete the proof by estimating ‖Pk∇f(xk+1)‖ and ‖PS(x∗)∇f(xk)‖. We first
show that

‖Pk∇f(xk+1)‖ ≥ (ν1 − εk)‖xk+1 − x∗‖(5.15)

for some sequence {εk} converging to zero.
The proof of (5.15) requires some preliminary results. We first show that xk+1−x∗

is in Vk,m for all k sufficiently large. This follows from the definition of Vk,m because
A(xk,m) ⊂ A(xk+1) and A(xk,m) ⊂ A(x∗). We also need to show that Pk∇f(x∗) = 0.
This result follows because, as noted at the end of Theorem 5.3, ∇f(x∗) is orthogonal
to S(x∗), and since Vk,m is a subspace of S(x∗), we must also have ∇f(x∗) orthogonal
to Vk,m. In particular, Pk∇f(x∗) = 0. The last result that we need for the proof of
(5.15) is that

‖Pk∇2f(x∗)Pkv‖ ≥ κ‖v‖, v ∈ Vk,m.(5.16)

To prove this result, note that if v ∈ Vk,m, then Pkv = v, and in view of (5.10), Pkv
is in E [−∇f(x∗)]. Hence, the regularity assumption (5.2) shows that (5.16) holds.

We now have all the ingredients to prove (5.15). Since Pk∇f(x∗) = 0,

Pk∇f(xk+1) = Pk∇2f(x∗)(xk+1−x∗)+Pk[∇f(xk+1)−∇f(x∗)−∇2f(x∗)(xk+1−x∗)],

and thus estimates of the last term show that∥∥Pk∇2f(x∗)(xk+1 − x∗)
∥∥ ≤ ‖Pk∇f(xk+1)‖+ εk‖xk+1 − x∗‖,

where {εk} converges to zero. Since xk+1 − x∗ is in Vk,m for all k sufficiently large,
(5.16) shows that

‖Pk∇2f(x∗)Pk(xk+1 − x∗)‖ ≥ κ‖xk+1 − x∗‖.

The last two inequalities show that (5.15) holds with ν1 = κ.
We estimate ‖PS(x∗)∇f(xk)‖ by proving that

‖PS(x∗)∇f(xk)‖ ≤ (ν2 + εk)‖xk − x∗‖(5.17)

for some sequence {εk} converging to zero. Since PS(x∗)∇f(x∗) = 0,

PS(x∗)∇f(xk) = PS(x∗)∇2f(x∗)(xk−x∗)+PS(x∗)[∇f(xk)−∇f(x∗)−∇2f(x∗)(xk−x∗)],

and thus standard estimates of the last term show that

‖PS(x∗)∇f(xk)‖ ≤ ∥∥PS(x∗)∇2f(x∗)(xk − x∗)
∥∥+ εk‖xk − x∗‖,
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where {εk} converges to zero. Since PS(x∗)(xk − x∗) = xk − x∗, we obtain that

‖PS(x∗)∇f(xk)‖ ≤ ν2 ‖xk − x∗‖+ εk ‖xk − x∗‖ , ν2 = ‖PS(x∗)∇2f(x∗)PS(x∗)‖,

where {εk} converges to zero. This proves (5.17).
Linear and superlinear convergence rates are obtained by noting that (5.14), to-

gether with estimates (5.15) and (5.17), show that

lim sup
k→+∞

‖xk+1 − x∗‖
‖xk − x∗‖ ≤

(
ν2

ν1

)
lim sup
k→+∞

ξk =

(
ν2

ν1

)
ξ∗.

Linear convergence takes place if ν2ξ
∗ < ν1, and superlinear convergence holds if

ξ∗ = 0.
A modification of the proof of Theorem 5.4 shows linear convergence for any

ξ∗ < 1 if the vectors xk − x∗ lie in a fixed subspace V of S(x∗) for all k sufficiently
large. This result holds when x∗ is nondegenerate (strict complementarity holds at
x∗) since in this case xk − x∗ belongs to V (xk) = S(x∗) for all k sufficiently large.

There are several interesting variations on Theorem 5.4. Note, in particular, that
the minor iterate xk,m enters into the proof via the subspace Vk,m and that the proof
holds if Pk is a projection into any subspace of S(x∗) that contains xk+1 − x∗. Thus
we could have set Pk to the projection into V (xk+1) and eliminated xk,m from the
analysis. We did not make this simplification because with our choice of Pk the minor
iterate xk,m+1 is an approximate minimizer of qk on xk,m + Vk,m.

Lescrenier [25] and Facchinei and Lucidi [19] proved rate of convergence results
without assuming strict complementarity, but the analysis was restricted to bound-
constrained problems. Other convergence results for bound-constrained and linearly
constrained optimization algorithms require strict complementarity. For recent con-
vergence results, see [12, 18, 9, 16, 20, 33].

We can also show that quadratic convergence holds in Theorem 5.4 if we assume
that ∇2f satisfies a Lipschitz condition at x∗ and if

ξk ≤ κ0 ‖Pk∇f(xk)‖ , k ≥ 0,

for a positive constant κ0. With these assumptions we can follow the proof of Theorem
5.4. The main difference is that the inequality (5.12) can be replaced by

‖Pk∇f(xk+1)‖ ≤ κ‖sk‖2 + ξk ‖Pk∇f(xk)‖ ,

where κ is the Lipschitz constant, and thus (5.11) and (5.13) yield that

lim sup
k→+∞

‖Pk∇f(xk+1)‖
‖PS(x∗)∇f(xk)‖2 ≤ κν

2
0 + κ0.

The result now follows from estimates (5.15) and (5.17).

6. Implementation issues. We now provide a brief outline of the implemen-
tation issues for a trust region Newton method for bound-constrained problems. We
concentrate on discussing our choices for the trust region bound ∆k, the Cauchy step,
and the subspace step.

For the initial ∆0 we used ‖∇f(x0)‖. This choice is appropriate in many cases,
but more sophisticated choices are possible. We update the trust region bound ∆k

as outlined in section 2. We choose η0 = 10−3 in the algorithm (2.2) to update the
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current iterate; η1 = 0.25, η2 = 0.75 as the constants that determine when to increase
or decrease the trust region ∆k; and σ1 = 0.25, σ2 = 0.5, and σ3 = 4.0 as the constants
that govern the update of ∆k in (2.3).

Given a step sk, we attempt to choose ∆k+1 as α∗k‖sk‖, where α∗k is the minimum
of a quadratic that interpolates the function α 7→ f(xk + αsk). In other words, we
consider the quadratic φ such that

φ(0) = f(xk), φ′(0) = 〈∇f(xk), sk〉, φ(1) = f(xk+1)

and determine α∗k as the minimum of this quadratic. If φ does not have a minimum, we
set α∗k = +∞. We choose ∆k+1 as α∗k‖sk‖ if it falls in the desired interval; otherwise
we set ∆k+1 to the closest endpoint.

The Cauchy step sCk is chosen by an iterative scheme that is guaranteed to ter-
minate in a finite number of steps. Recall that the Cauchy step sCk is of the form
sk(αk), where the function sk : R 7→ Rn is defined by

sk(α) = P [xk − α∇f(xk)]− xk
and αk satisfies the conditions specified in section 2. The simplest scheme is to set

α
(0)
k to a constant and then generate a sequence {α(l)

k } of trial values by decreasing
the trial values by a constant factor until the sufficient decrease condition (2.4) is

satisfied. We use a more sophisticated scheme. Given α
(0)
k , we generate a sequence

{α(l)
k } of trial values. The sequence can be either increasing or decreasing, but in all

cases we require that

α
(l+1)
k ∈

[
β1α

(l)
k , β2α

(l)
k

]
,

where β1 ≤ β2 < 1 for a decreasing sequence and 1 < β1 ≤ β2 for an increasing
sequence. The decision to generate an increasing sequence or a decreasing sequence

depends of the initial α
(0)
k . If the initial α

(0)
k fails to satisfy the sufficient decrease

condition (2.4), we decrease the trial values until (2.4) fails, and we set αk to the last

trial value that satisfies (2.4). If the initial α
(0)
k satisfies (2.4), we increase the trial

values until (2.4) fails, and we set αk to the last trial value that satisfies (2.4).

We use α
(0)
k = 1 on the first iteration, but on all other iterations we use αk−1.

We use µ0 = 10−2 and µ1 = 1.0 in the sufficient decrease condition (2.4).
The minor iterates generated in the trust region method are required to satisfy

conditions (4.1) and (4.4). We generate the step between the minor iterates along the
lines specified in section 4 but specialized to the case of bound constraints. Specifically,
we compute the step from the trust region subproblem

min {q(x+ w) : wi = 0, i ∈ A(x), ‖Dw‖ ≤ ∆} ,
where D is a scaling matrix. If i1, . . . , im are the indices of the free variables, and the
matrix Z is defined as the matrix in Rn×m whose kth column is the ikth column of
the identity matrix in Rn×n, then this subproblem is equivalent to

min{qF (v) : ‖DZv‖ ≤ ∆},
where qF is the quadratic in the free variables defined by

qF (v) ≡ q(x+ Zv)− q(x) = 1
2v
TAv + rT v.
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The matrix A and the vector r are, respectively, the reduced Hessian matrix of q and
reduced gradient of qF at x with respect to the free variables.

Given a descent direction w for this subproblem, a projected line search guarantees
that we can determine β > 0 such that the next iterate x+ = P [x + βw] satisfies
conditions (4.1) and (4.4). The conditions in (4.1) are satisfied for any β > 0 provided
D has a condition number that is bounded independent of the iterate. We use µ0 =
10−2 in the sufficient decrease condition (4.4).

We generate the descent direction w with a preconditioned conjugate gradient
method as suggested by Steihaug [34]. The conjugate gradient iterates are generated
until the trust region is violated, a negative curvature direction is generated, or the
convergence condition (5.8) is satisfied. As noted in section 5, this condition can be
satisfied by choosing the minor iterates so that A(xk,j) ⊂ A(xk,j+1). For additional
details, see the discussion in Lin and Moré [26].

In our algorithms we choose D from an incomplete Cholesky factorization. From
a theoretical viewpoint, the choice of D is not important, but the numerical results
are strongly dependent on the choice of D. We use the incomplete Cholesky factor-
ization icfs of Lin and Moré [26]. The icfs incomplete Cholesky factorization does not
require the choice of a drop tolerance. Moreover, the amount of storage used by the
factorization can be specified in advance as p · n, where p is set by the user and n is
the number of variables. In our numerical results we use p = 5.

7. Computational experiments. We now compare the performance of an im-
plementation TRON (version 1.0) of the trust region method outlined in section 6 with
the LANCELOT [14] and L-BFGS-B [36] codes. All computational experiments were done
with the -O optimization compiler option on a Sun UltraSPARC2 workstation with
1,024 MB RAM.

LANCELOT implements Newton’s method with a trust region strategy but differs
from TRON in significant issues. In particular, LANCELOT does not use projected
searches, and the default is a banded preconditioner. The L-BFGS-B code is a limited-
memory variable metric method. An advantage of L-BFGS-B is that only the gradient is
required, while Newton codes require an approximation to the Hessian matrix. On the
other hand, for sparse problems the Hessian matrix can usually be obtained efficiently
with differences of gradients if the sparsity pattern of the Hessian matrix is provided.

Our first set of computational results uses a set of bound-constrained problems
from the CUTE collection [3]. We used the select tool to choose problems representa-
tive of problems that arise in applications and where the number of variables n could
be changed. Since we are interested in large problems, we refined this selection by
considering only problems where the number of variables was at least 5, 000. These
requirements lead to a list of nine problems, with some of the problems having more
than one version.

Table 7.1 presents the results obtained when LANCELOT and L-BFGS-B are used with
the default options. For LANCELOT, exact second derivatives and a preconditioned
conjugate gradient method with a banded preconditioner were used; all other default
options are shown in Table 5 of [15]. In Table 7.1 we used the LANCELOT termination
test

‖P [x−∇f(x)]− x‖∞ ≤ 10−5,(7.1)

where P is the projection into the feasible set (1.2).
The first column in Table 7.1 is the name of the test problem, and the second

column is the number of variables n. For TRON and LANCELOT we record the number
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Table 7.1
Performance on the CUTE problems: default options.

TRON LANCELOT L-BFGS-B
Problem n nh nf ncg time nh nf ncg time nfg time
BDEXP 5000 11 11 10 1.43 10 11 12 1.19 15 0.60
CVXBQP1 10000 2 2 0 0.24 1 2 1 0.81 2 0.08
JNLBRNG1 15625 26 26 33 15.22 24 25 2029 165.42 999 198.75
JNLBRNG2 15625 16 16 27 9.21 14 15 898 74.16 577 105.18
JNLBRNGA 15625 23 23 29 12.46 21 22 1584 117.64 332 54.56
JNLBRNGB 15625 10 10 15 5.29 8 9 419 30.71 999 160.32
MCCORMCK 10000 6 7 6 1.46 4 5 4 1.10 15 1.76
NCVXBQP1 10000 2 2 0 0.24 4 5 0 3.01 2 0.08
NCVXBQP2 10000 10 10 10 1.44 6 7 84 3.35 178 6.85
NCVXBQP3 10000 10 10 10 1.39 6 7 163 2.96 388 14.87
NOBNDTOR 14884 38 38 71 22.03 36 37 1386 123.66 213 36.38
NONSCOMP 10000 9 9 8 1.44 8 9 8 1.45 51 4.24
OBSTCLAE 15625 27 27 51 14.48 5 6 7452 821.46 660 116.18
OBSTCLAL 15625 25 25 39 12.64 24 25 604 43.64 156 24.51
OBSTCLBL 15625 20 20 42 12.81 18 19 2088 199.04 272 49.28
OBSTCLBM 15625 8 8 15 5.41 5 6 1378 152.87 146 25.90
OBSTCLBU 15625 21 21 33 11.85 19 20 621 56.68 194 33.94
TORSION1 14884 39 39 64 19.85 37 38 1148 86.08 224 35.36
TORSION2 14884 19 19 43 11.10 14 15 2063 173.28 521 91.56
TORSION3 14884 20 20 26 9.06 19 20 332 21.13 76 10.66
TORSION4 14884 18 18 27 8.98 14 15 653 34.99 417 65.78
TORSION5 14884 11 11 12 4.67 9 10 93 5.74 40 5.06
TORSION6 14884 15 15 18 7.07 8 9 151 8.54 362 53.99
TORSIONA 14884 39 39 64 21.45 37 38 1147 98.23 205 37.38
TORSIONB 14884 24 24 50 14.54 15 16 1982 186.69 371 70.13
TORSIONC 14884 20 20 26 9.80 19 20 332 24.65 89 13.97
TORSIOND 14884 18 18 26 9.70 14 15 634 39.70 409 69.59
TORSIONE 14884 11 11 12 5.06 9 10 93 6.55 38 5.44
TORSIONF 14884 15 15 19 7.71 7 8 154 9.36 341 56.83

of Hessian evaluations nh, function evaluations nf, and conjugate gradient iterations
ncg. For L-BFGS-B we record only the number of function and gradient evaluations nfg
because L-BFGS-B always evaluates the function and gradient at the same time. The
execution time (in seconds) is reported in the time column. In these results, all three
codes obtained the same optimal function value at the final iterate.

A general observation on the results in Table 7.1 is that the number of function
evaluations for TRON and LANCELOT is at most one more than the number of Hessian
evaluations. Thus, for these problems all the iterations of the Newton codes are
successful. We conclude that these problems do not fully test TRON or LANCELOT.

In analyzing computational results we do not discuss problems where L-BFGS-B

requires less than 50 function and gradient evaluations. In general, we feel that if
a limited-memory variable metric algorithm converges in less than 50 function and
gradient evaluations on a problem with 10, 000 variables, then the starting point is
exceptionally good.

An important observation on the results in Table 7.1 is that on these problems
TRON requires less time than L-BFGS-B. These results support the conclusion that
TRON is preferable to L-BFGS-B if the Hessian matrix can be obtained explicitly. We
also expect TRON to outperform L-BFGS-B for sparse problems if the sparsity pattern
of the Hessian matrix is provided because with this information the Hessian matrix
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can be obtained efficiently from differences of gradients.

The results in Table 7.1 also show that on these problems TRON requires less
time than LANCELOT and requires significantly fewer conjugate gradient iterations
than LANCELOT. Reducing the number of conjugate gradient iterations is important
because this number is likely to increase as the number of variables increases. We note
that since for these problems the cost of the conjugate gradient iterations is significant,
fewer conjugate gradient iterations translates into smaller computing times.

Another observation made on the results of Table 7.1 is that LANCELOT usually
requires fewer major iterations than TRON. Differences in the number of major itera-
tions are due, in part, to the choice of Cauchy point and the use of projected searches.
These algorithmic choices in TRON tend to add many constraints, and on some of these
problems, they lead to a larger number of major iterations. We also note that a de-
tailed examination of the output shows that even when both codes require the same
number of iterations, the algorithms visit different faces of the feasible set.

As a minor point, note that TRON almost always requires the same number of
function and Hessian evaluations. This is an algorithmic decision since we always
evaluate the gradient and Hessian at successful iterates. On the other hand, if an
iterate satisfies the termination criteria (7.1), LANCELOT returns without evaluating
the Hessian matrix at the final iterate.

The number of conjugate gradient iterations in LANCELOT can usually be reduced
by using other preconditioners instead of the default banded preconditioner. Other
preconditioners, however, usually require more memory and more floating point op-
erations per conjugate gradient iteration.

In Table 7.2 we present the results of using LANCELOT with Munksgaard’s ma31
preconditioner [31], which is an incomplete Cholesky factorization with a drop toler-
ance. A disadvantage of using the ma31 preconditioner with LANCELOT is that the
memory requirements are unpredictable. The user is asked to allocate a given amount
of memory, and if this amount is not sufficient, then an error message is issued. On
the other hand, the incomplete Cholesky factorization icfs used in TRON does not
require the choice of a drop tolerance, and the amount of storage can be specified
in advance. For the results presented in this section icfs uses 5n additional (double
precision) words. For a comparison of ma31 with icfs, see Lin and Moré [26].

Comparison of the LANCELOT results in Table 7.1 with those in Table 7.2 show
that in all cases the number of function evaluations and the number of Hessian eval-
uations for both preconditioners are identical and that the main difference is the
number of conjugate gradient iterations. Also note that, with the exception of prob-
lems OBSTCLBL and OBSTCLBM, the number of conjugate gradient iterations and
the time required to solve the problems with LANCELOT decreased when the ma31 pre-
conditioner was used. Overall, these results show that for these problems the ma31
preconditioner is preferable in LANCELOT.

The results in Table 7.2 show that TRON requires fewer conjugate gradient iter-
ations and, on most problems, less time than LANCELOT with the ma31 preconditioner.
Also note that there were five problems (OBSTCLAE, OBSTCLBL,
OBSTCLBM, TORSION2, and TORSIONB) where LANCELOT required more than
1, 000 conjugate gradient iterations, and note that on these problems the reductions
in time over the default preconditioner were not substantial. For these problems the
differences in conjugate gradient iterations are due not to the use of different pre-
conditioners but to the methods used by TRON and LANCELOT to compute the minor
iterates. LANCELOT uses a line search, and thus only one constraint is added at each
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Table 7.2
Performance on the CUTE problems: LANCELOT with ma31.

TRON LANCELOT (ma31)
Problem n nh nf ncg time nh nf ncg time
BDEXP 5000 11 11 10 1.43 10 11 10 1.32
CVXBQP1 10000 2 2 0 0.24 1 2 1 0.80
JNLBRNG1 15625 26 26 33 15.22 24 25 179 28.69
JNLBRNG2 15625 16 16 27 9.21 14 15 70 13.09
JNLBRNGA 15625 23 23 29 12.46 21 22 166 24.29
JNLBRNGB 15625 10 10 15 5.29 8 9 46 7.56
MCCORMCK 10000 6 7 6 1.46 4 5 4 1.41
NCVXBQP1 10000 2 2 0 0.24 4 5 0 3.03
NCVXBQP2 10000 10 10 10 1.44 7 8 93 3.34
NCVXBQP3 10000 10 10 10 1.39 6 7 124 2.61
NOBNDTOR 14884 38 38 71 22.03 36 37 176 36.61
NONSCOMP 10000 9 9 8 1.44 8 9 8 1.66
OBSTCLAE 15625 27 27 51 14.48 2 3 7154 809.04
OBSTCLAL 15625 25 25 39 12.64 24 25 79 15.62
OBSTCLBL 15625 20 20 42 12.81 22 21 2346 307.67
OBSTCLBM 15625 8 8 15 5.41 5 6 1554 213.38
OBSTCLBU 15625 21 21 33 11.85 19 20 165 22.72
TORSION1 14884 39 39 64 19.85 37 38 159 27.97
TORSION2 14884 19 19 43 11.10 14 15 1592 143.66
TORSION3 14884 20 20 26 9.06 19 20 52 9.02
TORSION4 14884 18 18 27 8.98 14 15 438 25.91
TORSION5 14884 11 11 12 4.67 9 10 14 2.99
TORSION6 14884 15 15 18 7.07 8 9 116 7.46
TORSIONA 14884 39 39 64 21.45 37 38 175 31.80
TORSIONB 14884 24 24 50 14.54 15 16 1606 153.55
TORSIONC 14884 20 20 26 9.80 19 20 52 9.76
TORSIOND 14884 18 18 26 9.70 14 15 445 29.13
TORSIONE 14884 11 11 12 5.06 9 10 13 3.27
TORSIONF 14884 15 15 19 7.71 7 8 107 7.46

minor iteration. As a result many minor iterates can be generated, and determining
a minor iterate almost certainly requires at least one conjugate gradient iteration.
For these five problems LANCELOT generated, respectively, 7,155, 1,710, 1,184, 1,533,
and 1,541 minor iterates. TRON, on the other hand, uses a projected search and thus
is able to add many constraints at each minor iteration. For these problems TRON

generated 27, 26, 10, 19, and 24 minor iterates.

These results support the conclusion that TRON tends to require significantly fewer
minor iterations than LANCELOT. Moreover, the use of projected searches is the major
reason for TRON requiring a small number of minor iterates.

General conclusions cannot be drawn from these results because, as already noted,
this problem set does not fully test these algorithms. Our numerical results are
also affected by nonalgorithmic differences between TRON and LANCELOT. We have
already noted that these codes differ in the amount of memory required, but TRON and
LANCELOT differ in other ways. For example, LANCELOT uses the partial separability
structure, while TRON uses only the sparsity structure.

We also compared TRON with L-BFGS-B on a test set from the MINPACK-2 collection
of large-scale problems [1]. The MINPACK-2 problems defined by Table 7.3 are finite-
dimensional approximations of an infinite-dimensional variational problem defined
over a grid with nx and ny grid points in each coordinate direction. The column
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Table 7.3
Parameters for the MINPACK-2 test problems.

Problem n nx ny λ l u
EPT1 10000 200 50 1.0d0 default default
EPT2 10000 200 50 5.0d0 default default
EPT3 10000 200 50 10.0d0 default default
PJB1 10000 100 100 0.1d0 default 1.0d2
PJB2 10000 100 100 0.5d0 default 1.0d2
PJB3 10000 100 100 0.9d0 default 1.0d2
MSA1 10000 200 50 0.0d0 -0.4d0 0.4d0
MSA2 10000 200 50 0.0d0 -0.2d0 0.2d0
MSA3 10000 200 50 0.0d0 -0.1d0 0.1d0
SSC1 10000 100 100 5.0d0 1.0d-1 1.0d0
SSC2 10000 100 100 5.0d0 1.0d-2 1.0d0
SSC3 10000 100 100 5.0d0 1.0d-3 1.0d0
SSC4 10000 100 100 5.0d0 1.0d-4 1.0d0
DGL2 10000 50 50 2.0d0 -1.0d20 1.0d20

labeled λ in Table 7.3 defines the value of a parameter associated with the problem,
while the last two columns define the lower and upper bounds on the variables. For
these results we used the termination test

‖∇Ωf(x)‖2 ≤ 10−5‖∇f(x0)‖2,(7.2)

where ∇Ωf is the projected gradient (2.8). This termination test is generally prefer-
able to (7.1) because (7.2) is invariant to changes in the scale of f .

The number of grid points nx and ny and the parameter λ can be modified easily in
the MINPACK-2 problems, thereby providing a convenient means for generating difficult
problems. In general, the problems become more difficult as the ratio ny/nx deviates
from unity. We have restricted the testing to problems where this ratio lies in the
interval [0.25, 1], which leads to relatively easy problems. In some cases, the choice
of λ and of lower and upper bounds also affects the performance of optimization
algorithms.

In the first two problems in Table 7.4 we examine the behavior of TRON and
L-BFGS-B as λ changes. For problem EPT (elastic-plastic torsion) the parameter λ is
the force constant, and for this problem the number of active constraints increases
as λ increases. The results in Table 7.4 show that EPT becomes easier to solve
as λ increases. This finding is reasonable because the EPT problem tends to be
increasingly linear as λ increases. The results for problem PJB (pressure in a journal
bearing) show that this problem becomes increasingly harder to solve as λ approaches
unity. For this problem λ is the eccentricity of the journal bearing, so this result is
reasonable.

In problems MSA and SSC we examine the behavior of TRON and L-BFGS-B as the
lower and upper bounds l and u change. The results of this testing were somewhat
disappointing because for these problems there does not seem to be a strong correla-
tion between the choice of bounds and the number of iterations. The most dramatic
change in performance occurs for L-BFGS-B and the MSA problem. Note, on the other
hand, that the performance of TRON is relatively insensitive to the choice of bounds.

Problem GL2 is unconstrained but is included in these results because it is a hard
problem for algorithms that do not use second-order information. The reason seems
to be that the GL2 problem has a saddle point that attracts L-BFGS-B.
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Table 7.4
Performance on the MINPACK-2 problems with n = 10, 000.

TRON L-BFGS-B
Problem nh nf ncg time nfg time
EPT1 30 30 96 9.38 466 35.17
EPT2 31 31 61 7.69 445 27.81
EPT3 21 21 31 4.06 229 10.66
PJB1 22 22 42 5.92 717 49.25
PJB2 13 13 29 3.38 542 31.29
PJB3 7 7 17 1.76 2765 150.91
MSA1 27 48 94 19.06 776 65.35
MSA2 16 22 65 10.47 613 50.50
MSA3 19 19 48 9.89 487 39.79
SSC1 5 5 23 3.28 347 36.32
SSC2 6 6 25 4.11 345 36.83
SSC3 6 6 26 3.96 377 40.26
SSC4 6 6 26 3.99 293 30.91
GL2 8 8 364 34.73 3521 372.89

The most striking feature of the results in Table 7.4 is that TRON requires far fewer
function and gradient evaluations than L-BFGS-B and that this translates into smaller
computing times. This advantage is likely to increase as the number of variables
increases because the number of iterations in a Newton method tends to grow slowly,
while the number of iterations in limited-memory variable metric methods tends to
grow rapidly as the number of variables increases. See, for example, the results of
Bouaricha, Moré, and Wu [4].
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