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Abstract

We present a framework for the unsupervised segmentation of switching dynamics using support

vector machines. Following the architecture by Pawelzik et al. [21] where annealed competing neural

networks were used to segment a non-stationary time series, in this article we exploit the use of

support vector machines, a well-known learning technique. First, a new formulation of support vector

regression is proposed. Second, an expectation-maximization (EM) step is suggested to adaptively

adjust the annealing parameter. Results indicate that the proposed approach is promising.
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I. I NTRODUCTION

Recently support vector machines (SVMs) [26] have been a promising method for data classification

and regression. For an account of various applications of the method, see [15], [16], and references

therein. However, its application to unsupervised learning problems has not been exploited much.

In this paper we aim to apply it to unsupervised segmentation of time series. Practical applications

of unsupervised segmentation of time series include, for example, speech recognition [23], signal

classification [6], and brain data [20], [9].



2

The topic of unsupervised segmentation has been investigated by researchers in various fields. See

for example, an early survey on various approaches in [18], the fuzzy c-regression models (FCRM) [5]

with applications to models with known forms and known distribution of the noise term, a combination

of supervised and unsupervised learning using hidden Markov models based on neural networks [4],

and other competing neural networks approaches in [14], [21], [8], [11], [9].

In [21], [14], annealed competing neural networks were used to segment a non-stationary time

series, where non-stationarities are caused by switching dynamics. This method is called “Annealed

Competition of Experts” (ACE). Unlike the mixtures of experts architecture [7] which used an input-

dependent gating-network, the ACE method drives the competition of experts by an evaluation of

prediction performance so that the underlying dynamics can have overlapping input domains. Two

main features of this approach arememory derived from a slow switching rate anddeterministically

annealed competition of the experts during training. The assumption of slow switching rate is imposed

to resolve problems caused by overlapping input-output relations. The idea of annealing is to avoid

getting stuck in local minima and resolve the underlying dynamics in a hierarchical manner. (The

deterministic annealing method was described in the context of clustering [24].) The neural network

used is a Radial Basis Function (RBF) network of the Moody-Darken type [13].

The present paper aims to solve the same unsupervised segmentation problem as in [21], [14]. We

propose a framework using competing support vector machines (SVMs). The standard SVMs assume

equal weights on all error terms, which mean that each data point is equally important. However,

due to the switching nature of the problem, the data points actually come from different sources and

therefore, the contribution of each data point to each predictor would not be the same. In order to

solve this problem, we propose a modified formulation of SVMs which allows different weights on

the error terms. The dual problem and the implementation for this formulation are also new. Here

the weights are adjusted by relative prediction performance, as in [21], [14]. In addition to the new

formulation, this paper is novel in presenting an adaptive annealing method. A key observation is that

the annealing parameter characterizes some statistical property of the error terms. Therefore, at each

iteration during training, we treat the annealing parameter as an unknown parameter and estimate it

based on the current weighting coefficients and error terms. This estimate is essentially the maximum

likelihood estimate, which can be obtained by an expectation-maximization (EM) step. We shall call

this annealing methodadaptive deterministic annealing.

The paper is organized as follows. In Section II, we briefly describe the framework of [21], [14] and

present a modified SVM formulation. In Section III, we give motivation behind the proposed annealing

method and derive an estimate of the annealing parameter. The implementation of the modified SVM

formulation is in Section IV. Section V demonstrates experimental results on some data sets. Then

we give discussion in Section VI.
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II. A M ODIFIED SVM FORMULATION

First, we describe the segmentation problem using input-output pairs and outline the approach of

[21]. Then we review the standard SVMs and introduce a modified formulation.

Let (xt, yt) = (xt, frt
(xt)) be generated bym unknown functions, wheret = 1, . . . , l, rt ∈

{1, . . . ,m}, and rt = j if the t-th data point is generated byfj . If we setxt+1 = frt(xt), we get

a time series{xt}. The task is to determinert, t = 1, . . . , l, and functionsfj , j = 1, . . . ,m. For

notational simplicity, we takeyt = frt
(xt) in this section. The readers should notice that the method

presented below does not restrict to time series with embedding order 1. The extension to higher

embedding order can be done by simply replacing the scalarxt by vectors from the method of the

time delay embedding of the time series [10], [21].

Define pt
i = 1 if rt = i and 0 otherwise. Thenpt

i, fi, i = 1, . . . ,m, t = 1, . . . , l is an optimal

solution of the following non-convex optimization problem:

min
p,f

l∑
t=1

m∑
i=1

pt
i(yt − fi(xt))2

subject to
m∑

i=1

pt
i = 1, pt

i ≥ 0, t = 1, . . . , l. (1)

The main computations for solving (1) can be divided into two steps: (i) minimize the objective

function in (1) overfi with pt
i fixed; (ii) adjustpt

i given currentfi. In [21], the authors use RBF

networks for step(i); i.e. fori = 1, . . . ,m, they solve

min
f̂i

l∑
t=1

pt
i(yt − f̂i(xt))2, (2)

wheref̂i are RBF networks. For step(ii), they assume thatf̂i(xt) are distributed according to Gaussian

and then by Bayes rules

pt
i =

exp (−β(et
i)

2)∑m
j=1 exp (−β(et

j)2)
, (3)

where

et
i = yt − f̂i(xt) (4)

and β is the annealing parameter which controls the degree of competition among predictors. To

incorporate the property of low switching rates, the sequence((xt−∆, yt−∆), . . . , (xt+∆, yt+∆)) are

assumed to come from the same source. Using Bayes rules again, the weighting coefficientspt
i can

be updated as

pt
i =

exp (−β
∑∆

δ=−∆(et−δ
i )2)∑m

j=1 exp (−β
∑∆

δ=−∆(et−δ
j )2)

. (5)

We will further discussβ in Section III and the choice of∆ in Section V.

We summarize the algorithm in [21] as follows:
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Algorithm II.1

1) Given ∆ and parameters of RBF networks. Randomly pick initial pt
i which satisfies

m∑
i=1

pt
i = 1; pt

i ≥ 0, t = 1, . . . , l.

2) Solve (2) using the RBF networks and obtain f̂i.

3) Increase β slightly and update pt
i by (5).

4) If certain stopping criteria are met, terminate the algorithm. Otherwise, go to step 2.

Next we propose to modify support vector regression (SVR) for solving (2). The idea of SVR is to

map input data into a higher dimensional space and find a function which approximates the hidden

relationships of the given data. The standard formulation is as follows.

min
w,b,ξ,ξ∗

1
2
wT w + C

l∑
t=1

(ξt + ξt,∗)

subject to− ε− ξt,∗ ≤ yt − (wT φ(xt) + b) ≤ ε + ξt, (6)

ξt ≥ 0, ξt,∗ ≥ 0, t = 1, . . . , l,

wherew andb are unknown parameters to be estimated,ξ andξ∗ indicate errors,ε is the tolerance, and

φ is the function that maps dataxt to a higher dimensional space. SVR uses the so called “regularization

term” 1
2wT w in (6) to avoid overfitting. Without this term, for certain mapping functionsφ, the solution

of (6) always satisfies−ε ≤ yt− (wT φ(xt)+b) ≤ ε, see, for example, [2, Corollary1]. Thus it overfits

the data.

If we take

f(x) = wT φ(x) + b,

then (6) can be rewritten as

min
w,b

1
2
wT w + C

l∑
t=1

|yt − f(xt)|ε (7)

where| · |ε is the ε-insensitive loss function.

The standard SVR considers a uniform penalty parameterC for all data. By comparing (2) and (7),

we propose to use different weightsCpt
i in each error term of the objective function. Thus for each

i = 1, . . . ,m, we have the following modification.

min
wi,bi,ξ,ξ∗

1
2
wT

i wi + C
l∑

t=1

pt
i(ξ

t
i + ξt,∗

i )

subject to− ε− ξt,∗
i ≤ yt − (wT

i φ(xt) + bi) ≤ ε + ξt
i , (8)

ξt
i ≥ 0, ξt,∗

i ≥ 0, t = 1, . . . , l.

Note that if we remove the term12wT
i wi and setε = 0, then (8) is equivalent to (2) with̀2-norm

replaced by`1-norm. The role of the regularization term12wT
i wi is similar to that in the standard
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SVR. Without it, we will overfit the data because in this case−ε ≤ yt − (wT
i φ(xt) + bi) ≤ ε for all

t with pt
i > 0.

The stopping criterion of our algorithm is as follows

| ˆobj − obj|
|obj|

≤ 0.05, (9)

where ˆobj andobj are the objective values of two consecutive iterations. Here the objective function

is defined as
l∑

t=1

m∑
i=1

pt
i|yt − fi(xt)|.

A summary of our changes from Algorithm II.1 is in the following:

Algorithm II.2

1’ Given ∆, SVR parameters C and ε, and SVR mapping function φ, solve (8) and obtain f̂i.

3’ Update β by the method described in Section III. If (9) is satisfied, stop the algorithm.

For an account on the relation between RBF networks and SVRs with RBF kernels, see [3], [25]

and references therein.

III. A DJUSTMENT OFβ USING MAXIMUM L IKELIHOOD ESTIMATION

Recall that the annealing parameterβ in (3) and (5) controls the degree of competition. Ifβ is

large,pt
i ≈ 1 for i = argminj

∑∆
δ=−∆(et−δ

j )2 and 0 otherwise. This is the so-called hard competition

(winner-takes-all). If one uses hard competition right from the beginning, it is very likely to get stuck

in an undesired local minimum. In [21], this problem was resolved by using deterministic annealing.

In this section we describe an adaptive method for adjustingβ. Let et
i, defined in (4), denote

the difference between the observed value and the estimated value. From (3),β can be viewed as a

parameter that characterizes certain statistical property aboutet
i. Therefore, at each iteration we suggest

to updateβ by maximizing the conditional likelihood function given currentf̂i. To do so, we assume

that, given current̂fi, yt follows a mixture of Gaussian distributionspi with meanf̂i(xt), a common

unknown varianceτ , and mixing coefficientsai. Then, the density ofyt given f̂i is

p(yt|f̂i, τ) =
m∑

i=1

aipi(yt|f̂i, τ)

=
m∑

i=1

ai√
2πτ

exp{−(et
i)

2/(2τ)}. (10)

Let τ̂ be an estimate ofτ . Then using (10) we can estimatept
i by Bayes rules

p̂t
i ≡ p(rt = i|f̂ , yt, τ̂)

=
p(yt, rt = i|f̂ , τ̂)∑m

k=1 p(yt, rt = k|f̂ , τ̂)

=
ai exp{−(et

i)
2/(2τ̂)}∑m

k=1 ak exp{−(et
k)2/(2τ̂)}

. (11)
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By comparing (5) and (11), we suggest to choose1/(2τ̂) as our nextβ. Sinceτ̂ is the measure of the

variation ofet
i, it is intuitively clear that the next̂τ will decrease iff̂i in the next iteration can better

fit the data. So the newβ is likely to increase, which corresponds to the annealing property used in

[24], [21].

We propose to estimateτ in each iteration by the maximum likelihood principle. This can be

obtained by Expectation Maximization method. To see how, letrt be as in Section II, which is a latent

variable (unobservable). We augmentyt with rt and call{(yt, rt) : t = 1, . . . , l} the complete data.

Then the complete-data log-likelihood function ofτ is

L(τ) =
l∑

t=1

logp(yt, rt|f̂i, τ)

=
l∑

t=1

logartprt(yt|f̂i, τ). (12)

Let τ (g) and p
t(g)
i ≡ p(rt = i|f̂ , yt, τ

(g)) be current estimates. LetY ≡ (y1, . . . , yl) and R ≡

(r1, . . . , rl). The E-step calculates the expectation of the conditional log-likelihood function of(Y, R)

given Y andτ (g):

Q(τ, τ (g)) (13)

≡ E[logp(Y, R|f̂ , τ)|f̂ , Y, τ (g)]

=
l∑

t=1

E[log p(yt, rt|f̂ , τ)|f̂ , Y, τ (g)]

=
l∑

t=1

m∑
i=1

log(aipi(yt|f̂i, τ))pt(g)
i

=
l∑

t=1

m∑
i=1

{(log ai)p
t(g)
i }+

l∑
t=1

m∑
i=1

{[log pi(yt|f̂ , τ)]pt(g)
i }, (14)

where the second equality follows from the independence of each observation and the third equality

follows from (12) and the definition ofpt(g)
i .

The M-step finds the maximizer ofQ:

τ (g+1) = arg maxτQ(τ, τg). (15)

By (14) and Gaussian assumption, we find that the maximum of (14) occurs at

τ (g+1) =
∑l

t=1

∑m
i=1{(et

i)
2p

t(g)
i }∑l

t=1

∑m
i=1 p

t(g)
i

=
∑l

t=1

∑m
i=1{(et

i)
2p

t(g)
i }

l
, (16)

wherep
t(g)
i is obtained by replacinĝτ in (11) by τ (g).

To apply the above method, the Gaussian assumption in (10) is not necessary. For example, if we

replace the mixture of Gaussians by a mixture of Laplace (double exponential) distributions with a
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common scale parameterτ , i.e.pi(yt|f̂i, τ) ∝ τ−1exp(−|yt−f̂i|/τ), the expectation and maximization

steps can be carried out similarly. The resulting estimate ofτ is similar to (16), but with(et
i)

2 replaced

by |et
i|. Because here a linear loss function is used for SVR, we suggest to use|et

i| instead of(et
i)

2

when updatingpt
i. Therefore, at the(g + 1)st iteration of our implementation, we updatept

i by (5)

with β replaced by1/τ (g+1) and (et
i)

2 replaced by|et
i|. Note that we use (5) because the parameter

∆ incorporates the slowly switching property [21] whileai are less important in the implementation.

IV. SOLVING THE MODIFIED SUPPORTVECTORREGRESSION

In this section we discuss how to solve the new SVR formulation (8). As SVRs map data into

higher dimensional spaces,w is a long vector variable. Thus, usually a dual problem is easier to be

solved. The Lagrangian dual of (8) can be derived by a similar way as that of standard SVR so here

we give only the resulting formulation:

min
α,α∗

1
2
(α− α∗)T K(α− α∗) + ε

l∑
t=1

(αt + α∗
t ) +

l∑
t=1

yt(αt − α∗
t )

subject to
l∑

t=1

(αt − α∗
t ) = 0, (17)

0 ≤ αt, α
∗
t ≤ Cpt

i, t = 1, . . . , l,

whereK is a square matrix withKt,o = K(xt, xo) ≡ φ(xt)T φ(x0). Here we mainly consider the

RBF kernelK(xi, xj) = e−γ||xi−xj ||2 . The main difference is that each dual variable has its own

upper boundCpt
i. At the optimal solutionwi =

∑l
t=1(αt − α∗

t )φ(xt). So

f̂i(x) =
l∑

t=1

(αt − α∗
t )K(xt, x).

If αt − α∗
t 6= 0, thenxt is a support vector of the modified SVR (17). The main difficulty on solving

(17) is thatK is a large dense matrix. This issue has occurred for the case of classification and some

methods such as the decomposition method (e.g. [19]) have been proposed. The decomposition method

avoids the memory problem by iteratively working on few variables. The extreme is the Sequential

Minimal Optimization (SMO) [22] where in each iteration only two variables are updated. Here we

consider the SMO-type implementation inLIBSVM [1]. Originally in LIBSVM the two variables are

selected by the following rule: The first element is theαt (or α∗
t ) which has the smallest value of the

following numbers:

−(K(α− α∗))t − ε− yt, if αt > 0 and

−(K(α− α∗))t + ε− yt, if α∗
t < C.

The second element is theαt (or α∗
t ) which has the largest value of

−(K(α− α∗))t − ε− yt, if αt < C and

−(K(α− α∗))t + ε− yt, if α∗
t > 0.
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They are derived from the optimality condition of the dual of (7). We changeC in the above formula

to Cpt
i while the convergence of the algorithm still holds. The modified code ofLIBSVM is available

upon request.

V. EXPERIMENTS

A. Four Chaotic Time Series

We test the case of completely overlapping input manifold used in [21]. For all(xt, yt), yt = frt
(xt).

They considerx ∈ [0, 1] and four different functions:f1(x) = 4x(1− x), f2(x) = 2x if x ∈ [0, 0.5)

and2(1 − x) if x ∈ [0.5, 1], f3(x) = f1(f1(x)), andf4 = f2(f2(x)). It is easily seen that all thefi

mapx from [0, 1] to [0, 1]. They setxt+1 = yt = frt
(xt) and activate the four functions consecutively,

each for 100 time steps, giving an overall 400 time steps. They then repeat the procedure three times

and obtain a time series of 1,200 points. An illustration of these functions is in Figure 1. As the

number of functions is considered unknown, we start from six competing SVMs. In the end some

SVMs represent the same function and the six SVMs represent four different functions. If we use only

four competing SVMs in the beginning, we find it is easier to fall into local minima than using six

SVRs.

For SVR parameters, we simply setC = 1 and the width of the insensitive tubeε to be 0.03 (actually,

we may setε to be any nonnegative small number, say 0 to 0.05). We set the parameterγ of the RBF

kernel to be 50. Since a smallerγ means greater smoothness of predictors, in order to avoid getting

trapped in a local minimum, we may start with a smallerγ and gradually increase it during training.

Therefore, we also try to adaptively adjustγ during training by settingγ(g) = 1/(2τ (g)), whereτ (g)

is as in (16). It works well too. The choice of∆ is the same as that in [8]: as the small switching rate

1/100 guarantees a large probability for short sequences of length 7 to contain no switching event,

a choice of∆ = 3 would work. We also find that this parameter is not crucial during training. For

this case the algorithm stops in about six iterations and the data points are well separated. See Figure

1 for the first four iterations. Here the initialpt
i are chosen to be around 1/6. So in the beginning,

the six predictors are about the same. As the iteration goes, the underlying structure resolves in a

hierarchical manner. We then add noise0.1N(0, 0.5) to these four functions. The algorithm stops in

seven iterations. In Figure 2 we present the first six iterations. For this case we randomly assign the

initial pt
i to be 0 or 1 under the condition

∑6
i=1 pt

i = 1, t = 1, . . . , 1200. By comparing the first

graphs in Figures 1 and 2, we find that if the initialpt
i are chosen to be around 1/6, the six predictors

obtained at the first iteration are closer to each other.
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Fig. 1. First four iterations (data without noise)

B. Mackey-Glass chaotic system

Next we consider a high-dimensional chaotic time series obtained from the Mackey-Glass delay-

differential equation [12]:
dx(t)

dt
= −0.1x(t) +

0.2x(t− td)
1 + x(t− td)10

.

Following earlier experiments, points are selected every six time steps. We generate 300 points with

delay parametertd = 23. Then we switchtd be to 17, 23, and 30, and generate also 300 points

for each of thetd. Totally there are 1,200 points from three underlying dynamics. The embedding

dimension isd = 6. That is,yt is the one-step ahead value ofxt = (yt−1, . . . , yt−6). For this problem

we set theγ = 1 and leave the other parameters the same as in the previous example. As can be seen

in Figure 3, the underlying dynamics are well segmented.

C. Santa Fe Time Series: Data Set D

We also consider the benchmark Data Set D from the Santa Fe Time Series Prediction Competition

[27]. This is an artificial data generated from a nine-dimensional periodically driven system with an

asymmetrical four-well potential and a drift on the parameters. The system operates in one well for
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Fig. 2. First six iterations (data with noise)

some time and then switch to another well with a different dynamical behavior. Each participant is

asked to predict the first 25 steps and the evaluation is based on the root mean squared error (RMSE) of

the prediction. The RMSE obtained by the winner of the Santa Fe Competition, Zhang and Hutchinson

[27, pp219-241], is 0.0665.

One may train a model on the whole dataset and then conduct predictions. But if data are actually

from different sources, it would be better to do segmentation before prediction. [21] proposes to use

the “Annealed Competition of Experts” (ACE) method to segment the time series into regimes of
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Fig. 3. pt
i, i = 1, . . . , 3 at each time pointt (x-axis: time; y-axis:pt

i)

approximately stationary dynamics by using six RBF networks. Then the prediction is simply done

by iterating the particular predictor that is responsible for the generation of the latest training data.

Similar to [21], in [17] they uses ACE with six RBF networks to segment the time series. Instead of

RBF networks, they then use SVR to train the particular class of data that includes the data points at

the end of the full training set. They also use SVR to train the full dataset and compare its predicting

performance with that obtained by using segmentation.

Here we start with the standard SVR (6) and train a model on the whole dataset. We set the

embedding dimension as 20 and the kernel parameterγ = 1.5 as in [17]. The SVR parameterε is set

to be 0 andC is determined by five fold cross validation on{2−4, 2−3, . . . , 25}. By five fold cross

validation we mean that after data are transformed into(xt, yt), they are randomly separated to five

groups. Sequentially one group is validated by training the rest. We then use this model to predict the

first 25 steps. Unfortunately, theC value with the smallest validation error does not always produce the

best prediction. For example, a typical run shows that: the smallest validation error0.0351 occurs at

C = 23 and the prediction error is0.0748; the smallest prediction error0.0521 is attained atC = 24,

but it has a larger validation error0.0357. As the result of a single run is not always representative,

we decide to investigate the long-run performance of this method by repeating the same procedure 30

times with different cross validations chosen randomly. The distribution of the selectedC values is

shown in Figure 4 (the light bars). In average, the RMSE of the 25-step prediction is0.0871.

Next we use Algorithm II.1 with six competing SVRs to segment the time series. The parameters

in the modified SVR (8) are set asγ = 0.05 (as in [17]), ε = 0, andC = 0.01. Then we evaluate

the pt
i values for each predictor at the last 25 points of the training data. The predictor with the
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Fig. 4. The Distribution of the Selected C Values

largestpt
i for the majority of the 25 points is chosen. After doing so, we use the standard SVR (6)

to train this particular class of data. Here we setε = 0 and selectC by five fold cross validation

on {2−4, 2−3, . . . , 25}. The resulting model is used to predict the first 25 steps of the testing data.

To study the long-run performance of the method we repeat this procedure 30 times. The average

of the RMSEs of the prediction errors is 0.0656. The distribution of the bestC selected is given in

Figure 4 (the dark bars). Of the 30 experiments, 15 of them outperform the result obtained by the

winner. Due to different initialpt
i, the number of data points chosen for after the segmentation varies.

For our 30 runs, this number ranges from 400 to 1,100. The best prediction performances (RMSE =

0.038 to 0.042) occur at numbers around 800 to 1,000. Our finding is that the prediction result using

segmentation is better than that using the whole dataset directly.

As mentioned in [17], determining the SVR parameters(C, ε) is computationally intensive. They

suggest to determine them at the minimum of the one step prediction error measured on a randomly

chosen validation set. To have a more stable parameter selection, here we use five fold cross validation

to selectC. Moreover, instead of settingε = 0, we also tried positiveε, but the results are not better.

It is desirable to compare our parameter settings with those in [17]. However, they did not indicate

their final choice of the parameters so we cannot make the comparison.

VI. D ISCUSSION

In this paper we present a framework for the unsupervised segmentation of non-stationary time

series using SVMs. The problems we consider here are the same as those in [21], [14]. The method

used in this paper is novel in two aspects. First, a new formulation of SVM and its implementation

are proposed for the switching problems. Second, we use statistical reasoning to adjust the annealing

parameter. The annealing property of the proposed method is given intuitively in Section II. From the
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figures we obtained in Section V, our results are comparable to those in [21]. Moreover, as we adjust

β adaptively, our algorithm requires much fewer iterations than theirs.

Several parameters in our algorithm must be chosen in the beginning. For the mapping functionφ,

we use the RBF kernelK(xi, xj) = e−γ||xi−xj ||2 , which is the most popular choice. The selection of

C, the width of the insensitive tubeε in (8), and the kernel parameterγ is usually by try and error.

For the two chaotic time series examples in Section V, we can easily select suitableC, ε, andγ, see

discussions in that section. However, for the prediction of Data Set D from the Santa Fe Time Series

Competition, it takes quite a long time to tune the parameter.

For a slowly changing dynamics, [21] is the first paper that proposes to use the parameter∆ for

updatingpt
i. Intuitively, this method would work better for smaller switching rates. The switching rates

of the first two examples in Section V are set to be 1/100 and 1/300 respectively, the same as those

in [21]. For the chaotic time series example in Section V-A, an unreported experiment shows that our

algorithm also works very well for a switching rate as high as 1/5.

As to the computational time, the major cost in each iteration of the proposed approach is on solving

m different SVM problems. It is known that for most SVM implementations fewer support vectors

(i.e. αt − α∗
t 6= 0, where(αt, α

∗
t ) is optimal for (8)) leads to less training time. We also consider

free support vectors (i.e.−Cpt
i < αt − α∗

t < 0 or 0 < αt − α∗
t < Cpt

i) because for some SVM

implementations they are more related to the training time than the number of support vectors. The

reason is that these implementations are iterative procedures and in final iterations mainly those free

support vectors are still considered. More discussions can be found in [1]. Figure 5 presents the number

of support vectors and the number of free support vectors at each iteration for the chaotic time series

example in Section V-A. Here the data is generated without adding the noise. To interpret, in the first

iteration the average number of support vectors of the six SVMs is 133, the average number of free

support vectors is 11; in the second iteration the average number of support vectors is 701, that of

free support vectors is 26, and so on.

Remember that there are 1,200 training data points and six competing SVRs. In this section, we

randomly assign the initialpt
i to be 0 or 1 under the condition

∑6
i=1 pt

i = 1, t = 1, . . . , 1200.

Therefore, at the first iteration, approximately 200 data points are assigned to each predictor and the

average number of support vectors of the six SVRs are less than 200. After updatingpt
i, for all t with

pt
i > 0 the corresponding data points are assigned to thei-th SVR. So the number of support vectors

substantially increased at the second iteration. Then as the underlying structure gradually resolved, the

number of support vectors reduces again. An important trick we used here is to set allpt
i ≤ 0.01 to

be zero. This effectively decreases the number of support vectors.

As for the numbers of free support vectors, they are all small compared to support vectors. At an

optimal solution of an SVM, some bounded variables have small values (i.e. small correspondingpt
i)
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Fig. 5. Number of support vectors (i.e.αt − α∗
t 6= 0) and number of free support vectors (i.e.−Cpt

i < αt − α∗
t < 0 or

0 < αt − α∗
t < Cpt

i)

but some are large (i.e. correspondingpt
i close to 1). For variables with small bounds, our current

implementation,LIBSVM, can quickly identify them, so the training time of the first iteration is similar

to that of the second iteration (less than two seconds on a Pentium III-500 machine). In other words,

though the number of support vectors is dramatically increased, at the second iteration, manypt
i are

small soLIBSVM quickly identifies bounded variables. Then the decomposition method mainly works

on free variables, so the difference between the two iterations is not that much.
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