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ABSTRACT
In multi-label classification, the imbalance between labels is often a
concern. For a label that seldom occurs, the default threshold used
to generate binarized predictions of that label is usually sub-optimal.
However, directly tuning the threshold to optimize F-measure has
been observed to overfit easily. In this work, we explain why this
overfitting occurs. Then, we analyze the FBR heuristic, a previous
technique proposed to address the overfitting issue. We explain
its success but also point out some problems unobserved before.
Then, we first propose a variant of the FBR heuristic that not only
fixes the problems but is also more justifiable. Second, we propose
a new technique based on smoothing the F-measure when tuning
the threshold. We theoretically prove that, with proper parameters,
smoothing results in desirable properties of the tuned threshold.
Based on the idea of smoothing, we then propose jointly optimizing
micro-F and macro-F as a lightweight alternative free from extra
hyperparameters. Our methods are empirically evaluated on text
and node classification datasets. The results show that our methods
consistently outperform the FBR heuristic.
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1 INTRODUCTION
In multi-label classification, the goal is to predict a set of relevant
labels given an input instance. Applications of this setting, to name
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a few, include text classification [23], product search or recommen-
dation [2], medical code prediction [17], and node classification
[5, 19, 26].

Among the many applications of multi-label classification, the
number of labels involved ranges from tens to millions or more.
Depending on the number of labels and the specific application,
different ways of prediction are applied, which are then evaluated
with different metrics. Some applications like recommender sys-
tems deal with hundreds of thousands of labels while focusing on
predicting a few top labels correctly. In such situations, metrics like
Precision@k or nDCG@k are common choices [30, 32]. However,
there are still many important applications with a smaller number
of labels (e.g., ≤ 10, 000), such as node classification [5, 19, 26] or
medical code prediction [17]. For these tasks, we aim to predict all
the relevant labels for an instance instead of only the top ones. In
these cases, metrics such as micro-F and macro-F are the most com-
mon. In this work, we consider applications that require predicting
all relevant labels and investigate the techniques for optimizing
micro-F and macro-F.

An important issue in multi-label classification is the imbalance
between labels. As the number of labels exceeds hundreds or more,
there may be labels that occur in only a few samples. Learning a
robust predictor for these labels thus poses a significant challenge.
For the convenience of our discussion, we roughly separate the
labels into rare (less than 10 positive samples), medium (between
10 and 100 samples) and frequent labels (more than 100 samples).
We use infrequent labels to refer to rare and medium labels, which
are our main focus in this work. Among the two metrics mentioned
above, macro-F is known to take infrequent labels into account
more effectively [15, 22]. Therefore, we use macro-F as the main
metric to judge a classifier’s performance on infrequent labels.

In addition to the choice of metrics, standard machine learning
algorithms must be adapted to imbalanced datasets. Common tech-
niques include over/under-sampling [6, 8], cost-sensitive methods
[6, 8], and threshold adjustion [10, 11, 25]. Currently, one of the
most effective ways to optimize macro-F is by tuning a separate
threshold for each label. The tuned thresholds are then applied
to the decision values of labels to give predictions. A pioneer in
this direction is SCut [29]. However, applying SCut to infrequent
labels has been observed to overfit easily, thus posing a challenging
research problem [9, 29]. As far as we know, not much work has
provided a good understanding of why the SCut method overfits
so badly, and so far, the FBR heuristic [29] is the only technique
to battle this issue. Despite FBR’s success in the past [4, 12], it is a
heuristic that is not well-understood. Therefore, in this work, we
aim to analyze the difficulties of tuning thresholds for infrequent
labels and provide principled solutions to the problems discovered.

https://doi.org/10.1145/3583780.3614996
https://doi.org/10.1145/3583780.3614996


CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Yu-Jen Lin and Chih-Jen Lin

In previous works on thresholding, the classifier for each label
is usually a linear classifier [4, 12]. We follow them to consider
linear support vector machines (SVM). However, our method should
also apply to other models (e.g., neural networks) as long as the
prediction is generated by thresholding on the scores of each label.

Our contribution can be summarized as follows:
• We explain that when optimizing F-measures (and similar
metrics) of infrequent labels by tuning the threshold, over-
fitting occur due to how these metrics are formulated.

• The FBR heuristic [29], a previous technique proposed to
solve the overfitting problem, is thoroughly analyzed. We
are likely the first to explain why this heuristic is effective.
Further, we novelly point out some problems of the heuristic.

• To solve the problems discovered, we first propose a variant
of the FBR method. Next, we propose using a smoothed F-
measure as a surrogate when tuning thresholds. In contrast
to the FBR heuristic, our methods are more principled and
have theoretical justifications.

• Both FBR and our proposed methods require a two-level
cross-validation procedure, which may be time-consuming
for large problems. We propose a lightweight version of
our method by jointly optimizing micro-F and macro-F. The
resulting method is much more efficient, requiring only one
level of cross-validation.

• Evaluations on text and node classification show that our
methods effectively improve upon the FBR heuristic.

The remaining work is organized as follows: In Section 2, we
formally define the problem and review some previous works. In
Section 3, we dive deeper into the FBR heuristic to explain why it
was successful. We further point out that FBR makes pessimistic
decisions in some situations and propose a solution to the problem.
In Section 4, we introduce smoothing for regularizing threshold
tuning and propose several algorithms based on this idea. Finally,
we present experimental results in Section 5 and conclude this study
in Section 6.

Supplementary materials and the experiment program are avail-
able at https://www.csie.ntu.edu.tw/~cjlin/papers/thresholding/. The
method jointly optimizing micro-F and macro-F, proposed in Sec-
tion 4.3, is now the thresholding strategy provided in ourmulti-label
classification package LibMultiLabel1. This work is an extension of
the first author’s master thesis [14].

2 PRELIMINARIES
2.1 Problem Setting
In multi-label classification, we are given a set of target labels
𝑌 = {1, 2, . . . , 𝐿} and a set of training samples {(𝑥𝑖 , 𝑦𝑖 )}, where 𝑥𝑖
is from a feature domain 𝑋 and 𝑦𝑖 is a vector in {−1, +1}𝐿 . A value
of +1 in the 𝑗th position of 𝑦𝑖 indicates that label 𝑗 is relevant to
𝑥𝑖 , while −1 indicates an irrelevant label. Our goal is to train a
model Φ(𝑥) : 𝑋 → {−1, +1}𝐿 using the training samples, such that
it correctly predicts the set of relevant labels given any sample 𝑥 .

The model Φ can be decomposed into 𝐿 components:

Φ𝑗 : 𝑋 → {−1, +1} for 𝑗 = 1, 2, . . . , 𝐿.

1https://www.csie.ntu.edu.tw/~cjlin/libmultilabel/

Each component Φ𝑗 is then trained to predict whether label 𝑗
is relevant to a sample, which is a binary classification problem.
The components Φ𝑗 are often implemented by a scoring function
𝜙 𝑗 : 𝑋 → R outputting a decision value for each label 𝑗 . Then, a
threshold 𝑇 is applied to 𝜙 𝑗 (𝑥) to generate binarized predictions:

Φ𝑗 (𝑥) =
{
+1 𝜙 𝑗 (𝑥) > 𝑇,

−1 𝜙 𝑗 (𝑥) ≤ 𝑇 .
(1)

When Φ𝑗 and 𝜙 𝑗 are solved independently for each 𝑗 as a binary
classification problem, this approach is called binary relevance. In
contrast, methods like neural networks typically train the compo-
nents for all 𝑗 together. This work mainly focuses on the binary
relevance method applied to linear support vector machines (SVM).
That is, the scoring function is in the form

𝜙 𝑗 (𝑥) = 𝑤𝑇
𝑗 𝑥 + 𝑏 𝑗 ,

where𝑤 𝑗 and 𝑏 𝑗 are learned parameters of the SVM. The default
threshold for SVMs is usually set at 𝑇 = 0. Besides SVM, other
models can be considered as long as a score is assigned to each
label and thresholded as in (1). Examples include applying binary
relevance to other base classifiers or neural networks that output a
probability for each label, which is usually thresholded at 𝑇 = 0.5.

2.2 Evaluation Metrics
Asmentioned in the introduction, we focus our discussion onmicro-
F and macro-F, which are common extensions of F-measure for
multi-label problems. In the setting of binary classification, the
F-measure of a binary prediction is defined as

F =
2tp

2tp + fp + fn , (2)

where tp, fp and fn stand for the number of true positives, false
positives, and false negatives, respectively.

When multiple labels exist, F-measure is extended in mainly
two ways. Macro-F is the average F-measure over all labels, while
micro-F calculates a single F-measure using counts of tp, fp and fn
summed over all labels. Let tp𝑗 , fp𝑗 and fn𝑗 denote the respective
counts calculated only using label 𝑗 . Macro-F and micro-F can be
expressed as:

Fmicro =

∑𝐿
𝑗=1 2tp𝑗∑𝐿

𝑗=1 (2tp𝑗 + fp𝑗 + fn𝑗 )
,

Fmacro =
1
𝐿

𝐿∑︁
𝑗=1

F𝑗 , where F𝑗 =
2tp𝑗

2tp𝑗 + fp𝑗 + fn𝑗
.

In the next section, we review some approaches proposed to
optimize F-measure.

2.3 Previous Works
Standard machine learning algorithms usually assume the positive
and negative classes to be balanced, and they optimize measures
like accuracy that treat each class equally. In this case, using default
thresholds described in Section 2.1 works reasonably well. However,
for an infrequent label, the corresponding binary problem is im-
balanced, with only a few positives. In such a situation, not tuning
the threshold can be a “critical mistake” [21]. Several works have

https://www.csie.ntu.edu.tw/~cjlin/papers/thresholding/
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Algorithm 1 SCut (one label)
Input: A set of samples 𝐷 = {(𝑥𝑖 , 𝑦𝑖 ) | 𝑦𝑖 ∈ {−1, +1}}, a metric

𝑓 (𝑇 ), number of folds 𝑉
Output: A trained scoring function 𝜙 , a threshold 𝑇
1: Randomly partition 𝐷 to 𝑉 subsets 𝐷1, 𝐷2, . . . , 𝐷𝑉

2: for 𝑘 = 1, 2, . . . ,𝑉 do
3: Train a model 𝜙 (𝑘 ) on 𝐷 \ 𝐷𝑘
4: On the validation set 𝐷𝑘 , calculate the decision values 𝑍 =

{𝜙 (𝑘 ) (𝑥) | 𝑥 ∈ 𝐷𝑘 }.
5: Find the threshold 𝑇 (𝑘 ) that maximizes 𝑓 (𝑇 (𝑘 ) ) on 𝑍 .
6: end for
7: 𝑇 = 1

𝑉

∑𝑉
𝑘=1𝑇

(𝑘 )
8: Train a 𝜙 on 𝐷
9: Return (𝜙,𝑇 )

demonstrated the importance of threshold tuning for traditional
machine learning models [1, 4, 25, 29] and neural networks [10].

2.3.1 SCut. Instead of using the default threshold 𝑇 in (1), SCut
[29] has a separate threshold 𝑇𝑗 for each label. The thresholds are
usually tuned to maximize a chosen metric on a validation set that
was not used to train the scoring function. A single validation set
or a 𝑉 -fold cross-validation (CV) can be used. When a CV is used,
the average of the 𝑉 thresholds is used as the final threshold. After
that, a final model is re-trained with all training data, for the extra
data (especially positive samples) from the validation set often
improves the model further. Since the methods proposed in this
work are all based on SCut, we give the procedure for tuning the
threshold of one label in Algorithm 1. We define the algorithm in a
general form such that any evaluation function 𝑓 (𝑇 ) can be used
to select the threshold. We provide the details about finding the
optimal threshold in step 5 of Algorithm 1. Let 𝑁 be the size of the
validation set 𝑍 . For simplicity, we assume all the decision values
𝜙 (𝑘 ) (𝑥𝑖 ) ∈ 𝑍 are all distinct. First, we sort the decision values in 𝑍 ,
so that we have 𝜙 (𝑘 ) (𝑥𝑖 ) < 𝜙 (𝑘 ) (𝑥𝑖+1) for 𝑖 = 1, . . . , 𝑁 − 1. Then
the optimization of the measure 𝑓 is done by searching through
these candidate thresholds:

(𝜏0,𝜏1, . . . , 𝜏𝑁 ) where

𝜏𝑖 =


𝜙 (𝑘 ) (𝑥1) − 𝜖 𝑖 = 0,
1
2

(
𝜙 (𝑘 ) (𝑥𝑖 ) + 𝜙 (𝑘 ) (𝑥𝑖+1)

)
0 < 𝑖 < 𝑁,

𝜙 (𝑘 ) (𝑥𝑁 ) + 𝜖 𝑖 = 𝑁,

(3)

for some small constant 𝜖 > 0.

When our goal is to optimize macro-F, it suffices to apply Algo-
rithm 1 with F-measure to each label since macro-F is the average
of F-measures for each label. This process is the SCut method from
[29]. In contrast, different labels are not separable when optimizing
micro-F. Therefore, a cyclic optimization over the labels is needed
to achieve an optimal solution [4, 20] (but a single pass over the
labels may be enough to produce a good model). When tuning the
threshold of label 𝑗 , the tp, fp and fn for other labels are treated as
constants, and the resulting micro-F as a function of 𝑇𝑗 is used to
select the threshold.

SCut given in Algorithm 1 assumes that the score functions 𝜙 𝑗

can be independently trained as in binary relevance. To apply the
idea to neural networks where the output unit for each label is
trained together, we can modify Algorithm 1 so that all output
units are trained together on the training set in step 3. However,
the threshold of each label is separately tuned on the validation
sets and averaged in step 5 and step 7, respectively.

2.3.2 Cost-based. Cost-sensitive learning is a general technique for
handling imbalanced data based on modifying the costs of false pos-
itives and false negatives. Moreover, a previous study theoretically
showed that cost-sensitive methods can also optimize F-measure
[18]. In the case of SVMs, for each binary subproblem, the weight
𝐶+ for the loss of positive samples is selected via CV [1, 12, 13].
However, several studies showed that, for the particular case of
applying SVM to text classification, adjusting the threshold is more
effective than tuning the costs [1, 12, 25].

2.3.3 FBR Heuristic. While SCut is a reasonable approach, it has
been discovered to overfit easily on rare labels [9, 29]. Surprisingly,
with rare labels being a common problem in multi-label classi-
fications, we have found little work dedicated to deal with this
overfitting problem. An exception is the FBR heuristic [29]. In this
approach, a value 𝑓 𝑏𝑟 ∈ (0, 1) is pre-specified. If at step 5 of Al-
gorithm 1, the maximal F-measure on the validation set does not
exceed 𝑓 𝑏𝑟 , the FBR heuristic sets the threshold𝑇 (𝑘 ) tomax(𝑍 ), the
highest decision value in the validation set. This method, referred
to as SCutFBR.1 in [29], was shown effective [4, 12]. In practice,
the parameter 𝑓 𝑏𝑟 is selected with a CV procedure wrapping Algo-
rithm 1. Because Algorithm 1 already has its inner-level CV for a
selecting threshold, there are two levels of CV in total.

In addition to SCutFBR.1, the same author of [29] proposed a
less-used variant of the method, called SCutFBR.0, that sets the
threshold to infinity instead of max(𝑍 ). Judging from this clue, the
authors likely intended to increase the threshold so that the number
of false positives in the testing phase is decreased.

Although FBR is currently the best method for mitigating the
overfitting of SCut, it is a heuristic without good explanations. In
the next section, we dive deeper into the FBR heuristic to explain
its success but also point out its problems.

3 WHY FBRWORKS AND ITS ISSUES
To understand how FBR benefits the prediction of rare labels, we
first examine an interesting behavior of the heuristic in Section 3.1.
It shows that FBR actually improves the predictions of rare labels
by lowering the threshold instead of increasing it as the authors
likely intended. Then, in Section 3.2, we explain why lowering the
threshold is the correct strategy. Finally, we point out some issues
of FBR in Section 3.3, which we believe were not found before. We
provide the solutions to these problems in Section 3.4 and Section 4.

3.1 An Interesting Behavior of FBR
A previous study [4] pointed out that for rare labels, the FBR heuris-
tic shows an interesting behavior of choosing a threshold lower
than the default 𝑇 = 0. This behavior, associated with improving
macro-F, occurs when the validation set consists of only negative
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Figure 1: The distribution of the decision values from one of
the validation sets of a binary subproblem fromWiki10-31K.
The plotted F-measure is calculated by setting the threshold
to the mid-point between adjacent decision values and count-
ing the corresponding tp, fp and fn. In this case, the optimal
value of F-measure clearly occurs at a too-low threshold,
which results in many false positives. Also, notice that the
gain in F-measure is almost zero (1.4 × 10−3).

Figure 2: The distribution of the decision values from one of
the validation sets of a binary subproblem fromWiki10-31K.

samples, a common situation for rare labels. Since there are no pos-
itive samples and thus no true positive predictions, the F-measure
on the validation set is always 0, which is smaller than 𝑓 𝑏𝑟 . As a
result, the FBR heuristic sets the threshold to the highest decision
value of the validation set. Since the validation set contains only
negative samples, the highest decision value is often lower than
the original threshold at 0.

In addition to the situation pointed out by [4], we further discov-
ered that FBR may still give a threshold lower than 0when there are
positive validation samples. When the number of positive training
samples is too few to represent the full positive distribution, the pos-
itive validation samples are often predicted as negative [1]. We give
an illustration in Figure 1. In this case, optimizing the F-measure on

the validation decision values leads to a too-low threshold that gives
many false positives. This behavior can be understood from the
definition of F-measure in Equation (2). When tp = 0, F-measure is
always zero, regardless of the value of fp. Therefore, any threshold
that gives tp ≠ 0, no matter how large fp is, would give a non-zero
F-measure and be deemed better than a reasonable threshold with
tp = 0. In Supplementary E, we perform experiments to show that
situations like Figure 1 frequently occur in practice.

The example above explains why SCut, which optimizes the F-
measure on each label, easily overfits on rare labels. In this example,
the FBR heuristic would detect the low F-measure attained and
set the threshold to the negative distribution’s highest value. The
resulting threshold would avoid many false positives and still tends
to be lower than the original threshold 0.

We note that the same overfitting issue occurs in other metrics
that stay at 0 when tp = 0. They include recall, precision, F𝛽 and
G-mean. The threshold optimization for these metrics should be
proceeded with care when the positive samples are rare.

3.2 The Benifit of a Threshold Lower than the
Default Value

We have seen that, for rare labels, FBR has an interesting behavior
of lowering the threshold to below zero. This property is likely
unknown to the original author of [29]. In this section, we explain
why this behavior is desirable when the positive samples are rare.

In imbalanced scenarios, it has been known that the decision
boundaries learned by common algorithms are often skewed to-
ward the minority, which results in under-predicting the minority
class. This behavior occurs because the positive samples are too
few to fully specify the positive distribution boundary. A synthetic
example for SVMs demonstrating this behavior was given in [28].
Furthermore, [1, 25] tested SVMs on real-world text data and discov-
ered that SVM’s default threshold is too high, misclassifying many
positive samples as negative. In recent years, similar problems have
also been discovered on neural networks, showing that the default
probability threshold 0.5 is far from optimal [10].

The question, then, is how much to lower the threshold. From
the discussion in Section 3.1, we know the decision should not
rely on optimizing F-measure. In [1], they propose to estimate a
probabilistic model 𝑝 (𝑦 = +1 | 𝑤𝑇 𝑥 + 𝑏) from the training set
and threshold the probability at some small value (e.g., 0.02). This
approach usually lowers the threshold and is shown to be effective
for infrequent labels. However, it results in poor performance for
frequent labels [1].

Our idea is similar to that of [1]. We argue that when the positive
samples are infrequent, the threshold should be placed on the upper
bound of the negative distribution estimated on a validation set.
In other words, the algorithm turns into an outlier-detection-like
classifier. Since the upper bound of the negative distribution is
estimated on the validation set, this boundary should not give too
many false positives in the testing phase while being able to detect
some of the positive samples. These successfully-detected positive
samples then improve the F-measure. As for how to lower the
threshold automatically for infrequent labels without affecting the
performance of frequent labels, we provide solutions in Section 3.4
and Section 4.
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Note that FBR sets the threshold to the highest decision value
in the validation set instead of the highest decision value in the
negative samples. These two settings coincide when there are no
positive samples, or all positive samples are mixed with the neg-
atives (like Figure 1), which are common when performing CV
on rare labels. This coincidence is probably why FBR successfully
improves the F-measure on rare labels. However, in the next sec-
tion we argue that FBR is an inferior strategy since it can be too
pessimistic sometimes.

3.3 Issues of FBR Heuristic
We have explained why FBR works for rare labels. However, we
point out some issues of FBR in other situations. In Section 3.2,
we mentioned that FBR sets the threshold to the highest decision
value of all validation samples, instead of only the negative samples.
We now show that FBR can be too pessimistic for medium labels
(which are slightly more frequent than rare labels, as defined in
Section 1). We give an example validation set of a medium label
in Figure 2. In this case, there are three positive samples on the
right. We call these positive samples above all negative samples the
“easy positives”, and we argue that a reasonable threshold should
not give up the easy positives. However, because the F-measure
is never higher than 0.2 for any threshold, if 𝑓 𝑏𝑟 = 0.2, the FBR
algorithm would set the threshold higher than the easy positives,
losing performance that can be easily grasped. Instead, setting the
threshold slightly higher than the highest negative sample seems
better because it correctly predicts the easy positives and avoids
many false positives.

Situations like Figure 2 tend to happen for medium labels because
there are enough positive samples for easy positives to appear but
not enough to fully specify the positive distribution, which leads to
a low validation F-measure. In Supplementary E, we experimentally
show that situations like Figure 2 indeed occur in practice.

3.4 A New and More Explainable Variant of
SCutFBR

Previous discussions in Section 3 show that when situations like
Figure 1 occur (i.e., the label is rare and the positive validation
samples are mixed in the negative distribution), the attained F-
measure is usually low. Therefore, we can check if the attained
F-measure is lower than a cutting point to detect a bad threshold.
Since such a threshold cannot be trusted, the threshold has to be
reset. We then explained that it is reasonable to adjust the threshold
to the highest decision values of negative samples.

To implement the preceding strategy, it is essential but difficult to
judge what value of F-measure counts as too low and thus requires
resetting. Therefore, one can try multiple cutting points and find
the most suitable one by an outer-level cross-validation. In this
regard, 𝑓 𝑏𝑟 serves as the guess of this cutting point. Based on these
ideas, we can derive a more explainable variant of SCutFBR:

SCutFBR.n –Themethod is the same as SCut with FBR heuristic,
except that the threshold is set to the highest decision value of
the negative samples when the attained F-measure is less than
𝑓 𝑏𝑟 . A two-level cross-validation is used, where the outer level
selects the parameter 𝑓 𝑏𝑟 and the inner level selects the threshold.

4 SMOOTHED F-MEASURE
In Section 3.1, we explained that, for rare labels, optimizing F-
measure can lead to a too-low threshold since F-measure does not
penalize false positives when tp = 0. Besides the remedy offered in
Section 3.4, we propose smoothing the F-measure by introducing
some constants 𝑎 and 𝑏 where 𝑎 > 0 and 𝑏 ≥ 0:

F(tp, fp, fn;𝑎, 𝑏) = 𝑎 + 2tp
𝑏 + 2tp + fp + fn . (4)

The parameter 𝑎 forces the numerator to be larger than zero, so
any increase in fp (while other counts stay the same) is penalized by
a decrease in the smoothed F-measure. The parameter 𝑏 is included
for generality and can be used to prevent dividing by zero when
tp = fp = fn = 0. Given a set of decision values, the counts tp, fp
and fn are functions of the threshold 𝑇 . Therefore, we will also use
the notation tp(𝑇 ) for the number of true positives (similarly for
fp and fn) and 𝐹 (𝑇 ;𝑎, 𝑏) for the smoothed F-measure.

To gain more insight into smoothed F-measure, we can rewrite
it as

F(tp, fp, fn;𝑎, 𝑏) = 𝑎

𝑏 + p + tp + fp + 2tp
𝑏 + 2tp + fp + fn (5)

by separating the numerator in (4) into two terms and then replace
tp + fn with p (i.e., number of positive validation samples) in the
first term. We can see that the second term in (5) resembles the
original F-measure (when 𝑏 = 0, it becomes F-measure). As for
the first term, because tp + fp is the number of samples predicted
as positive (i.e., the number of samples above the threshold), the
denominator

𝑏 + p + tp + fp
is nondecreasing as the threshold moves down. Therefore, a higher
threshold leads to a larger value of the first term while a larger p
make this term smaller. From these observations, we can interpret
smoothing as adding to F-measure a term regularizing the thresh-
old towards higher values, where the regularization automatically
weakens as labels becomes more frequent (i.e., p increases).

The discussion above gives us some intuition of what smooth-
ing does. In the next subsection, we explain more formally how
smoothing solves the problems mentioned in Section 3.

4.1 How Smoothing Solves the Problems
In this section, we give in-depth discussions on the properties of
smoothing to show how smoothing solves the problems mentioned
in Section 3.1 and Section 3.3, respectively.

4.1.1 The Problem of Too-Low Thresholds. In Section 3.1, we men-
tioned that when a label is rare, the thresholdmaximizing F-measure
is often too low, causing numerous false positives. To demonstrate
how smoothing avoids such thresholds, we prove a property of
smoothed F-measure in Theorem 1. For simplicity, we conduct our
theoretical discussions under the following setting:

Assumption 1. Let a set of decision values along with their binary
labels 𝐷 = {(𝜙 (𝑥𝑖 ), 𝑦𝑖 ) | 𝑦𝑖 ∈ {−1, +1} for 𝑖 = 1, 2, . . . , 𝑁 } be given.
We assume the decision values are distinct and sorted, i.e., 𝜙 (𝑥𝑖 ) <
𝜙 (𝑥𝑖+1) for all 𝑖 = 1, 2, . . . , 𝑁 − 1. Furthermore, we assume that 𝑎
and 𝑏 satisfy 𝑎 > 0 and 𝑏 + p > 0, where p is the number of positive
samples in 𝐷 .



CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Yu-Jen Lin and Chih-Jen Lin

Theorem 1. Under Assumption 1, the threshold 𝑇 ∗ maximizing
the smoothed F-measure 𝐹 (𝑇 ;𝑎, 𝑏) satisfies

fp∗ ≤ tp∗ ( 2(𝑏 + p)
𝑎

− 1), (6)

where fp∗ and tp∗ are the corresponding counts generated by thresh-
olding at 𝑇 ∗.

The proof is in Supplementary A.1. Theorem 1 shows that when
optimizing the smoothed F-measure, the resulting threshold never
gives a too large fp unless a proportional tp is also obtained. In con-
trast, no such bound holds for the original F-measure. We can con-
sider a dataset with only one positive sample. Because F-measure
is always 0 when tp = 0, optimizing F-measure will always lower
the threshold to include that one positive sample, no matter how
many false positives it gives.

Furthermore, we can use Theorem 1 to show that smoothing
can reset a bad threshold above the highest decision value of the
negative samples when dealing with rare labels, for which these
two situations commonly occur:

(1) There are no positive samples in the validation set.
(2) There are positive samples in the validation set. However,

due to the lack of positive training samples, the positive
validation samples are predicted as negative as in Figure 1.

In the first situation, since tp = 0 for every threshold, we must have
tp∗ = 0. Theorem 1 then tells us fp∗ must also be zero. Therefore,
the resulting threshold is above the highest negative sample. In the
second situation, a threshold lower than the highest decision value
of negative samples can easily generate a large fp with a small tp.
Under suitable (𝑎, 𝑏), such a threshold would not satisfy (6) and thus
not be selected when optimizing smoothed F-measure. For example,
in Figure 1, we have p = 2, and the threshold maximizing the
original F-measure gives tp = 1, fp = 1419. If we choose 𝑎 = 𝑏 = 1
and plug all number into (6), we see that

1419 ≤ 1 · ( 2(1 + 2)
1 − 1)

does not hold. Therefore, the threshold maximizing the smoothed
F-measure would be above the highest negative sample in this case.
The discussion above shows how smoothing solves the problem of
too-low thresholds from Section 3.1.

4.1.2 The Problem of Pessimistic Thresholds. In Section 3.3, we
pointed out FBR selects thresholds that are too pessimistic, giving
up the easy positives. We now show that smoothed F-measure does
not give up the easy positives.

Theorem 2. Under Assumption 1, if 𝑎 < 2(𝑏 + p) and there exists
𝑖′ such that

𝑦𝑖 = +1 for all 𝑖 ≥ 𝑖′, (7)
then the threshold 𝑇 ∗ maximizing 𝐹 (𝑇 ;𝑎, 𝑏) satisfies 𝑇 ∗ < 𝜙 (𝑥𝑖′ ).

The proof is in Supplementary A.2. Theorem 2 shows that if
index 𝑖′ is an easy positive sample, then the threshold optimizing
the smoothed F-measure will be lower than sample 𝑖′ as long as
𝑎 < 2(𝑏 + p).

We have finished explaining how smoothing solves the problems
discovered in Section 3. Next, we discuss in detail how 𝑎 and 𝑏 may
be selected in practice.

4.2 Selecting a and b
As shown in Theorem 1, 𝑎 and 𝑏 control the allowed trade-off
between fp and tp. Intuitively, (𝑎, 𝑏) that are too large may cause
the smoothed F-measure to deviate from the original F-measure
or affect the performance on frequent labels. Picking the right
parameter is not easy. Therefore, like what we did in Section 3.4 for
choosing the cutting point, we apply CV to select a suitable (𝑎, 𝑏).
Specifically, we consider a list of candidate values to search over:

(𝑎1, 𝑏1), (𝑎2, 𝑏2), . . . , (𝑎𝑚, 𝑏𝑚).
Notice that we do not use a list of values for 𝑎 and 𝑏 separately and
search over all combinations. The reason is that the proper range
of 𝑎 depends on 𝑏, as we will now derive. For the upper bound of 𝑎,
we use the following corollary of Theorem 1.

Corollary 3. Under the same assumptions in Theorem 1, if 𝑎 >

2(𝑏+p), then the threshold𝑇 ∗ maximizing the smoothed F-measure
is always higher than all decision values.

The proof is in Supplementary A.3. Clearly, unconditionally
placing the threshold higher than all decision values would give
up the easy positives, which we argued to be too pessimistic in
Section 3.3. Therefore, 2(𝑏+p) can be an upper bound for𝑎 since any
value larger gives an undesirable behavior. Moreover, 𝑎 < 2(𝑏 + p)
allows Theorem 2 to hold, which guarantees that the resulting
threshold does not give up any easy positive.

Next, we derive an lower bound for 𝑎 with the following theorem:

Theorem 4. Under Assumption 1, if 𝑎 and 𝑏 also satisfy

𝑎 <
2(𝑏 + p)

𝑁
,

then the threshold 𝑇 ∗ maximizing the smoothed F-measure is al-
ways less than or equal to the largest decision value among the
positive samples.

The proof is in Supplementary A.4. Recall that the original pur-
pose of smoothing is to prevent lowering the threshold to always
include at least one positive. Theorem 4 shows that if 𝑎 is too small,
the behavior of including at least one positive sample would always
occur. Therefore, 2(𝑏 + p)/𝑁 serves as a lower bound for 𝑎.

We do not derive a bound for 𝑏. Intuitively, it should not be too
large. Otherwise, the smoothed F-measure would be too distorted
to act as a surrogate for the F-measure. Also, the parameter 𝑏 should
not growwith the number of positive samples since smoothing is for
stabilizing the threshold optimization of infrequent labels, and the
threshold optimization of frequent labels is already stable without
smoothing. In practice, we can prepare a prespecified geometric
sequence for𝑏. Then, for each𝑏, we select 𝑎 as a geometric sequence
within the range derived in Corollary 3 and Theorem 4. Empirically,
we found that searching 𝑏 up to 100 is adequate.

Knowing the proper search range for the parameters, we devise
the following methods for selecting 𝑎 and𝑏 and optimizing macro-F:

smooth-each – For each label 𝑗 , this method performs a two-
level CV. Under a fixed (𝑎, 𝑏), the inner level selects the threshold
using Algorithm 1 with 𝐹 (𝑇 ;𝑎, 𝑏) as the metric. The outer level
checks a list of (𝑎, 𝑏) pairs and selects the one achieving the best
validation F-measure. Using the best (𝑎∗, 𝑏∗), a final model for label
𝑗 is produced by running Algorithm 1 with all training data. In
short, 𝑎 and 𝑏 are selected independently for each label.
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smooth-all –Thismethod performs a two-level CV. For all labels
together, the outer-level CV selects a pair of (𝑎, 𝑏) that achieves
the best validation macro-F. The inner level uses the same given
(𝑎, 𝑏) to select a threshold for each label using Algorithm 1 with
𝐹 (𝑇 ;𝑎, 𝑏). Then, we use the best (𝑎∗, 𝑏∗) and the entire training set
to run Algorithm 1 again for each label.

Note that in the outer-level CV, we use F-measure and macro-F,
instead of smoothed versions, for selecting (𝑎, 𝑏) in smooth-each
and smooth-all, respectively. The reason is that the original macro-F
is the ultimate goal we care about, and the metric used in selecting
(𝑎, 𝑏) should be independent of the (𝑎, 𝑏) being selected.

The above procedures both involve a CV process for selecting
(𝑎, 𝑏). Under each training/validation split in the outer-level CV, and
some given (𝑎, 𝑏), a call to Algorithm 1 performs an inner-level CV,
which trains𝑉 +1models in steps 3 and 8. Supposewe search𝑚 pairs
of (𝑎, 𝑏) by calling Algorithm 1 for each pair, then𝑚(𝑉 + 1) models
are trained, which can be prohibitively expensive. We adopt the
implementation strategy from [4] to lower the computational costs
of this process. Note that parameters like 𝑓 𝑏𝑟 (in SCutFBR.1), 𝑎 and
𝑏 (in our smoothing-based methods) only affect the thresholding
step (i.e., step 5 of Algorithm 1) after 𝜙 (𝑘 ) had been trained. In [4],
they reuse the same CV split for each value of 𝑓 𝑏𝑟 . We apply the
same strategy to select 𝑎 and𝑏. This way, the𝑉 +1models are reused
for each (𝑎, 𝑏). Only the threshold optimization is done for each
parameter. Since most of the time is spent on training the linear
models instead of threshold tuning, reusing the trainedmodels saves
considerable time (roughly𝑚 times faster). This implementation
strategy is applied to all the methods above for our experiments.

4.3 Micro-F as Smoothed F-measure
Note that the methods proposed in Section 4.2 all require two levels
of CV. Even with the technique speeding up the inner level of cross-
validation, two levels of 𝑉 -folds CV still require training (𝑉 + 1)2
models for each label2, which is time-consuming. In this section,
we propose a heuristic that takes advantage of smoothed F-measure
while being free from extra hyperparameters. This way, only one
level of CV is required for each label.

We can notice that when optimizing the threshold on the current
binary subproblem for label 𝑗 , the micro-F calculated from label 1
to 𝑗 acts as a smoothed F-measure:

Fmicro
1, 𝑗 =

𝑎︷  ︸︸  ︷
𝑗−1∑︁
𝑖=1

2tp𝑖 +2tp𝑗
𝑗−1∑︁
𝑖=1

(2 tp𝑖 + fp𝑖 + fn𝑖 )︸                     ︷︷                     ︸
𝑏

+(2 tp𝑗 + fp𝑗 + fn𝑗 )
. (8)

However, if we sequentially optimize (8) for each label, 𝑎 and 𝑏
would grow with the number of trained labels. When 𝑗 is large, (8)
does not serve as a nice surrogate for F-measure anymore. To benefit
from the smoothing effect of micro-F while still optimizing for

2Because we re-train with all data after cross-validation in both levels, the total models
trained is (𝑉 + 1)2 instead of𝑉 2 .

Table 1: Data statistics. For the column “distribution”, we
report the proportion of rare, medium and frequent labels
in the mentioned order.

Dataset #train #test #feature #label distribution
PPI 43,966 10,992 128 121 0/0/100
Flickr 64,410 16,103 128 195 0/12.3/87.7

BlogCatalog 8,249 2,063 128 39 2.56/25.6/71.8
RCV1-topics 23,149 781,265 47,236 101 4.95/27.7/67.3
EUR-Lex 15,449 3,865 186,104 3,956 63.5/31.5/4.95

Wiki10-31K 14,146 6,616 104,374 30,938 88.6/10.3/1.06

macro-F, we can consider optimizing the sum of micro-F and macro-
F. In other words, micro-F can act as a regularizer that smooths
the optimization of macro-F. Therefore, this setting should be less
prone to overfitting than only optimizing macro-F. In detail, when
tuning the threshold of the 𝑗th model, we optimize the following
measure by treating the results of all previous labels as constants:

Fmicro
1, 𝑗 (𝑇 ) + Fmacro

1, 𝑗 (𝑇 ) (9)

=

∑𝑗−1
𝑖=1 2tp𝑖 + 2tp𝑗 (𝑇 )∑𝑗−1

𝑖=1 (2 tp𝑖 + fp𝑖 + fn𝑖 ) + (2 tp𝑗 (𝑇 ) + fp𝑗 (𝑇 ) + fn𝑗 (𝑇 ))

+1
𝑗

( 𝑗−1∑︁
𝑖=1

2tp𝑖
2tp𝑖 + fp𝑖 + fn𝑖

+
2tp𝑗 (𝑇 )

2tp𝑗 (𝑇 ) + fp𝑗 (𝑇 ) + fn𝑗 (𝑇 )

)
.

While we motivated the use of (9) from the viewpoint of smooth-
ing the optimization of macro-F, an additional advantage is that
reasonable micro-F may be obtained simultaneously. Since a single
measure (macro-F) may not capture all aspects of a classifier and
over-optimizing macro-F can lower the performance of micro-F, it
can be beneficial to balance the optimization of two measures.

Based on the aforementioned idea, we propose the method:
micromacro – For each label 𝑗 , apply Algorithm 1 using (9) as

the measure.
Because the function (9) involves quantities associated with the

thresholds of labels 1 to 𝑗 − 1, a naive calculation would require
looping over all previous labels. In Supplementary B, we provide
some implementation details for evaluating (9) efficiently.

Since the order of labels may affect the performance of micro-
macro. In Supplementary D, we provide experimental results to
discuss the possible impact of label order on its performance.

5 EXPERIMENTS AND ANALYSES
5.1 Experimental Settings
5.1.1 Datasets. We compare the algorithms on six datasets. RCV1-
topics [12], EUR-Lex [16] andWiki10-31K [33] are text classifi-
cations tasks, each with different (in orders of magnitude) number
of labels and different distribution of label frequency. We choose
node classification for the remaining three datasets to see how our
methods generalize to a different domain. They are PPI [7], Flickr
[27] and BlogCatalog [27]. A major distinction between these two
domains is that text data consists of high-dimensional, sparse tf-idf
features, while node classification data consists of low-dimensional,
dense, learned representations. The details about source of data
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and preprocessing are in Supplementary C. We list the statistics
for each dataset in Table 1, which includes the proportion of rare,
medium and frequent labels in each dataset.

5.1.2 Methods. The comparison will include SCutFBR.n from Sec-
tion 3.4, the two smoothing-based method from Section 4.2, and
the micromacro method from Section 4.3. Besides, we also test the
following algorithms:

• Binary relevance (BR) without threshold tuning.
• SCut [29]: For each label, this method applies Algorithm 1
using F-measure as the metric.

• SCutFBR (SCutFBR.1 in [4, 12]): For each label, this method
performs a two-level CV. The outer level selects an 𝑓 𝑏𝑟 value
with the best F-measure. The inner level applies Algorithm 1
with F-measure and FBR heuristic to select a threshold.

• Cost-sensitive [12, 13]: For each label, a one-level CV is per-
formed to select 𝐶+, the multiplier of the loss value for pos-
itive samples, with the best F-measure. Since this method
optimizes the F-measure of each label, it is equivalent to
optimizing macro-F.

• Cost-sensitive-micro [13]: A CV is performed to select a cost
𝐶+ that is used for training all labels. The cost is selected to
achieve the best micro-F. This method is included to see how
well the compared methods perform on micro-F.

The details of all the parameters searched in each algorithm are
listed in Supplementary C.

5.2 Main Results
We run each algorithm on each dataset with five different random
seeds and report the averaged micro-F and macro-F. The results are
listed in Table 2.

5.2.1 SCut’s Overfitting Is Mitigated. First, BR without threshold
tuning performs poorly on all datasets. SCut effectively improves
micro-F and macro-F when there are not many rare labels. The
improvements can be observed on three node classification data and
RCV1-topics. However, on datasets dominated by rare labels (i.e.,
Wiki10-31K and EUR-Lex), SCut overfits and greatly lowers micro-
F, due to many false positives generated by a too-low threshold, as
analyzed in Section 3.1 and Figure 1. On these two datasets, FBR and
our methods successfully mitigate the overfitting by thresholding at
the upper bound of the negative distribution. Therefore, the micro-F
improves drastically, and macro-F also increases.

5.2.2 Optimizing Macro-F. Although FBR can mitigate the overfit-
ting of SCut, it comes with a cost. A decrease in macro-F compared
to SCut can be observed on Flickr, BlogCatalog and RCV1-topics,
which have fewer rare labels and more medium-to-frequent labels.
This decrease shows that FBR cannot handle medium-to-frequent la-
bels well. Compared to SCutFBR, SCutFBR.n achieved better macro-
F on many datasets, supporting our claim that the highest decision
value of all validation samples can be too pessimistic, and the high-
est decision value of the negative samples is a better choice.

Although SCutFBR.n improved upon SCutFBR, it still obtained
macro-F lower than SCut on some datasets. In contrast, the macro-F
of smooth-all is always better than or competitive with SCut and
SCutFBR across all datasets. We believe this is because smooth-all
can find thresholds better (in terms of macro-F) than the upper

bound of negative distribution when more positive samples are
present. See Section 5.3 for more explanation.

Nowwe focus on the cost-sensitivemethod, which also optimizes
macro-F. Although not the best, it performs decently on the node
classification datasets. However, its macro-F on text data is poor.
This result agrees with previous studies that discovered tuning
𝐶+ for SVM is not effective on text data [1]. Compared to the cost-
sensitive method, thresholding seems more general, as it can handle
data from different domains.

5.2.3 Balancing Micro-F and Macro-F. In practice, there is often a
trade-off between micro-F and macro-F, which can be observed in
Table 2. The smooth-all method is good at macro-F but sometimes
give lower micro-F, as the results on Flickr and BlogCatalog show.
On the other hand, cost-sensitive-micro is good at micro-F but
sometimes gives significantly lower macro-F, as the results on PPI
and Flickr show.

Only comparing macro-F can be unfair to SCutFBR since it was
proposed to “minimize the impact on micro-average F1 at the ex-
pense of slightly lowering macro-average F1” [29]. On the datasets
Flickr and BlogCatalog, where macro-F is lowered by SCutFBR,
micro-F is indeed improved in exchange. However, if we compare
SCutFBR (or SCutFBR.n) with micromacro, which also aims to bal-
ance both measures, we can see that micromacro is better on almost
all datasets. It seems that micromacro finds a sweet spot between
two extremes, achieving decent performance on both measures.
Sometimes the performance of micromacro is even competitive to
methods focusing on one measure only. Another advantage of mi-
cromacro is that no hyperparameters to tune, so only a single-level
CV is needed. Therefore, the micromacro method is a lightweight
and stable strategy for threshold selection.

5.2.4 Smooth-Each Overfits in Parameter Selection. Interestingly,
smooth-each seems overfitting on EUR-Lex and Wiki10-31K since
a drastic drop in micro-F and occurred and its macro-F is also
lower than smooth-all. We explain why that happens. When we
run Algorithm 1 with different values of (𝑎, 𝑏), it gives a threshold
𝑇𝑎,𝑏 for each pair of (𝑎, 𝑏). Then, selecting (𝑎, 𝑏) in the outer level
of cross-validation is equivalent to optimizing the F-measures on
the validation set using the set of thresholds {𝑇𝑎,𝑏 }. When the
thresholds in {𝑇𝑎,𝑏 } contain low thresholds, we risk overfitting F-
measures again. This example tells us that, when the label is rare,
not only directly tuning the threshold based on F-measure overfits
easily, but selecting parameters or models based on F-measure may
also be risky. We conclude that the parameters 𝑎 and 𝑏 should be
selected over several labels, as in the smooth-all approach, so that
they do not overfit the F-measure of a single label.

5.3 Improvements for Labels of Different Rarity
Because macro-F is the average F-measure over the labels, we
can understand how labels of different rarity contribute to the
improvement in macro-F by viewing their respective improvement
in F-measure. In Figure 3, we present the relation between p and
the improvement in F-measure of our methods (smooth-all and
SCutFBR.n) relative to SCutFBR. First, we can notice that, as ex-
pected, our methods perform similarly to SCutFBR for extremely-
rare labels (#positve ≤ 5) and highly-frequent labels (#positives
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Table 2: Results on the test set, averaged over five random seeds. We report the micro-F and macro-F for each dataset. For
readability, we multiply the value by 100. In Supplementary C, we provide the standard deviations and the significance tests of
the experiments.

PPI Flickr BlogCatalog RCV1-topics EUR-Lex Wiki10-31K
method micro macro micro macro micro macro micro macro micro macro micro macro
BR 44.58 16.86 23.26 13.21 29.00 13.28 80.39 49.57 52.63 17.40 26.22 2.06
SCut 53.58 48.35 37.91 30.16 32.50 26.10 81.26 62.45 21.83 27.14 1.88 8.27

SCutFBR 53.54 48.35 38.27 29.13 38.67 24.85 81.27 61.66 56.38 27.45 32.59 12.30
cost-sensitive 52.91 48.15 37.43 29.33 33.46 25.18 80.97 56.00 57.64 22.33 32.19 2.96

cost-sensitive-micro 56.14 40.26 39.21 23.86 39.97 23.36 80.99 54.64 58.28 25.56 33.16 6.46
SCutFBR.n 53.52 48.29 38.33 29.27 38.50 25.22 81.28 62.00 56.58 28.02 32.69 12.50
smooth-each 53.58 48.34 35.09 30.45 27.02 25.97 81.17 61.90 38.55 28.13 4.24 11.97
smooth-all 53.56 48.35 37.77 30.56 32.15 26.31 81.31 62.38 56.87 28.67 31.24 12.69
micromacro 54.43 48.21 39.37 29.59 40.06 25.72 81.39 62.71 56.65 28.73 32.55 12.62
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Figure 3: Improvement in F-measure (multiplied by 100) compared to SCutFBR. The y-axis shows the improvement in F-measure
on the test set. The x-axis is the number of positive samples p for a label. Each dot represents a group of labels having similar
numbers of positive samples. In each group, the improvement in F-measure for those labels is averaged and reported.

≥ 103). Second, on five of the six datasets, we can observe a peak of
improvement for p around 101 to 102 (medium labels). The peak im-
provement can be big (over 10) on some datasets. This improvement
in medium labels confirms our previous claim (in Figure 2) that
FBR heuristic can make pessimistic decisions for medium labels,
and our methods solve the problem. Moreover, we can observe that
SCutFBR.n’s improvement is smaller than that of smooth-all. This
result implies that, although a reasonable choice, thresholding at
the highest decision value of the negative distribution may not be
the best when more positive samples are present.

Since our improvement is primarily in medium labels compared
to FBR, the improvement would be invisible on datasets like PPI,
which contains no medium labels. On the other hand, we can see
larger improvements on datasets with more medium labels.

6 CONCLUSION
In this work, we focused on tuning the threshold for infrequent
labels. This task has been observed to overfit easily and forms a
challenging problem. First, we explained through examples that,
due to how the F-measure is formulated, optimizing it when the
positive samples are rare can easily lead to models that give a large
number of false positives. Therefore, selecting thresholds or other
hyperparameters based on F-measure can be dangerous on a rare
label. Then, we explained why a previously proposed technique,
the FBR heuristic, works well on rare labels. However, we also
discovered that FBR heuristic could be too pessimistic in handling

medium labels. To solve this issue, we first propose an improved
variant of the FBR heuristic, which performs better and is more
explainable. Then, we propose smoothing the F-measure when
tuning the threshold. We derived a reasonable search range for
the parameters in smoothed F-measure and theoretically proved
that smoothing the F-measure can bring nice properties to the
resulting threshold. Based on this idea, we also proposed jointly
optimizing micro-F and macro-F as a lightweight alternative free
from extra hyperparameters. Our proposed methods are empirically
evaluated on text and node classification datasets. The results show
that our methods consistently outperform previous approaches in
two application domains.
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A PROOFS
A.1 Proof of Theorem 1

Proof. We define 𝐹 ∗ (tp∗, fp∗, fn∗;𝑎, 𝑏) to be the optimal value of
smoothed F-measure attained by some threshold𝑇 ∗, where tp∗, fp∗
and fn∗ are the corresponding counts generated by 𝑇 ∗ on the set
of samples. Then, we define 𝐹 (t̂p, f̂p, f̂n;𝑎, 𝑏) to be the smoothed
F-measure attained by any threshold higher than all scores, denoted
as𝑇 . Similarly, t̂p, f̂p and f̂n denote the counts given by𝑇 . Note that

t̂p = 0, f̂p = 0 and f̂n = p

because all samples are predicted as negative using the threshold𝑇 .
Since the optimal value 𝐹 ∗ must be larger or equal to 𝐹 , we can

derive the following relation between tp∗ and fp∗:

𝐹 (t̂p, f̂p, f̂n;𝑎, 𝑏) ≤ 𝐹 ∗ (tp∗, fp∗, fn∗;𝑎, 𝑏)

=⇒ 𝑎 + 0
𝑏 + 2 · 0 + 0 + p ≤ 𝑎 + 2tp∗

𝑏 + 2tp∗ + fp∗ + (p − tp∗)
=⇒ 𝑎(𝑏 + p) + 𝑎(tp∗ + fp∗) ≤ 𝑎(𝑏 + p) + 2tp∗ (𝑏 + p)

=⇒ fp∗ ≤ tp∗ ( 2(𝑏 + p)
𝑎

− 1) (10)

□

A.2 Proof of Theorem 2
Proof. Let 𝑖′ be the index satisfying assumption (7). Then, let

𝑇 ′ be a threshold immediately below 𝜙 (𝑥𝑖′ ) so that for all 𝑖 < 𝑖′
we have 𝜙 (𝑥𝑖 ) < 𝑇 ′. For any threshold 𝑇 ≥ 𝑇 ′, we have fp(𝑇 ) = 0
by the assumption in (7). Therefore, for all 𝑇 ≥ 𝑇 ′, the smoothed
F-measure is

𝐹 (𝑇 ;𝑎, 𝑏) = 𝑎 + 2tp(𝑇 )
𝑏 + p + tp(𝑇 ) + fp(𝑇 ) =

𝑎 + 2tp(𝑇 )
𝑏 + p + tp(𝑇 ) .

Taking the derivative of 𝐹 with respect to tp, we have
𝑑𝐹

𝑑tp =
2(𝑏 + p) − 𝑎

(𝑏 + p + tp)2 > 0

because of the assumption that 𝑎 < 2(𝑏 + p). This implies that as
we increase 𝑇 past the positive samples 𝑖 ≥ 𝑖′, tp decreases and
the smoothed F-measure also decreases. Therefore, the optimal
threshold 𝑇 ∗ must be less than 𝜙 (𝑥𝑖′ ). □

A.3 Proof of Corollary 3
Proof. If 𝑎 > 2(𝑏 + p), then we have

2(𝑏 + p)
𝑎

− 1 < 0.

If tp∗ > 0, then fp∗ must be negative according to Theorem 1, which
is a contradiction since fp∗ can only be non-negative. Therefore,
tp∗ = 0 and so fp∗ = 0. That is, all samples are predicted as negative,
so the threshold must be higher than all samples. □

A.4 Proof of Theorem 4
Proof. Let

𝑧 = max
𝑖,𝑦𝑖=+1

𝜙 (𝑥𝑖 )

be the largest decision value of the positive samples. The statement
of the theorem can be restated as

𝑎 <
2(𝑏 + p)

𝑁
=⇒ 𝑇 ∗ ≤ 𝑧. (11)

For any threshold 𝑇 ≤ 𝑧, the corresponding smoothed F-measure
𝐹 (𝑇 ;𝑎, 𝑏) satisfies

𝐹 (𝑇 ;𝑎, 𝑏) = 𝑎 + 2tp(𝑇 )
𝑏 + p + tp(𝑇 ) + fp(𝑇 ) ≥ 𝑎 + 2

𝑏 + p + 𝑁
(12)

because tp(𝑇 ) ≥ 1 and tp(𝑇 ) + fp(𝑇 ) ≤ 𝑁 . For any 𝑇 > 𝑧, the
corresponding smoothed F-measure satisfies

𝐹 (𝑇 ;𝑎, 𝑏) = 𝑎 + 2tp(𝑇 )
𝑏 + p + tp(𝑇 ) + fp(𝑇 ) ≤ 𝑎

𝑏 + p (13)

since tp(𝑇 ) = 0 and fp(𝑇 ) ≥ 0. From (12) and (13), if we have
𝑎 + 2

𝑏 + p + 𝑁
>

𝑎

𝑏 + p , (14)

then 𝑇 ∗ ≤ 𝑧, our target in (11), must be true. Because inequality
(14) is equivalent to

𝑎 <
2(𝑏 + p)

𝑁
,

we have shown that (11) is true. □

B IMPLEMENTATION DETAILS OF
MICROMACRO

In this supplementary section, we describe in detail how to effi-
ciently evaluate (9) without looping over all the previous labels. In
Algorithm 2, we give the detailed procedure for performing the
micromacro method on one label. This algorithm is essentially Al-
gorithm 1 with extensions for calculating micro-F, and we mark
the difference between Algorithm 1 and Algorithm 2 in purple. The
full micromacro algorithm simply calls Algorithm 2 for every label
sequentially.

Below we give more details of Algorithm 2. When we are at
step 5 for the 𝑘-th fold of the 𝑗-th label, we solve the following
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Algorithm 2 The micromacro method for a label 𝑗 . The differences
from Algorithm 1 are in purple.
Input: A set of samples 𝐷 = {(𝑥𝑖 , 𝑦𝑖 ) | 𝑦𝑖 ∈ {−1, +1}}, the number

of folds 𝑉 , and the prediction counts (tp1, 𝑗−1, fp1, 𝑗−1, fn1, 𝑗−1).
Output: A trained scoring function 𝜙 , a threshold 𝑇 , and

(tp1, 𝑗 , fp1, 𝑗 , fn1, 𝑗 ).
1: Randomly partition 𝐷 to 𝑉 subsets 𝐷1, 𝐷2, . . . , 𝐷𝑉

2: for 𝑘 = 1, 2, . . . ,𝑉 do
3: Train a model 𝜙 (𝑘 ) on 𝐷 \ 𝐷𝑘
4: On the validation set 𝐷𝑘 , calculate the decision values 𝑍 =

{𝜙 (𝑘 ) (𝑥) | 𝑥 ∈ 𝐷𝑘 }
5: Find the threshold 𝑇 (𝑘 ) maximizing 1

𝑗 F𝑗 (𝑇 (𝑘 ) ) +
Fmicro
1, 𝑗 (𝑇 (𝑘 ) ) on 𝑍 and the counts tp(𝑘 ) , fp(𝑘 ) and fn(𝑘 ) given
by the optimal 𝑇 (𝑘 )

6: end for
7: 𝑇 = 1

𝑉

∑𝑉
𝑘=1𝑇

(𝑘 )
8: Train a 𝜙 on 𝐷

9: tp1, 𝑗 = tp1, 𝑗−1 +
∑𝑉
𝑘=1 tp

(𝑘 )

10: fp1, 𝑗 = fp1, 𝑗−1 +
∑𝑉
𝑘=1 fp

(𝑘 )

11: fn1, 𝑗 = fn1, 𝑗−1 +
∑𝑉
𝑘=1 fn

(𝑘 )
12: Return (𝜙,𝑇 )

optimization problem on the decision values of the validation set
𝐷𝑘 :

𝑇 (𝑘 ) = argmax
𝑇

Fmacro
1, 𝑗 (𝑇 ) + Fmicro

1, 𝑗 (𝑇 ).

Macro-F is the mean of F-measure of all currently trained binary
problems:

Fmacro
1, 𝑗 (𝑇 ) = 1

𝑗
(
𝑗−1∑︁
𝑖=1

F𝑖︸︷︷︸
constant

+F𝑗 (𝑇 )) . (15)

When training label 𝑗 , the sum of F-measure F𝑖 from label 𝑖 = 1
to 𝑗 − 1 is an additive constant, which does not affect the result
of optimization. Therefore, we can ignore the calculation for this
constant. This trick allows macro-F to be evaluated efficiently on
the current binary problem, disregarding 𝑗 .

As for micro-F, the measure can be rewritten as follows:

Fmicro
1, 𝑗 (𝑇 ) =

2 tp1, 𝑗 (𝑇 )
2 tp1, 𝑗 (𝑇 ) + fp1, 𝑗 (𝑇 ) + fn1, 𝑗 (𝑇 )

=
2tp1, 𝑗−1 + 2tp𝑗 (𝑇 )

(2 tp1, 𝑗−1 + fp1, 𝑗−1 + fn1, 𝑗−1) + (2 tp𝑗 (𝑇 ) + fp𝑗 (𝑇 ) + fn𝑗 (𝑇 )) .
(16)

The term tp𝑗 (𝑇 ) is simply the number of true positives given by
thresholding at 𝑇 on the validation set 𝐷𝑘 . The same goes for false
positives and false negatives. However, the terms like tp1, 𝑗−1 are
more complex. They denote the sum of counts calculated from label
1 to 𝑗 − 1. What should we use to calculate these sums?

The first option is, for each label 𝑖 from 1 to 𝑗 − 1, use its final
model (theΦ and𝑇 given in steps 7 and 8 of Algorithm 1) to calculate
the tp𝑖 , fp𝑖 and fn𝑖 on the whole training set. Then, sum these
counts to get tp1, 𝑗−1 and so forth. However, this option requires an
additional prediction on all training samples after training the final

model at step 8 and risks being too optimistic. When the positive
samples are rare, they can often be separated by the trained model,
but there might be a lot of positive samples that are not seen in
the training set and are predicted to be negative in the testing
stage. Therefore, the counts estimated in the training set may be
too optimistic. To mitigate this issue, we adopt a second option that
utilizes the cross-validation results. At step 5 of Algorithm 2, when
we obtained the optimal threshold (𝑇 (𝑘 ) at step 5 of Algorithm 1)
for the 𝑘-th fold, we also record the corresponding tp(𝑘 ) , fp(𝑘 ) and
fn(𝑘 ) achieved by (Φ(𝑘 ) ,𝑇 (𝑘 ) ) on that validation set 𝐷𝑘 . These
counts are already calculated in Algorithm 1 since it goes through
all the candidate thresholds and uses these counts to calculate F-
measure. Therefore, we can obtain these counts with little extra
effort. Then, the sum of these counts from all validation folds can be
used as the counts for label 𝑗 . In this approach, all training samples
are utilized, but no additional prediction is required. The estimated
counts would avoid being overly optimistic because the model Φ(𝑘 )
is not trained on the validation set 𝐷𝑘 .

To evaluate tp1, 𝑗−1, fp1, 𝑗−1 and fn1, 𝑗−1 efficiently according to
the mentioned strategy, we will maintain these accumulated sums
over the training of each label. Whenever we finished training one
label 𝑗 , we add the counts for label 𝑗 to the maintained accumulated
sums, getting tp1, 𝑗 from tp1, 𝑗−1 (similarly for fp and fn). These up-
dates are described in step 9 to 11 in Algorithm 2. The accumulated
counts can then be directly used for training the next label with-
out recalculation. This trick allows micro-F also to be evaluated
efficiently without looping over the labels.

C DETAILS OF MAIN EXPERIMENTS
C.1 Datasets
For all six datasets, we use the preprocessed version available on
the LIBSVM Data1 repository. For the text classification data the
tf-idf features provided on the website are used. The result on the
standard testing subset is reported. For the node classification data,
different features generated from different representation learning
techniques are available. We adopt the representations learned with
DeepWalk [19], Node2vec [5] and LINE [26], respectively for PPI,
Flickr, and BlogCatalog. Since no standard testing subset is available
for these datasets, we randomly split each of them into training
(80%) and testing (20%) sets. The model is trained on the training
set, and the result on the testing set is reported.

C.2 Parameters
C.2.1 Shared Settings. For all linear SVM, L2 regularization and
L2 loss are used. The models are trained using the solver from
LIBLINEAR [3]. In the main result, we use the option “-B 1” to
include the bias term for all algorithms. Furthermore, the cost in
cost-sensitive methods is passed as the “-w1” argument. Except for
the mentioned parameters, other parameters (e.g., 𝐶 for SVM) are
not tuned and left as default.

For all algorithms’ cross-validation (outer or inner level), we use
𝑉 = 3 as the number of folds, and the split is stratified.

C.2.2 FBR Heuristic. For the search range of 𝑓 𝑏𝑟 in SCutFBR and
SCutFBR.n, we follow the settings in [12]. That is, 𝑓 𝑏𝑟 is searched
1https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multilabel.html

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multilabel.html
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Table 3: Table of main results for node classification datasets, augmented with the standard deviations. The result is calculated
from 5 random seeds.

PPI Flickr BlogCatalog
method micro macro micro macro micro macro
binary 44.58±0.0 16.86±0.0 23.26±0.0 13.21±0.0 29.0±0.0 13.28±0.0
SCut 53.58±0.04 48.35±0.01 37.91±0.13 30.16±0.07 32.5±1.88 26.1±0.49

SCutFBR 53.54±0.02 48.35±0.01 38.27±0.08 29.13±0.21 38.67±0.53 24.85±0.49
cost-sensitive 52.91±0.04 48.15±0.0 37.43±0.1 29.33±0.09 33.46±0.44 25.18±0.31

cost-sensitive-micro 56.14±0.0 40.26±0.0 39.21±0.0 23.86±0.0 39.97±0.0 23.36±0.0
SCutFBR.n 53.52±0.04 48.29±0.11 38.33±0.11 29.27±0.10 38.50±0.54 25.22±0.35
smooth-all 53.56±0.1 48.35±0.01 37.77±0.25 30.56±0.11 32.15±1.47 26.31±0.38
micromacro 54.43±0.01 48.21±0.01 39.37±0.11 29.59±0.17 40.06±0.23 25.72±0.41

Table 4: Table of main results for text classification datasets, augmented with the standard deviations. The result is calculated
from 5 random seeds.

RCV1-topics EUR-Lex Wiki10-31K
method micro macro micro macro micro macro
binary 80.39±0.0 49.57±0.0 52.63±0.0 17.4±0.0 26.22±0.0 2.06±0.0
SCut 81.26±0.04 62.45±0.33 21.83±0.48 27.14±0.16 1.88±0.01 8.27±0.02

SCutFBR 81.27±0.02 61.66±0.36 56.38±0.21 27.45±0.17 32.59±0.06 12.3±0.03
cost-sensitive 80.97±0.02 56.0±0.27 57.64±0.08 22.33±0.09 32.19±0.01 2.96±0.01

cost-sensitive-micro 80.99±0.02 54.64±0.42 58.28±0.0 25.56±0.0 33.16±0.0 6.46±0.0
SCutFBR.n 81.28±0.03 62.00±0.06 56.58±0.11 28.02±0.11 32.69±0.05 12.50±0.03
smooth-all 81.31±0.07 62.38±0.21 56.87±0.25 28.67±0.19 31.24±0.52 12.69±0.07
micromacro 81.39±0.08 62.71±0.28 56.65±0.11 28.73±0.18 32.55±0.05 12.62±0.04

over
0.1, 0.2, . . . , 0.8.

C.2.3 Cost-sensitive Methods. For the search grid of 𝐶+ in cost-
sensitive methods, we follow the settings in [13], so 𝐶+ is searched
over

2 − 𝑡

𝑡
for 𝑡 = 1

7 ,
2
7 , . . . , 1.

C.2.4 Smoothed F-measure. Next, we provide the details of 𝑎 and 𝑏
searched in smooth-based methods. The implementation technique
mentioned at the end of Section 4.2 allows us to search many pairs
of 𝑎 and 𝑏 with little impact on training time. For both smooth-each
and smooth-all, we search over these values of 𝑏:

0, 10−4, 10−3, 10−2, 10−1, 1, 10, 102, 103, 104 .

For each 𝑏 in the list, we then select 30 values of 𝑎 between the
lower bound and the upper bound in the geometric series

2(𝑏 + p)
𝑁

,
2(𝑏 + p)

𝑁
· Δ, 2(𝑏 + p)

𝑁
· Δ2, . . . , 2(𝑏 + p),

where Δ =
29√𝑁 and 𝑁 is the size of the training set. Notice that

the bound for 𝑎 depends on p, the number of positive samples for a
label. When 𝑎 and 𝑏 are selected for a group of labels with different
p (as in smooth-all), we use the smallest p in the group to determine
the bound since smoothing is mainly for rare labels.

Table 5: Statistical significance test for the improvement of
smooth-all over SCutFBR. Only the p-value (multiplied by
100 and rounded) for the improvement of macro-F is shown
here.

PPI Flickr BlogCatalog RCV1 EUR-Lex Wiki10-31K
25.14 0.00 0.04 0.09 0.00 0.00

C.3 Detailed Experimental Results
C.3.1 Results with Standard Deviations. The results are in Table 3
and Table 4.

C.3.2 Statisfical Significance. We perform one-sided t-tests to test
whether smooth-all and micromacro performed significantly better
than SCutFBR. Since smooth-all specialize in macro-F, we only
report the p-value for macro-F of each dataset in Table 5. The
micromacro method and SCutFBR both try to balance micro-F and
macro-F. Therefore, we calculate the p-value for both measures in
Table 6. As these results show, the p-value is smaller than 0.05 in
most cases. The reason why there is no significant improvement
of macro-F on PPI is that it only has highly frequent labels, as
explained in Section 5.3.
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Table 6: Statistical significance test for the improvement of micromacro over SCutFBR. The p-value (multiplied by 100 and
rounded) for the improvement in both measure is reported.

PPI Flickr BlogCatalog RCV1-topics EUR-Lex Wiki10-31K
micro macro micro macro micro macro micro macro micro macro micro macro
0.0 100.0 0.0 0.3 0.03 0.75 0.35 0.01 0.89 0.0 82.59 0.0

Table 7: Comparison of performance with and without the bias term.

RCV1-topics EUR-Lex Wiki10-31K
micro macro micro macro micro macro

BR (no bias) 79.87 49.46 52.09 17.22 26.81 2.38
BR (with bias) 80.39 49.57 52.63 17.40 26.22 2.06

SCutFBR (no bias) 81.12 55.87 53.56 18.28 21.95 2.09
SCutFBR (with bias) 81.27 61.62 56.39 27.48 32.59 12.30
micromacro (no bias) 81.22 56.57 54.25 19.24 21.39 2.14
micromacro (with bias) 81.39 62.72 56.67 28.74 32.52 12.62

C.4 About the Bias Term of SVM
In Supplementary C, wementioned that we include the bias term for
all experiments using the option “-B 1” of LIBLINEAR. This choice
is because we discovered that removing the bias term greatly affects
the performance, especially for text datasets. We present a simple
comparison in Table 7. The performance difference is present in
both SCutFBR and our methods. This result differs from previous
studies on text data that observed no difference using the bias
term [24, 31]. There are several factors possibly contributing to this
difference:

• The datasets considered in the mentioned studies are more
balanced, and the number of positive samples is high com-
pared to the rare labels considered in this study.

• In [31], they used accuracy as the performance measure,
while we usedmicro-F andmacro-F, which aremore sensitive
to rare labels.

• Threshold adjustion was not used in these studies. So the
benefit brought by the bias term (i.e., a better orientation of
the learned hyperplane) is not fully utilized. We can observe
the results of BR in Table 7. The performance difference
between no bias and with bias is small if the threshold is not
adjusted.

D LABEL ORDER FOR MICROMACRO
For the micromacro method, the order of labels may affect the per-
formance. In this section, we provide experimental results to discuss
the impact of label order on the performance. We experiment with
the following four variants of micromacro:

• micromacro: This is the default variant used for the main ex-
periments. We go through the labels in the order they appear
in the file of training samples without other processing.

• micromacro-freq: The labels are sorted in descending order
according to the number of positive samples p. We start from
the most frequent label and end with the rarest.

• micromacro-tail: The labels are sorted in ascending order
according to the number of positive samples p. We start from
the rarest label and end with the most frequent.

• micromacro-rand: The labels are randomly shuffled.
The results in Table 8 and Table 9 show that the default, freq and

rand variants perform similarly. On the other hand, the tail variant
sometimes obtains significantly lower micro-F. A possible reason
is that the micro-F does not yet have the smoothing effect when
tuning the threshold of the first few labels. That is, the 𝑎 in (8) is still
zero or too small. Therefore, when applying micromacro, the first
few labels should not all be rare. Although the random variant may
also have rare labels as its first few labels, the probability does not
seem high enough to have a big impact. As for the default variant,
because the label that appeared early are often frequent, it also
does not suffer much from the problem of rare labels. In conclusion,
the default, freq, and rand variants seem more robust than the tail
variant.

E OCCURENCES OF FIGURE 1 AND FIGURE 2
E.1 Occurences of Figure 1
In Section 3.1, we mentioned that when performing CV on rare
labels, positive validation samples are oftenmixed with the negative
examples (Figure 1). This behavior is why directly optimizing F-
measure overfits badly. To show that this situation indeed occurs
in practice, we perform additional experiments on EUR-Lex and
Wiki10-31K, which have a large proportion of rare labels. For each
data, we perform a 3-fold CV over the rare labels (p < 10) and count
the situations like Figure 1. Precisely, for each validation set, we
check the following conditions:

(1) The largest decision value of positive samples, say 𝑧, is less
than −0.5.

(2) The number of negative samples with decision values higher
than 𝑧 is larger than 100.

The results in Table 10 show that the situation indeed occurs on
many validation sets and affects a lot of rare labels. This observation
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Table 8: Comparison of micromacro with different label orders on node classification datasets. The average and standard
deviation calculated from 5 random seeds are reported.

PPI Flickr BlogCatalog
method micro macro micro macro micro macro

micromacro 54.43±0.01 48.21±0.01 39.37±0.11 29.59±0.17 40.06±0.23 25.72±0.41
micromacro-freq 54.13±0.03 48.24±0.02 39.17±0.15 29.71±0.21 39.52±0.38 25.64±0.32
micromacro-rand 54.41±0.06 48.13±0.04 39.22±0.03 29.12±0.19 39.16±0.81 25.03±0.25
micromacro-tail 53.22±0.05 48.29±0.02 39.11±0.1 29.22±0.07 31.24±3.23 26.12±0.55

Table 9: Comparison of micromacro with different label orders on text classification datasets. The average and standard
deviation calculated from 5 random seeds are reported.

RCV1-topics EUR-Lex Wiki10-31K
method micro macro micro macro micro macro

micromacro 81.39±0.08 62.71±0.28 56.65±0.11 28.73±0.18 32.55±0.05 12.62±0.04
micromacro-freq 81.33±0.01 62.53±0.28 56.68±0.03 28.85±0.16 32.00±0.05 12.62±0.05
micromacro-rand 81.41±0.05 62.48±0.33 56.81±0.09 28.69±0.07 32.68±0.14 12.66±0.07
micromacro-tail 81.20±0.03 62.75±0.12 54.88±0.06 28.73±0.13 31.70±0.05 12.63±0.02

Table 10: Frequency of Figure 1 occurrences during cross-validation. Affected labels means the percentage of labels that has at
least one validation set like Figure 1.

Dataset Validation sets like Figure 1 (%) Affected labels (%)
EUR-Lex 23.21 53.73

Wiki10-31K 36.70 69.54

Table 11: Frequency of Figure 2 occurrences during cross-validation.

Dataset Validation sets like Figure 2 (%) Affected labels (%)
Flickr 37.31 59.09

BlogCatalog 32.43 48.65
RCV1 1.75 2.63

EUR-Lex 4.45 10.82
Wiki10-31K 10.82 22.45

is consistent with the fact that SCut performs disastrously on these
two datasets in Table 2.

E.2 Occurences of Figure 2
In Section 3.3, we mentioned that FBR can be too pessimistic in
handling medium labels, giving up the easy positives (Figure 2). We
performed a 3-fold CV over the medium-to-frequent labels (10 ≤
number of positive samples p ≤ 1000) of each dataset to check if
this situation occurs in practice with 𝑓 𝑏𝑟 = 0.4 (middle value of
the search range used in [12]). Precisely, for each validation set, we
check the following conditions:

(1) There are easy positives (positive samples that are above all
negative samples) in the validation set.

(2) The FBR heuristic sets the threshold higher than the easy
positives.

We exclude PPI from this result because it only has highly-
frequent labels. The results in Table 11 show that situations like
Figure 2 indeed occur in practice, with node classification datasets
being influenced more heavily.
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