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Abstract

Multi-label classification is useful for text categorization, multimedia retrieval,
and many other areas. A commonly used multi-label approach is the binary method,
which constructs a decision function for each label. For some applications, adjusting
thresholds in decision functions of the binary method significantly improves the
performance, but few studies have been done on this subject. This article gives
a detailed investigation on the selection of thresholds. Experiments on real-world
data sets demonstrate the usefulness of some simple selection strategies.

1 Introduction

Recently, multi-label classification arises in many applications. In contrast to traditional
data classification, where each instance is assigned to only one label, for multi-label clas-
sification, one instance may be simultaneously relevant to several labels. For example,
in text categorization, one document can belong to multiple topics. Such problems are
also common in bioinformatics.

Given training instances x1, . . . ,xl ∈ Rn and d labels 1, . . . , d, a multi-label data set
has that each instance xi is relevant to a subset of the d labels. We represent this subset
of labels by a binary vector yi = [yi1, . . . , y

i
d] ∈ {0, 1}d, where yij = 1 if and only if xi

is associated with label j. For a new instance x, the goal of multi-label classification is
to predict possible labels through the model built upon training instances. In contrast,
traditional multi-class classification assumes that each instance is related to only a single
label, and the model predicts the most probable one. Therefore, multi-label classification
is an extension of multi-class classification.

There are many approaches for multi-label classification. For example, Yang (1999);
Joachims (1998); McCallum (1999); Shapire and Singer (2000); Clare and King (2001);
Elisseeff and Weston (2002); Comité et al. (2003); Ueda and Saito (2003); Ghamrawi
and McCallum (2005); Kazawa et al. (2005); Zhang and Zhou (2007). The most popular
way may be the binary method, which is simple and effective. For each label, it trains a
classifier by using data associated with this label as positive and all others as negative.
Thus, if there are d labels, this method constructs d decision functions. In prediction,
an instance is associated with a label if the corresponding decision value is positive. In
this paper, we will mainly investigate the binary method.

It is known that for each decision function of the binary method, we can adjust the
corresponding threshold as the cutting point for positive/negative predictions. Yang
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(2001); Lewis et al. (2004) successfully apply thresholding techniques to obtain better
performance for document data, but so far few studies have been done on this subject.
Zhang and Oles (2001) list this as one important open issue in document classification.
In this article, we conduct a detailed study using various multi-label data sets. We give
some new observations and analysis.

This article is organized as follows. We introduce the binary method, evaluation
measures for multi-label classification, and the basic concept of optimizing evaluation
measures in Section 2. Section 3 discusses the thresholding schemes for the binary
method. We describe data and experimental settings in Section 4. Results and some
interesting analysis are in Section 5. Finally, we give concluding remarks in Section 6.

2 Binary Method, Evaluation Measures, and Optimiza-
tion of Measures

In this section, we introduce the binary method to solve multi-label problems. Then,
we discuss various evaluation criteria for multi-label problems. We also investigate how
to optimize these criteria.

2.1 The Binary Method

This simple and commonly used multi-label approach has been used in, for example,
Karalic̆ et al. (1991); Joachims (1998); Yang (1999); Nigam et al. (2000). It is an
extension of the “one-against-the rest” method (Bottou et al., 1994) for multi-class
classification. Given l training instances x1, . . . ,xl ∈ Rn and d labels, we train d decision
functions:

f1(x) = wT
1 x + b1,

... (1)

fd(x) = wT
d x + bd.

The decision function fj(x) is constructed by using training instances relevant to label
j as positive and other training instances as negative. Taking support vector machines
(SVMs) as an example, the jth decision function comes from solving the following
optimization problem:

min
wj ,bj ,ξi

j

1
2
wT
j wj + C

l∑
i=1

ξij

subject to wT
j φ(xi) + bj ≥ 1− ξij , if yij = 1, (2)

wT
j φ(xi) + bj ≤ −1 + ξij , if yij = 0,

ξij ≥ 0, i = 1, . . . , l,

where C is the penalty parameter, and yij is an element of the binary vector yi =
[yi1, . . . , y

i
d]
T ∈ {0, 1}d indicating labels of the ith instance. Note that in (2), SVM maps

data to a higher dimensional space by a function φ.
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For the prediction, label j is associated with x if and only if fj(x) > 0. For example,
if there are d = 3 labels and we have the following decision values for an instance x:

f1(x) > 0, f2(x) < 0, f3(x) > 0,

then we predict that the instance x has labels 1 and 3. In contrast, in multi-class
classification, arg maxj fj(x) is often used to predict the most probable label.

We introduce a threshold Tj , so that an instance x is associated with label j if and
only if

fj(x) = wT
j φ(x) + bj > Tj . (3)

For the binary method, clearly, Tj = 0. Later we will adjust Tj to have better predic-
tions.

In this paper, we assume that SVM is used, but most results apply to other classi-
fication methods whose decision functions are in the same form as (1).

2.2 Evaluation Criteria

In traditional classification, the standard evaluation criterion is the accuracy. In multi-
label classification, a direct extension of the accuracy is the exact match ratio, which
considers one instance as correct if and only if all associated labels are correctly pre-
dicted. However, this ratio may not be the most suitable performance measure as it
does not count partial matches. For example, in text categorization, one news story
may belong to both sports and politics. If one states that this story is related to only
sports, the statement is partially correct. Tague (1981) proposes two different criteria
based on the F-measure: macro-average and micro-average F-measures. Both consider
partial matches.

2.2.1 Exact Match Ratio

Assume there are l̄ testing instances. Let yi be the true label vector of the ith instance
and ŷi be the predicted label vector, and the indicator function be

I[s] ≡
{

1 if s is true,
0 otherwise.

(4)

This measure (used in, for example, Kazawa et al., 2005) is defined as

1
l̄

l̄∑
i=1

I[ŷi = yi]. (5)

It is a direct extension of the accuracy for traditional data classification. A disadvantage
of this criterion is that it does not take partial matches into account.

2.2.2 Macro-average and Micro-average F-measures

One of the most used performance measures for information retrieval systems is the
F-measure, which is the harmonic mean of precision (P ) and recall (R):

2PR
P +R

.
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Procedure 1 A simple way to optimize measures by sequentially adjusting one decision
function.

1. Initialize f0
1 , f

0
2 , . . . , f

0
d by running the binary method.

2. For k = 1, . . . , d,

(a) Solve the sub-problem with respect to the decision function fk:

max
fk

m(f1
1 , . . . , f

1
k−1, fk, f

0
k+1, . . . , f

0
d ). (8)

(b) Set f1
k to the solution of (8).

3. Return f1
1 , f

1
2 , . . . , f

1
d and the final measure value is

m
(
f1

1 , f
1
2 , . . . , f

1
d

)
.

For label j,

P =

∑l̄
i=1 ŷ

i
jy
i
j∑l̄

i=1 ŷ
i
j

and R =

∑l̄
i=1 ŷ

i
jy
i
j∑l̄

i=1 y
i
j

,

so the F-measure is
2
∑l̄

i=1 ŷ
i
jy
i
j∑l̄

i=1 ŷ
i
j +

∑l̄
i=1 y

i
j

.

To extend the F-measure from single-label to multi-label, two approaches are devel-
oped in Tague (1981). The macro-average F-measure is the unweighted mean of label
F-measures,

1
d

d∑
j=1

2
∑l̄

i=1 ŷ
i
jy
i
j∑l̄

i=1 ŷ
i
j +

∑l̄
i=1 y

i
j

. (6)

The other measure is the micro-average F-measure, which considers predictions from all
instances together and calculate the F-measure across all labels:

2
∑d

j=1

∑l̄
i=1 ŷ

i
jy
i
j∑d

j=1

∑l̄
i=1 ŷ

i
j +

∑d
j=1

∑l̄
i=1 y

i
j

. (7)

In contrast to the exact match ratio, both micro-average and macro-average F-measures
take partial matches into account.

2.3 Optimizing Measures

Optimizing an evaluation criterion means we identify predictions ŷ, so that the perfor-
mance is better. In this article, we optimize measures under the situation of using the
binary method, for which the predicted label vector ŷ is controlled by the d decision
functions. In this regard, a measure is a function of the d decision functions in (1):

m(f1, f2, . . . , fd).
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Table 1: An example of how decision thresholds affect macro-average and micro-average
F-measures. For each label, instances are ordered according to their decision values.
Dashed lines indicate cutting points. (a) True label vectors (b) An example of pre-
dictions: the classifier predicts two instances as positive for both labels. (c) Another
example of predictions: the classifier predicts more positive instances by lowering thresh-
olds. The macro-average F-measures for (b) and (c) are 0.6 and 0.452, respectively. The
micro-average F-measures are 0.6 and 0.462, respectively.

rank label 1 label 2
1 1 0
2 1 1
3 0 0
4 0 1
5 0 0
6 1 0
7 0 0
8 0 0
9 0 1
10 0 0

(a) True labels

label 1 label 2
1 1
1 1
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

(b) An example of predictions

label 1 label 2
1 1
1 1
1 1
1 0
0 0
0 0
0 0
0 0
0 0
0 0

(c) An example of predictions

Note that functions f1, . . . , fd predict labels ŷ1, . . . , ŷl̄. Together with true label vectors
y1, . . . ,yl̄, one can calculate the measure value. Since testing instances’ true label
vectors are not available, we split available data to training/validation subsets, and
improve the performance on the validation set. Therefore, one optimizes a measure m
by

max
f1,f2,...,fd

m (f1, f2, . . . , fd) . (9)

Unfortunately, (9) is a difficult global optimization problem. A more reasonable goal
is to improve upon the binary method. Starting from decision functions of the binary
method, we sequentially adjust one fi and fix the others. The algorithm is described in
Procedure 1.

In practice, maximizing the measure with respect to only one function may still be
difficult, so we can just obtain any fk such that

m
(
f1

1 , . . . , f
1
k−1, fk, f

0
k+1, . . . , f

0
d

)
≥ m

(
f1

1 , . . . , f
1
k−1, f

0
k , f

0
k+1, . . . , f

0
d

)
.

(10)

There are several ways to modify the decision function fk. Here, we consider adjusting
the threshold Tk in the decision function (3). Table 1 illustrates how different thresholds
lead to different F-measures.

If the target measure is the macro-average F-measure, then the kth sub-problem (8)
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Procedure 2 Cyclic optimization for maximizing measures

1. Initialize f0
1 , f

0
2 , . . . , f

0
d by running the binary method.

2. For t = 1, 2, . . .,

(a) For k = 1, . . . , d

max
fk

m
(
f t1, . . . , f

t
k−1, fk, f

t−1
k+1, . . . , f

t−1
d

)
. (12)

(b) Set f tk to the solution of (12).

is

max
fk

m
(
f1

1 , . . . , f
1
k−1, fk, f

0
k+1, . . . , f

0
d

)
=

1
d

d∑
j=1

2
∑l̄

i=1 ŷ
i
jy
i
j∑l̄

i=1 ŷ
i
j +

∑l̄
i=1 y

i
j

(11)

=
1
d

(
2
∑l̄

i=1 ŷ
i
ky
i
k∑l̄

i=1 ŷ
i
k +

∑l̄
i=1 y

i
k

+ terms not related to fk

)
.

Note that fk affects only ŷ1
k, . . . , ŷ

l̄
k. The above problem is then equivalent to

max
fk

2
∑l̄

i=1 ŷ
i
ky
i
k∑l̄

i=1 ŷ
i
k +

∑l̄
i=1 y

i
k

,

which is independent of other decision functions. That is, because (11) is the sum-
mation of d separable terms, optimizing the macro-average F-measure is equivalent to
optimizing per-label F-measure.

For the micro-average F-measure, the situation is more complicated. The kth sub-
problem is

max
fk

m
(
f1

1 , . . . , f
1
k−1, fk, f

0
k+1, . . . , f

0
d

)
=

2
∑d

j=1

∑l̄
i=1 ŷ

i
jy
i
j∑d

j=1

∑l̄
i=1 ŷ

i
j +

∑d
j=1

∑l̄
i=1 y

i
j

=
2
∑l̄

i=1 ŷ
i
ky
i
k + terms not related to fk∑l̄

i=1 ŷ
i
k + terms not related to fk

. (13)

Clearly, (13) depends on decision functions other than fk. Under different functions
f1

1 , . . . , f
1
k−1, f

0
k+1, . . . , f

0
d , (13) gives different optimal solution fk. The order of labels

thus affects the result of Procedure 1. Moreover, we can run Procedure 1 several times
to improve the function value. We call this as a “cyclic optimization” procedure, which
is described in Procedure 2.
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We stop Procedure 2 if function values of two consecutive iterations are similar. For
experiments in this article, we use

mt −mt−1

m0
< 0.001, (14)

where mt is the function value after the tth iteration. For the macro-average F-measure,
whose function form is separable, Procedure 2 does not change the measure after the
first iteration. Thus, there is no need to consider the cyclic optimization. For the micro-
average F-measure and the exact match ratio, the measure function is not separable, so
Procedure 2 can be used. We will study if the “separable form” of the macro-average
F-measure makes its optimization easier than others.

3 Optimizing Measures via Threshold Selection

Following the discussion in Section 2.3, we adjust thresholds in the decision functions
of the binary method. An intuitive and direct way is to select the value that achieves
the best evaluation measure on a validation set. This approach is referred to as the
SCut method in (Yang, 2001), and have been used in, for example, Lewis et al. (1996);
Yang (1999). Algorithm 1 shows details by using five-fold cross validation (CV). The
evaluation measure, specified by users, can be any criterion such as the macro-average
F-measure. Given l̂ validation instances sorted by their decision values, there are l̂ + 1
possible predictions. Sequentially we check the performance using the medium of two
adjacent decision values as the threshold. For the two extreme situations, where SVM
predicts all instances as positive or negative, we check a threshold slightly higher (or
lower) than the highest (or lowest) decision value.

To see how this algorithm works, we create an artificial problem with d = 2 labels
and 10 validation instances. The goal is to optimize the macro-average F-measure by
adjusting T1, T2 of the two decision functions f1, f2. Assume we have the following
results from the binary method:

Original T1 = 0 -

New T1 = −1.45 -

label 1
y1 dec. value
1 1.2
1 1.1
0 -1.1
1 -1.2
0 -1.3
1 -1.4
0 -1.5
0 -1.6
0 -1.7
0 -1.8

label 2
y2 dec. value
0 1.4
0 1.2
0 -1.1
0 -1.2
0 -1.4
0 -1.5
0 -1.6
1 -1.7
0 -1.8
0 -2.1

Original T2 = 0�

New T2 = −1.75�

We order validation instances according to their decision values. The columns y1 and
y2 indicate true labels. With the original threshold T1 = T2 = 0, we predict two positive
instances for both labels. The macro-average F-measure is

1
2

(
2× 2
2 + 4

+
2× 0
2 + 1

)
= 0.333.
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Algorithm 1 Simple threshold tuning for the binary method with SVMs

1. For label j = 1, . . . , d,

(a) Split data into five folds. For fold i = 1, . . . , 5,

i. Train SVMi on four folds of data.
ii. The decision threshold T ij of SVMi is the value that achieves the best val-

idation result. This operation leads to a new decision function satisfying
(10).

(b) Train the jth SVM as in the binary method. The decision threshold Tj of
the jth SVM is set to the average of the five threshold values obtained in the
cross validation step:

Tj =
1
5

5∑
i=1

T ij .

Using threshold T1 = −1.45 and T2 = −1.75, we get better macro-average F-measure

1
2

(
2× 4
6 + 4

+
2× 1
8 + 1

)
= 0.511.

Note that optimizing the macro-average F-measure sometimes leads to a lower micro-
average F-measure. For example, if we keep T2 = 0, the micro-average F-measure is
8/13 = 0.615, better than 10/19 = 0.526 of setting T2 = −1.75. In Algorithm 1, for label
j, we obtain five thresholds T j1 , . . . , T

j
5 after the five-fold CV. Then we return the average

as the final threshold. This setting is reasonable if distributions of training/validation
splits are not very different.

Since Algorithm 1 fits the validation sets, according to (Yang, 2001) and our own
experiments, overfitting may occur when the binary problem is unbalanced. That is,
very few instances are associated with the label. Then the resulting threshold is either
too hight or too low. Yang (2001) further argues that

• A too high threshold lowers macro-average F-measure.

• A too low threshold lowers both macro- and micro-average F-measures.

We explain why a too high threshold does not affect the micro-average F-measure much.
Note that too high/low thresholds mainly occur for unbalanced binary problems. Hence,
the vector [y1

j , . . . , y
l̄
j ]
T for label j has few non-zero elements. A too high threshold hence

gives small
∑l̄

i=1 ŷ
i
jy
j
i and

∑l̄
i=1 ŷ

i
j in (7), so the micro-average F-measure is not affected

much. Yang (2001) then proposes the fbr heuristic: when the F-measure of a label does
not achieve a pre-defined value called fbr, we set the threshold by one of the following
two ways:

• SCutFBR.0: set the threshold to∞. This setting does not affect the micro-average
F-measure too much (as the label is a rare one), but hurts macro-average.

• SCutFBR.1: set the threshold to the highest decision value of the validation data.
This method less hurts the macro-average.
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Algorithm 2 Threshold tuning with the fbr heuristic (SCutFBR.1 in Yang, 2001)

1. Given an fbr value.

2. For label j = 1, . . . , d,

(a) Split data into five folds. For fold i = 1, . . . , 5,

i. Train SVMi on four folds of data.
ii. The decision threshold T ij of SVMi is set to the value that achieves the

best validation result. This operation leads to a new decision function
satisfying (10).

iii. If the validation result is lower than the given fbr value, set T ij to the
highest decision value of the ith fold of data.

(b) Train the jth SVM as in the binary method. The decision threshold Tj of
the jth SVM is set to the average of five thresholds obtained in Step 2a:

Tj =
1
5

5∑
i=1

T ij .

Given a pre-specified fbr value, Algorithm 2 gives the details of using SCutFBR.1.
Lewis et al. (2004) then use Algorithm 2 as a building block and conduct five-fold CV
to select the best fbr value from several candidates. The procedure (called SVM.1
in their paper) is described in Algorithm 3. Due to the two-level cross validation, its
computational time is longer than Algorithm 2.

Since both SCutFBR.0 and SCutFBR.1 set the threshold to a higher value, when the
obtained F-measure is not good enough (less than fbr), we make conservative predictions
and avoid a too low threshold. As a too high threshold hurts more the macro-average F-
measure, using fbr, one expects a better micro-average F-measure, but maybe a slightly
worse macro-average. However, our experiments give quite different results. Table 2
shows a comparison between the binary method and Algorithms 1-2. We use 5,000
training and 5,000 testing points from the OHSUMED data1. We adjust thresholds to
optimize the macro-average F-measure. Clearly, Algorithms 1-2 are much better than
the vanilla binary method. Thus, adjusting thresholds is very essential. Interestingly,
results of Algorithm 2 using fbr are opposite to what we expect: Algorithm 2 gives
better macro-average F-measure than Algorithm 1. We have similar observations for
many other data sets. Therefore, Yang (2001) does not address the following issues
when proposing the fbr heuristic:

• Is it possible that this fbr heuristic causes a too high threshold and hence seriously
hurts macro-average?

• Table 2 shows better macro-average F-measure. How does this result occur when
using the fbr heuristic?

Through some analysis in Section 5, we show new and interesting properties of fbr.
1Details are discussed in Section 4.1.
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Algorithm 3 The SVM.1 method in Lewis et al. (2004): an outer layer of CV selects
the fbr value of SCutFBR.1.

1. Given a list of fbr values.

2. For label j = 1, . . . , d,

(a) For each fbr value, conduct five-fold cross validation. Algorithm 2 is used for
each training/validation split. Select the fbr value which achieves the best
evaluation result.

(b) Run Algorithm 2 with the best fbr value obtained in the previous step to
get the jth SVM model and the threshold Tj .

Note that there are two levels of CV in this procedure: the outer one in Step 2a deter-
mines the best fbr value and the inner one is in Algorithm 2. One may think that for
n different fbr values, the algorithm needs to run the outer CV n times. In fact, the
only difference among these n CVs is in the comparison between the fbr value and the
F-measure from Algorithm 2. Hence, in practice, we combine these n CVs together to
save time.

Table 2: A comparison between the binary method and Algorithms 1-2. We use the
OHSUMED data set (described in Section 4.1). The best result is bold-faced.

Macro-avg. Micro-avg.
Binary 0.118 0.454

Algo. 1 0.232 0.414
Algo. 2 0.246 0.505

A MATLAB implementation of Algorithm 3 is available at http://www.csie.ntu.
edu.tw/~cjlin/libsvmtools/multilabel/.

4 Data and Experimental Settings

We discuss data and experimental settings before showing detailed results and analysis,

4.1 Real-World Data Sets

All multi-label data considered here are from real-world applications. The data scene,
yeast, and RCV1-V2 are available at http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
datasets. Data statistics are listed in Table 3. In the table, “#inst.” is the number of
instances in the data set, “#feat.” is the number of features, “#label” is the number
of labels, and “label size frequency” (in percentage) is the relative frequency of each
label size in the data set. Label size means the number of labels of an instance. For
example, in the Yahoo! En data set, 72.3% instances are associated with only one label,
21.1% instances have two labels, and the rest 6.6% instances have more than two labels.
“Label distr. ranking” is the ranking of labels’ number of occurrences. We divide the

10
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Table 3: Data statistics. See Section 4.1 for the explanation of each column. Except
Yahoo!, all other collections have training/testing splits, but here we show only statistics
of the training part. We further select subsets for our experiments (details in Table 4).
The six Yahoo! sets are: Arts & Humanities (Ar), Business & Economy (Bu), Computers
& Internet (Co), Education (Ed), Entertainment (En), and Health (He).

Data set #inst. #feat. #label Label size frequency (%)
1 2 3 4 ≥5

scene 1,211 294 6 93.9 6.0 0.1 0.0 0.0
yeast 1,500 103 14 1.6 16.9 4.5 45.6 31.3
OHSUMED 40,000 36,522 94 17.3 45.9 16.3 10.3 10.2
Yahoo! Ar 7,484 23,146 26 55.6 30.5 9.7 2.8 1.4
Yahoo! Bu 11,214 21,924 30 57.6 28.8 11.1 1.7 0.8
Yahoo! Co 12,444 34,096 33 69.8 18.2 7.8 3.0 1.1
Yahoo! Ed 12,030 27,534 33 66.9 23.4 7.3 1.9 0.6
Yahoo! En 12,730 32,001 21 72.3 21.1 4.5 1.0 1.1
Yahoo! He 9,205 30,605 32 53.2 34.0 9.5 2.4 0.9
RCV1-V2 23,149 47,236 101 12.3 29.5 35.7 10.8 11.7

Data set Label distr. ranking (%)
1st 2nd 3rd 4th 5th

scene 22.9 18.7 18.5 16.3 16.2
yeast 75.2 74.4 43.0 39.9 35.5
OHSUMED 37.5 20.1 17.7 16.8 14.9
Yahoo! Ar 24.6 22.4 16.0 15.8 11.8
Yahoo! Bu 86.7 28.3 8.7 5.2 4.9
Yahoo! Co 52.7 20.5 15.6 7.7 6.2
Yahoo! Ed 31.1 19.1 15.9 13.1 13.0
Yahoo! En 29.0 19.1 18.4 15.7 11.4
Yahoo! He 51.1 25.3 17.2 14.9 13.4
RCV1-V2 46.6 30.1 18.1 14.9 11.0

number of instances of each label by the total number of instances. For example, the
most popular label in the Yahoo! Ar data set is associated with 24.6% of instances, and
the second is with 22.4%. For each data set, we present ratios of the top five labels.

4.1.1 scene

The scene data set is a semantic scene classification problem from Boutell et al. (2004).
Each of the 2,407 images is associated with some of the six different semantic scenes
(beach, sunset, fall foliage, field, urban, and mountain). We use the same setting in
Boutell et al. (2004), which has 1,211 training and 1,196 testing images. Each instance
is an image of 294 features generated from the CIE L*U*V-like color space. We do not
scale this data set in order to preserve the raw color information.
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4.1.2 yeast

This is a microarray data set from Munich Information Center for Protein Sequences
(MIPS) (Mewes et al., 1997). We experiment with the same data set as in Elisseeff and
Weston (2002), which has 1,500 training and 917 testing instances. Each instance in the
data set represents a yeast gene, and each gene has 103 features. There are 14 labels
indicating gene functional groups. As each yeast gene is assigned to a set of labels, we
have a multi-label data set. We linearly scale each feature to the range [−1,+1].

4.1.3 OHSUMED

This data set (Hersh et al., 1994) is a collection of medical references from MEDLINE,
an on-line bibliographic database for medical literature. Our experiment here is based
on the specific version of Cesa-Bianchi et al. (2005), which includes 94 labels and 55,503
documents. The corpus is randomly split to 40,000 documents for training and 15,503
documents for testing. This procedure is repeated five times, so we have five pairs of
training and testing instances.

We use the feature vectors with the TF-IDF (term frequency, inverse document
frequency) encoding. For a term t in a document Ψ, we get the weight

wΨ(t) = tf(t,Ψ)× log2

|D|
df(t)

, (15)

where tf(t,Ψ) is the number of term t in document Ψ, df(t) is the number of documents
that contain term t, and |D| is the number of documents. In addition, we use cosine
normalization so that each vector has unit length.

4.1.4 Yahoo! Directories

This collection, used in Ueda and Saito (2003); Kazawa et al. (2005), consists of web
pages from 14 top-level categories of Yahoo! directories. We treat web pages belonging
to the same top-level category as a data set, so there are 14 data sets. Each top-level
category includes several second-level categories, which are our labels. As a page may
simultaneously belong to several second-level categories, the data set is multi-labeled.
We choose six data sets: Arts & Humanities (Ar), Business & Economy (Bu), Computers
& Internet (Co), Education (Ed), Entertainment (En), and Health (He). All instances
are encoded with TF-IDF and are cosine normalized.

4.1.5 RCV1-V2

This data set (Lewis et al., 2004) contains newswire stories from Reuters Ltd. Lewis
et al. (2004) used several schemes to process the documents, including removing stopping
words, stemming, and transforming the documents to vectors with TF-IDF format, etc.
Each instance is cosine normalized. There are three category sets: Topics, Industries,
and Regions. In the article, we consider the Topics category set. There are 23,149
training and 781,265 testing instances. For labels, 101 appear in the training set and
all 103 appear in the testing set.
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Table 4: Size of training/testing subsets used in our experiments, and the SVM param-
eters for the binary method and Algorithms 1-3. The six Yahoo! data sets happen to
share the same parameter.

Data set # training # testing Parameters (C, γ)
scene 1,211 1,196 (4, 0.25)
yeast 1,500 917 (2, 2)
OHSUMED 5,000 5,000 (2, -)
Yahoo! 3,000 3,000 (2, -)
RCV1-V2 3,000 3,000 (2, -)

4.2 Experimental Settings

The three document data (Yahoo! directories, OHSUMED, and RCV1-V2) are large,
so we randomly select several pairs of training and testing subsets. We use stratified
selections so that all labels appear in the training subset. For the six Yahoo! sets, we
select 3,000 training and 3,000 testing documents, and repeat such a selection five times.
In addition, we generate another pair of training and testing subsets for SVM parameter
tuning. For the OHSUMED data, its original form contains five pairs of training (40,000
instances) and testing (15,503 instances) sets. We repeatedly select 5,000 instances from
the training set and 5,000 from the testing set to form five pairs. The same scheme is
used for RCV1-V2 to generate five training/testing pairr, but each training (testing) set
contains 3,000 instances. Table 4 summarizes the size of training and testing data used
in our experiments.

For each problem, we must choose a suitable SVM kernel. As the number of features
of yeast and scene is small, we use the RBF kernel, which maps data vectors to a higher
dimensional space. For long feature vectors of documents, existing work indicates that
it is suitable to stay in the original input space. Hence, we use the linear kernel. If
the RBF kernel is used, there are two parameters: the penalty parameter C and the
kernel parameter γ. We choose them by maximizing five-fold CV exact match ratios on
a grid space of parameters: C in [2−2, 2−1, 20, 21, 22, 23] and γ in [2−2, 2−1, 20, 21, 22, 23].
When the linear kernel is used, the only parameter is C. For Yahoo! data, we use the
sixth pair of training and testing subsets to select it from three values: 1, 2, and 4.
For OHSUMED and RCV1-V2, where each of them has five pairs of training and testing
subsets, we use the first pair to choose C. Final parameters are listed in Table 4, and
they are used in all Algorithms 1-3.

The fbr value in Algorithm 2 is set to 0.1. For Algorithm 3, we follow Lewis et al.
(2004) to check eight fbr values: 0.1 to 0.8. For data sets that have several pairs of
training and testing sets, we report the average result. All implementations are based
on the LIBSVM (Chang and Lin, 2001) MATLAB interface.

5 Experiments and Analysis

We present and analyze results of optimizing three measures: macro-average F-measure,
micro-average F-measure, and exact match ratio. We also have a subsection discussing
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Table 5: Optimizing the macro-average F-measure by the binary method and Algorithms
1-3. The best result is bold-faced.

macro-average F-measure
Data set Binary Algo. 1 Algo. 2 Algo. 3
scene 0.653 0.765 0.765 0.765
yeast 0.405 0.505 0.504 0.502
OHSUMED 0.117 0.227 0.247 0.247
Yahoo! Ar 0.304 0.408 0.410 0.408
Yahoo! Bu 0.281 0.391 0.385 0.380
Yahoo! Co 0.292 0.382 0.391 0.380
Yahoo! Ed 0.255 0.315 0.338 0.334
Yahoo! En 0.410 0.497 0.494 0.490
Yahoo! He 0.337 0.389 0.416 0.411
RCV1-V2 0.341 0.484 0.506 0.495

micro-average F-measure
Binary Algo. 1 Algo. 2 Algo. 3

0.652 0.755 0.755 0.755
0.651 0.640 0.646 0.644
0.452 0.446 0.497 0.499
0.484 0.530 0.533 0.528
0.774 0.764 0.774 0.774
0.588 0.591 0.611 0.612
0.507 0.524 0.547 0.547
0.624 0.659 0.658 0.656
0.697 0.709 0.716 0.715
0.741 0.762 0.762 0.764

new properties of the fbr heuristic.

5.1 Optimizing the Macro-average F-measure

Table 5 shows the results of optimizing the macro-average F-measure. Clearly, all
Algorithms 1-3 give much better results than the binary method. Hence, in doing
multi-label classification, one should always adjust thresholds.

For half of the data sets, the macro-average F-measure of Algorithm 1 is worse than
that of Algorithms 2-3, which use fbr. Moreover, Algorithm 2 (fixed fbr) performs
similar to Algorithm 3 (CV to select fbr). Overall, fbr is a useful heuristic. We indicated
in Section 3 that Yang (2001) proposes the fbr heuristic to have more conservative
predictions. Thus one expects better micro-average at the expense of slightly lower
macro-average F-measure. However, our results are very different: We have much better
macro-average and equally good micro-average F-measure. In Section 5.2, we explain
why such results occur.

5.2 Analysis of the fbr Heuristic

By analyzing results of Table 5, we have some interesting findings:

1. When the number of positive data is very small (e.g., ≤ 5), thresholds
are often decreased, and macro-average F-measure is improved.

Table 6 shows details of running the fifth subset of the OHSUMED data. We
investigate the four labels which contribute the most to the increase of the macro-
average F-measure. Their number of instances in the training set, the contingency
tables, and the thresholds selected by Algorithms 1 and 2 are presented. Clearly,
the number of positive data in a binary problem is very small (≤ 5). Algorithm 2
decreases the threshold, and dramatically improves the F-measure.
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We explain why fbr leads to the decrease of the threshold. As the label is so rare,
the validation fold may not contain any positive instance. We end up with the
following scenario of decision values:

Training Validation
◦

threshold of binary
method and Algorithm 1

◦

×
new threshold

using fbr
×

×
×

×

In this example, there are only two positive instances, and all go to the training
folds. To separate positive and negative training instances, very possibly, the
resulting SVM threshold is larger than the highest decision value of validation
data, which contain only negative points. Algorithm 1 does not further adjust the
threshold as for any value, the validation F-measure is zero. But for Algorithm 2,
as the zero F-measure is less than fbr, the threshold is lowered.

When the validation fold contains positive data, very possibly we have

Training Validation
◦

threshold of
Algorithm 1

◦
×
×
×
×
×

The best threshold from Algorithm 1 achieves an F-measure equal to one, which is
higher than fbr. Thus, Algorithm 2 does not further adjust the threshold. After
averaging the thresholds from different CV folds, the final threshold of Algorithm
2 is smaller than that of Algorithm 1.

An immediate concern is whether such a change causes too low thresholds. We
argue that in general this problem does not happen. Now these labels are rare, and
the original number of TP (True Positive) by Algorithm 1 is generally zero. Hence
lowering the threshold does not quickly increase the number of FP (False Positive).
Hence, micro-average F-measure is not affected much. For macro-average, since
the original F-measure is close to zero, by predicting a few more points as positive,
the chance of getting a better F-measure is high. Note that macro-average F-
measure is the average of label F-measures. If there are many extremely rare
labels, after using Algorithm 1, quite a few have F-measures zero. Improvements
on some of them significantly boost the average value. Thus, in Table 5, Algorithm
2 gives a much better macro-average F-measure than Algorithm 1.
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Table 6: Examples where thresholds are decreased after using fbr. Algorithm 2
then predicts more data as positive.

Algorithm 1 Algorithm 2
label # training TP FP FN F threshold TP FP FN F threshold

16 2 0 0 2 0.00 0.70 1 2 1 0.40 0.28
17 3 0 0 2 0.00 0.63 1 10 1 0.15 0.12
32 1 0 0 1 0.00 0.84 1 8 0 0.20 0.11
35 5 0 0 2 0.00 0.68 1 0 1 0.67 0.32

Table 7: Examples where thresholds are increased after using fbr. Algorithm 2
then predicts less data as positive.

Algorithm 1 Algorithm 2
label # training TP FP FN F threshold TP FP FN F threshold

65 28 20 3097 7 0.01 -0.07 0 0 27 0.00 0.61
85 19 22 1318 11 0.03 0.02 0 5 33 0.00 0.45
53 17 4 750 13 0.01 0.06 0 4 17 0.00 0.48
52 7 9 1084 3 0.02 0.02 0 3 12 0.00 0.34

This observation is very interesting as fbr serves a different role from what it
is originally designed for. Next we show that in some other situations fbr does
increase the threshold.

2. When the number of positive data is small but not too small, fbr helps
to prevent a huge number of FP by increasing the threshold.

For the same data (fifth subset of OHSUMED), Table 7 shows that for some labels,
the fbr heuristic significantly reduces the number of FP (False Positive). Take
the label 65 as an example. It has 28 of the total 5,000 instances. With Algorithm
1, the best F-measure of predicting five validations folds is 0.0127. There is no
single fold of data that can achieve the specified fbr value 0.1. Therefore, the fbr
heuristic sets the threshold to the highest decision value. In testing, Algorithm 1
predicts 3,104 instances as positive, but there are only 27 positive instances in the
testing set. With the fbr setting, both Algorithms 2 and 3 predict no instances
as positive. Therefore, fbr minimizes the impact on micro-average F-measure at
the cost of slightly lowering the macro-average F-measure.

As micro-average F-measure considers all labels together, in Table 5, the improve-
ment is not significant. Nevertheless, we see that fbr serves as a safeguard to
prevent a catastrophic situation of huge FP.

If we order labels according to their numbers of data, roughly they are separated to
three segments. For the first segment, with enough data, the resulting F-measure is
larger than fbr, so the threshold remains the same. For the second part, Algorithm 2
increases thresholds for more conservative predictions. For the third part, labels rarely
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Table 8: Optimizing the micro-average F-measure by the binary method and Algorithms
1-2.

macro-average F-measure
Data set Binary Algo. 1 Algo. 2
scene 0.653 0.766 0.767
yeast 0.405 0.465 0.463
OHSUMED 0.117 0.192 0.230
Yahoo! Ar 0.304 0.387 0.398
Yahoo! Bu 0.281 0.356 0.370
Yahoo! Co 0.292 0.367 0.378
Yahoo! Ed 0.255 0.300 0.335
Yahoo! En 0.410 0.472 0.496
Yahoo! He 0.337 0.378 0.410
RCV1-V2 0.341 0.443 0.490

micro-average F-measure
Binary Algo. 1 Algo. 2

0.652 0.759 0.760
0.651 0.681 0.682
0.452 0.519 0.515
0.484 0.538 0.537
0.774 0.784 0.781
0.588 0.624 0.622
0.507 0.552 0.550
0.624 0.660 0.658
0.697 0.722 0.718
0.741 0.775 0.773

occur and thresholds are decreased to have more positive predictions. Occasionally,
two segments significantly overlap, so the performance is not better. Nevertheless, the
fbr heuristic is generally useful, and the above analysis gives the rationale behind this
method.

5.3 Optimizing the Micro-average F-measure

With the same settings as in Section 5.1, we maximize the micro-average F-measure.
Since Algorithm 2 performs similar to Algorithm 3 in earlier experiments, for subsequent
comparisons we exclude Algorithm 3 . As discussed in Section 2, the order of the labels
may affect the result of optimizing the micro-average F-measure. Thus, we randomly
permute labels and report the average from ten runs. For data with several training
and testing pairs, we run each pair several times, and keep the total number of runs to
ten. Table 8 shows the results.

Clearly, Algorithms 1 and 2 obtain better micro-average F-measure than the binary
method. Therefore, adjusting thresholds effectively optimizes the target measure. The
fbr heuristic (Algorithm 2) significantly improves the macro-average F-measure, but
gives only similar micro-average F-measure. This situation is the same as that in Table
5.

Compared to Table 5, we get better micro-average F-measure in Table 8. This
result is expected since the goal of Table 8 is to optimize the micro-average F-measure.
However, the macro-average F-measure is generally lower than that in Table 5. The
following table shows the details of the fifth run of the yeast set by using Algorithm 2
to optimize macro-average and micro-average F-measures2.

Measure being optimized Sum of TP Sum of FP Sum of FN
macro-average F-measure 3,026 2,446 873
micro-average F-measure 2,783 1,485 1,116

2 The micro-average F-measure of the fifth run is the closest to the average of the ten runs.
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Table 9: Optimizing the micro-average F-measure: the improvement of cyclic over non-
cyclic optimization.

macro-average F-measure
Data set Algo. 1 (%) Algo. 2 (%)
scene 0.15 0.08
yeast -0.83 -0.69
OHSUMED -0.95 -1.07
Yahoo! Ar -0.13 0.04
Yahoo! Bu -0.09 -0.09
Yahoo! Co -0.60 -0.72
Yahoo! Ed -0.23 -0.08
Yahoo! En -0.56 -0.09
Yahoo! He -0.02 -0.06
RCV1-V2 -0.40 -0.41

micro-average F-measure
Algo. 1 (%) Algo. 2 (%)

0.42 0.32
0.04 0.08

-0.01 0.08
0.15 0.22

-0.04 -0.04
0.08 -0.00
0.07 -0.01
0.14 0.26

-0.05 -0.04
0.00 -0.01

Tuning the micro-average F-measure predicts much less positive instances; i.e., the
thresholds are generally higher, and we successfully increase the micro-average F-measure
by reducing the number of false positives. The same situation occurs for most other
data sets. Therefore, the better micro-average F-measure is at the expense of a lower
macro-average F-measure. One must decide the target measure according to his/her
needs.

We investigate how the cyclic optimization affects the optimization on the micro-
average F-measure. Table 9 summarizes the improvements over the non-cyclic optimiza-
tion results. The cyclic optimization algorithm usually takes three or four iterations
before reaching the stopping condition (14). The results are only similar to or slightly
better than those in Table 8. In practice, one may just optimize each label once for
shorter training time.

5.4 Optimizing the Exact Match Ratio

We investigate how Algorithms 1 and 2 perform when the goal is to optimize the exact
match ratio. We use the same settings as those in the previous two experiments, and
present results in Table 10.

Observations are similar to those of optimizing other measures. Adjusting thresholds
(Algorithms 1-2) significantly improves all three measures over the binary method. As
for the fbr heuristic, it mainly helps the macro-average F-measure, but not the other
two. Note that the present target for optimization is the exact match ratio. Therefore,
macro-average (micro-average) F-measure is lower than that in Table 5 (Table 8).

By adjusting thresholds for the scene data, Algorithms 1 and 2 significantly improves
the result of the binary method by 24.8% and 21%, respectively. We give a detailed
investigation. We examine a run whose exact match ratio by Algorithm 1 is 0.608. The
testing set has 1,196 instances but only 103 of them are multi-labeled. The number of
correctly predicted instances is listed below:
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Table 10: Optimizing the exact match ratio by the binary method and Algorithms 1-2.

Macro-avg. F-measure
Data set Binary Algo. 1 Algo. 2
scene 0.653 0.761 0.755
yeast 0.405 0.409 0.401
OHSUMED 0.117 0.134 0.195
Yahoo! Ar 0.304 0.341 0.358
Yahoo! Bu 0.281 0.295 0.329
Yahoo! Co 0.292 0.322 0.337
Yahoo! Ed 0.255 0.284 0.325
Yahoo! En 0.410 0.443 0.476
Yahoo! He 0.337 0.354 0.394
RCV1-V2 0.341 0.373 0.432

Micro-avg. F-measure
Binary Algo. 1 Algo. 2

0.652 0.757 0.750
0.651 0.657 0.656
0.452 0.472 0.469
0.484 0.517 0.517
0.774 0.776 0.774
0.588 0.613 0.611
0.507 0.540 0.538
0.624 0.652 0.652
0.697 0.711 0.707
0.741 0.751 0.749

Exact match ratio
Binary Algo. 1 Algo. 2

0.490 0.611 0.593
0.206 0.217 0.215
0.160 0.177 0.174
0.320 0.344 0.343
0.617 0.620 0.616
0.443 0.464 0.461
0.335 0.363 0.360
0.464 0.502 0.501
0.517 0.526 0.517
0.417 0.437 0.431

# of labels of
an instance 1 2

Binary method 579 7
Algorithm 1 703 24

Instances associated with only one label are much easier to predict then those with
multiple labels. The improvement on those one-label instances is responsible for 88%
performance increase. For other data sets which are more multi-labeled, the improve-
ment on the exact match ratio is much smaller (< 10%).

Next, we investigate how the cyclic optimization performs when the target criterion
is the exact match ratio. The improvements over non-cyclic optimization are in Table 11.
Unlike the case of optimizing the micro-average F-measure, where cyclic optimization
does not help, here the exact match ratio is slightly improved for most data sets.

5.5 Additional Experiments

For the same measure, we compare the results when it is and is not the target opti-
mization criterion. For example, how good is the macro-average F-measure when we
optimize the micro-average F-measure or the exact match ratio? Table 12 shows the
comparison results. Reading each row of the table reveals that micro-average F-measure
is less sensitive to the optimization of other measures. This result may be due to that
micro-average F-measure considers all labels together and is less affected by some rarely
occurred labels. Moreover, since the exact match ratio does not take partial matches
into account, a slight change of thresholds easily results in very different ratios.

We close this section by summarizing in Table 13 the improvements over the binary
method. The cyclic optimization is not considered. Clearly, we are very successful on
optimizing the macro-average F-measure.
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Table 11: Optimizing the exact match ratio: the improvement of cyclic over non-cyclic
optimization.

Macro-average F
Data set Algo. 1 Algo. 2

(%) (%)
scene 0.01 0.99
yeast -0.03 0.06
OHSUMED 1.04 0.21
Yahoo! Ar 1.57 0.58
Yahoo! Bu -0.61 0.38
Yahoo! Co 0.55 -0.19
Yahoo! Ed 0.33 -0.24
Yahoo! En 0.29 -0.07
Yahoo! He 0.29 0.13
RCV1-V2 0.07 0.41

Micro-average F
Algo. 1 Algo. 2

(%) (%)
-0.01 1.15
0.08 0.12
0.59 0.46
0.79 0.59

-0.04 -0.03
0.20 -0.01

-0.27 -0.39
0.26 0.05
0.05 0.06

-0.01 0.11

Exact match ratio
Algo. 1 Algo. 2

(%) (%)
0.18 3.53
0.05 1.57
0.78 0.89
0.95 1.10
0.02 -0.05
0.05 0.16
0.43 0.71
0.32 -0.21
0.20 0.08
0.34 0.39

6 Conclusions

Adjusting the decision thresholds in the binary method is a simple and effective way to
improve the performance of multi-label classification. As the binary method treats labels
separately, optimizing measures with the same property is easier: The improvements
of the macro-average F-measure, which can be decomposed into independent tasks of
measuring each label, is bigger than those of the other two measures (micro-average
F-measure and the exact match ratio).

The fbr heuristic improves the performance when some labels rarely occur. In such
a situation, tuning thresholds overfits validation instances. We show that this heuristic
nicely increases/decreases the threshold according to two different situations. It better
helps the macro-average F-measure than the others.

Though intuitively the cyclic optimization should improve the performance, our
results show that it marginally helps. Hence, optimizing each label once is enough in
practice.
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F. D. Comité, R. Gilleron, and M. Tommasi. Learning multi-label alternating decision
trees from texts and data. In MLDM, pages 35–49, 2003.

A. Elisseeff and J. Weston. A kernel method for multi-labelled classification. In T. G.
Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Information
Processing Systems 14, 2002.

N. Ghamrawi and A. McCallum. Collective multi-label classification. In CIKM, 2005.

W. Hersh, C. Buckley, T. Leone, and D. Hickam. OHSUMED: An interactive retrieval
evaluation and new large test collection for research. In Proceedings of SIGIR-94,
pages 192–201, 1994.

T. Joachims. Text categorization with support vector machines: learning with many
relevant features. In C. Nédellec and C. Rouveirol, editors, Proceedings of ECML-
98, 10th European Conference on Machine Learning, number 1398, pages 137–142,
Chemnitz, DE, 1998. Springer Verlag, Heidelberg, DE. URL citeseer.ist.psu.
edu/joachims97text.html.

A. Karalic̆, , and V. Pirnat. Significance level based multiple tree classification. Infor-
matica, 15(5), 1991.

21

http://www.csie.ntu.edu.tw/~cjlin/libsvm
citeseer.ist.psu.edu/joachims97text.html
citeseer.ist.psu.edu/joachims97text.html


Table 13: The improvements over the binary method by optimizing different evaluation
criterion.

macro-avg. F-measure
Data set Algo. 1 Algo. 2

(%) (%)
scene 17.1 017.1
yeast 24.6 024.3
OHSUMED 94.5 111.4
Yahoo! Ar 34.3 035.1
Yahoo! Bu 38.9 036.8
Yahoo! Co 30.6 033.6
Yahoo! Ed 23.8 032.9
Yahoo! En 21.2 020.3
Yahoo! He 15.6 023.5
RCV1-V2 41.7 048.1

micro-avg. F-measure
Algo. 1 Algo. 2

(%) (%)
16.4 16.6
04.6 04.6
14.7 13.8
11.2 10.9
01.2 00.9
06.2 05.9
08.8 08.5
05.6 05.4
03.5 03.0
04.7 04.4

exact match ratio
Algo. 1 Algo. 2

(%) (%)
24.8 21.0
05.3 -4.5
11.0 -8.1
07.5 -7.1
00.5 -0.2
04.8 -3.9
08.3 -7.4
08.3 -8.0
01.9 -0.0
04.9 -3.6

H. Kazawa, T. Izumitani, H. Taira, and E. Maeda. Maximal margin labeling for multi-
topic text categorization. In L. K. Saul, Y. Weiss, and L. Bottou, editors, Advances
in Neural Information Processing Systems 17, pages 649–656. MIT Press, Cambridge,
MA, 2005.

D. D. Lewis, R. E. Schapire, J. P. Callan, and R. Papka. Training algorithms for linear
text classifiers. Proceedings of the 19th annual international ACM SIGIR conference
on Research and development in information retrieval, pages 298–306, 1996.

D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. RCV1: A new benchmark collection for
text categorization research. Journal of Machine Learning Research, 5:361–397, 2004.

A. McCallum. Multi-label text classification with a mixture model trained by EM. In
Proceedings of the AAAI’99 Workshop on Text Learning, 1999.

H.-W. Mewes, K. Albermann, K. Heumann, S. Lieb, and F. Pfeiffer. MIPS: a database
for protein sequences, homology data and yeast genome information. Nucleic Acids
Research, 25(1):28–30, 1997.

K. Nigam, A. K. McCallum, S. Thrun, and T. M. Mitchell. Text classification from
labeled and unlabeled documents using EM. Machine Learning, 39(2/3):103–134,
2000. URL citeseer.ist.psu.edu/article/nigam99text.html.

R. E. Shapire and Y. Singer. Boostexter: A boosting-based system for text categoriza-
tion. Machine Learning, 39(2/3):135–168, 2000.

J. M. Tague. Information retrieval experiment. In K. S. Jones, editor, The pragmat-
ics of information retrieval experimentation, chapter 5, pages 59–102. Butterworths,
London, 1981.

22

citeseer.ist.psu.edu/article/nigam99text.html


N. Ueda and K. Saito. Parametric mixture models for multi-labeled text. In S. T.
S. Becker and K. Obermayer, editors, Advances in Neural Information Processing
Systems 15, pages 721–728. MIT Press, Cambridge, MA, 2003.

Y. Yang. A study on thresholding strategies for text categorization. In W. B. Croft, D. J.
Harper, D. H. Kraft, and J. Zobel, editors, Proceedings of SIGIR-01, 24th ACM In-
ternational Conference on Research and Development in Information Retrieval, pages
137–145, New Orleans, US, 2001. ACM Press, New York, US.

Y. Yang. An evaluation of statistical approaches to text categorization. Information
Retrieval, 1(1/2):69–90, 1999.

M.-L. Zhang and Z.-H. Zhou. ML-KNN: A lazy learning approach to multi-label learn-
ing. Pattern Recognition, 40(7):2038–2048, 2007.

T. Zhang and F. J. Oles. Text categorization based on regularized linear classification
methods. Information Retrieval, 4(1):5–31, 2001.

23


	Introduction
	Binary Method, Evaluation Measures, and Optimization of Measures
	The Binary Method
	Evaluation Criteria
	Exact Match Ratio
	Macro-average and Micro-average F-measures

	Optimizing Measures

	Optimizing Measures via Threshold Selection
	Data and Experimental Settings
	Real-World Data Sets
	scene
	yeast
	OHSUMED
	Yahoo! Directories
	RCV1-V2

	Experimental Settings

	Experiments and Analysis
	Optimizing the Macro-average F-measure
	Analysis of the fbr Heuristic
	Optimizing the Micro-average F-measure
	Optimizing the Exact Match Ratio
	Additional Experiments

	Conclusions

