
A Sequential Dual Method for Large Scale Multi-Class
Linear SVMs

S. Sathiya Keerthi
Yahoo! Research
Santa Clara, CA

selvarak@yahoo-inc.com

S. Sundararajan
Yahoo! Labs

Bangalore, India
ssrajan@yahoo-inc.com

Kai-Wei Chang
Dept. of Computer Science
National Taiwan University

Taipei 106, Taiwan
b92084@csie.ntu.edu.tw

Cho-Jui Hsieh
Dept. of Computer Science
National Taiwan University

Taipei 106, Taiwan
b92085@csie.ntu.edu.tw

Chih-Jen Lin
Dept. of Computer Science
National Taiwan University

Taipei 106, Taiwan
cjlin@csie.ntu.edu.tw

ABSTRACT
Efficient training of direct multi-class formulations of linear
Support Vector Machines is very useful in applications such
as text classification with a huge number examples as well
as features. This paper presents a fast dual method for this
training. The main idea is to sequentially traverse through
the training set and optimize the dual variables associated
with one example at a time. The speed of training is en-
hanced further by shrinking and cooling heuristics. Experi-
ments indicate that our method is much faster than state of
the art solvers such as bundle, cutting plane and exponen-
tiated gradient methods.

Categories and Subject Descriptors
I.5.2 [Pattern Recognition]: Design Methodology—Clas-
sifier design and evaluation

General Terms
Algorithms, Performance, Experimentation

1. INTRODUCTION
Support vector machines (SVM) [2] are popular methods

for solving classification problems. An SVM employing a
nonlinear kernel maps the input x to a high dimensional
feature space via a nonlinear function φ(x) and forms a lin-
ear classifier in that space to solve the problem. Inference
as well as design are carried out using the kernel function,
K(xi, xj) = φ(xi)

T φ(xj). In several data mining applica-
tions the input vector x itself has rich features and so it is
sufficient to take φ as the identity map, i.e. φ(x) = x. SVMs
developed in this setting are referred to as Linear SVMs.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’08, August 24–27, 2008, Las Vegas, Nevada, USA.
Copyright 2008 ACM 978-1-60558-193-4/08/08 ...$5.00.

In applications such as text classification the input vector
x resides in a high dimensional space (e.g. a bag-of-words
representation), the training set has a large number of la-
beled examples, and the training data matrix is sparse, i.e.
the average number of non-zero elements in one x is small.
Most classification problems arising in such domains involve
many classes. Efficient learning of the parameters of linear
SVMs for such problems is important. The One-Versus-Rest
(OVR) method which consists of developing, for each class,
a binary classifier that separates that class from the rest of
the classes, and then combining the classifiers for multi-class
inference, is one of the popular schemes to solve a multi-class
problem. OVR is easy and efficient to design and also gives
good performance [21].

Crammer and Singer [5, 6] and Weston and Watkins [25]
gave direct multi-class SVM formulations. With nonlinear
kernels in mind, Crammer and Singer [5, 6] and Hsu and Lin
[10] gave efficient decomposition methods for these formula-
tions. Recently, some good methods have been proposed for
SVMs with structured outputs, that also specialize nicely
for Crammer-Singer multi-class linear SVMs. Teo et al. [23]
suggested a bundle method and Joachims et al. [13] gave a
cutting plane method that is very close to it; these meth-
ods can be viewed as extensions of the method given by
Joachims [12] for binary linear SVMs. Collins et al. [4] gave
the exponentiated gradient method.

In this paper we present fast dual methods for Crammer-
Singer and Weston-Watkins formulations. Like the methods
of Crammer and Singer [5, 6] and Hsu and Lin [10] our
methods optimize the dual variables associated with one ex-
ample at a time. However, while those previous methods
always choose the example that violates optimality the most
for updating, our methods sequentially traverse through the
examples. For the linear SVM case this leads to significant
differences. In particular, for this case our methods are ex-
tremely efficient while those methods are not so efficient.
We borrow and modify the shrinking and cooling heuristics
of Crammer and Singer [6] to make our methods even faster.
Experiments on several datasets indicate that our method
is also much faster than cutting plane, bundle and expo-
nentiated gradient methods. For the special case of binary
classification our methods turn out to be equivalent to doing
coordinate descent. We covered this method in detail in [9].

Table 1.1: Properties of datasets

Dataset l ltest n k # nonzeros in

whole data

NEWS20 15,935 3,993 62,061 20 1,593,692

SECTOR 6,412 3,207 55,197 105 1,569,904

MNIST 60,000 10,000 779 10 10,505,375

RCV1 531,742 15,913 47,236 103 36,734,621

COVER 522,911 58,101 54 7 6,972,144

Notations. The following notations are used in the pa-
per. We use l to denote the number of training examples,
ltest to denote the number of test examples and k to denote
the number of classes. Throughout the paper, the index i
will denote a training example and the index m will denote
a class. Unless otherwise mentioned, i will run from 1 to l
and m will run from 1 to k. xi ∈ Rn is the input vector (n
is the number of input features) associated with the i-th ex-
ample and yi ∈ {1, . . . , k} is the corresponding target class.
We will use 1 to denote a vector of all 1’s whose dimension
will be clear from the context. Superscript T will denote
transpose for vectors.

The following multi-class datasets are used in the paper
for doing various experiments: NEWS20 [14], SECTOR [20,
19], MNIST [15], RCV1 [16] and COVER [13]. RCV1 is
a taxonomy based multi-label dataset and so we modified
it to a multi-class dataset by removing all examples which
had mismatched labels in the taxonomy tree; in the process
of doing this, two classes do not have any training exam-
ples. For NEWS20, MNIST and RCV1 we used the standard
train-test split; for SECTOR we used the second train/test
split used in [20]; and, for COVER we used the train/test
split used in [13]. Table 1.1 gives key properties of these
datasets.

The paper is organized as follows. In section 2 we give
the details of our method (we call it as the Sequential Dual
Method (SDM)) for the Crammer-Singer formulation and
evaluate it against other methods. In section 3 we describe
SDM for the Weston-Watkins formulation. In section 4 we
compare these methods with the One-Versus-Rest method
of solving multi-class problems. We conclude the paper in
section 5. An implementation of a variant of the SDM al-
gorithm for Crammer-Singer formulation is available in the
LIBLINEAR library (version 1.3 or higher) with the option
-s 4 (http://www.csie.ntu.edu.tw/~cjlin/liblinear).

2. SDM FOR CRAMMER-SINGER FORMU-
LATION

In [5, 6], Crammer and Singer proposed an approach for
the multi-class problem by formulating the following primal
problem:

min
{wm},{ξi}

1

2

P

m
‖wm‖

2 + C
P

i
ξi

s.t. wT
yi

xi −wT
mxi ≥ em

i − ξi ∀m, i, (1)

where C > 0 is the regularization parameter, wm is the
weight vector associated with class m, em

i = 1 − δyi,m and
δyi,m = 1 if yi = m, δyi,m = 0 if yi 6= m. Note that, in (1)
the constraint for m = yi corresponds to the non-negativity

constraint, ξi ≥ 0. The decision function is

arg max
m

w
T
mx. (2)

The dual problem of (1), developed along the lines of [5, 6],
involves a vector α having dual variables αm

i ∀m, i. The wm

get defined via α as

wm(α) =
X

i

αm
i xi ∀ m (3)

At most places below, we simply write wm(α) as wm. Let
Cm

i = 0 if yi 6= m, Cm
i = C if yi = m. The dual problem is

min
α

f(α) = 1

2

P

m
‖wm(α)‖2 +

P

i

P

m
em

i αm
i

s.t. (αm
i ≤ Cm

i ∀m,
P

m
αm

i = 0) ∀i, (4)

The gradient of f plays an important role and is given by

gm
i =

∂f(α)

∂αm
i

= wm(α)T
xi + em

i ∀ i, m. (5)

If n̄ is the average number of nonzero elements per training
example, then on average the evaluation of each gm

i takes
O(n̄) effort. Optimality of α for (4) can be checked using
the quantity,

vi = max
m

gm
i − min

m:αm

i
<Cm

i

gm
i ∀i. (6)

For a given i, the values of m that attain the max and min
in (6) play a useful role and are denoted as follows:

Mi = arg max
m

gm
i and mi = arg min

m:αm

i
<Cm

i

gm
i . (7)

From (6) it is clear that vi is non-negative. Dual optimality
holds when:

vi = 0 ∀i. (8)

For practical termination we can approximately check opti-
mality using a tolerance parameter, ǫ > 0:

vi < ǫ ∀i. (9)

We will also refer to this as ǫ-optimality. The value ǫ = 0.1
is a good choice for a practical implementation of SDM.

SDM consists of sequentially picking one i at a time and
solving the restricted problem of optimizing only αm

i ∀m,
keeping all other variables fixed.∗ To do this, we let δαm

i

denote the additive change to be applied to the current αm
i ,

and optimize δαm
i ∀m. Let αi, δαi, gi and C i be vectors

that respectively gather the elements αm
i , δαm

i , gm
i and Cm

i

over all m. With Ai = ‖xi‖
2 the sub-problem of optimizing

δαi is given by

min
δαi

1

2
Ai‖δαi‖

2 + gT
i δαi

s.t. δαi ≤ C i − αi, 1T δαi = 0 (10)

This can be derived by noting the following: (i) changing
αm

i to αm
i + δαm

i causes wm to change to wm + δαm
i xi; (ii)

‖wm + δαm
i xi‖

2 = ‖wm‖
2 + Ai(δα

m
i)2 + 2(wT

mxi)δα
m
i ; (iii)

em
i αm

i changes to em
i αm

i + em
i δαm

i ; (iv) using the definition

∗When specialized to binary classification (k = 2), for each
i the equality constraint in (4) can be used to eliminate the
variable αm

i , m 6= yi. With this done and the dual solu-
tion viewed as optimization for the variables {αyi

i }i, SDM
is equivalent to doing coordinate descent. This is what we
did in [9].

Algorithm 2.1 SDM for Crammer-Singer Formulation

• Initialize α and the corresponding wm ∀m.
• Until (8) holds in an entire loop over examples, do:

For i = 1, . . . , l

(a) Compute gm
i ∀m and obtain vi

(b) If vi 6= 0, solve (10) and set:

αi ← αi + δαi

wm ← wm + δαm
i xi ∀m

of gm
i in (5); and (v) using the above in (4) and leaving out

all constants that do not depend on δαi. The sub-problem
in (10) has a nice simple form. Let us discuss methods for
solving it. Suppose Ai = 0 for some i, which can happen
only when xi = 0. In the primal problem (1) such examples
contribute a fixed cost of C to the objective function, they
have no effect on the wm, and so they can be effectively
ignored. So, hereafter we will assume Ai > 0 ∀i. Crammer
and Singer [5, 6] suggest two methods for solving (10): (i)
an exact O(k log k) algorithm (see section 6.2 of [5]) and (ii)
an approximate iterative fixed-point algorithm (see section
6 of [6]). Alternatively, one could also employ an active set
method meant for convex quadratic programming problems
[8], starting from δαi = 0 as the initial point. Since the Hes-
sian of the objective function in (10) is Ai times the identity
matrix and the constraints of (10) are in a simple form, var-
ious linear equation solving steps of the active set method
can be done analytically and cheaply. Our implementation
uses this method.

A description of SDM is given in Algorithm 2.1. If good
seed values are unavailable, a simple way to initialize is to
set α = 0; this corresponds to wm = 0 ∀m. Let us now
discuss the complexity of the algorithm. Each execution of
step (a) requires O(kn̄) effort; recall that n̄ is the average
number of nonzero elements per training example. The cost
of step (b) is at most O(kn̄), and it could be much less
depending on the number of αm

i that are actually changed
during the solution of (10). Since the solution of (10) itself
is usually not as high as these costs if k is not very large,
it is reasonable to take the cost of an update for one i as
O(kn̄). Thus the overall cost of a loop, i.e. a full sequence
of updates over all examples is O(lkn̄). The main memory
requirement of the algorithm consists of storing the data,
xi ∀i (O(ln̄)), the weights, wm ∀m (O(kn)) and the αm

i

∀i, m (at most O(kl)). For problems with a large number of
classes but having only a small number of non-zero αm

i , it
is prudent to use a linked list data structure and store only
those αm

i which are non-zero.
The following convergence theorem can be proved for SDM,

employing ideas similar to those in [17].

Theorem 2.1 Let αt denote the α at the end of the t-th
loop of Algorithm 2.1. Any limit point of a convergent sub-
sequence of {αt} is a global minimum of (4).

Because of space limitation we omit the proof. In [9] we
showed that SDM for binary classification has a linear rate
of convergence, i.e., there exists 0 ≤ µ < 1 and a t0 such
that

f(αt)− f(α∗) ≤ µt−t0(f(αt0)− f(α∗)), ∀t ≥ t0, (11)

where f is the dual objective function, t is the loop count in

the algorithm, αt is the α at the end of the t-th loop, and
α∗ is the dual optimal solution. On the other hand Theorem
2.1 only implies a weaker form of convergence for Algorithm
2.1. As we remarked earlier, for binary classification SDM
becomes coordinate descent, a standard method for which
good convergence results exist in the optimization literature
[18]. The presence of the equality constraint in (4) makes
the multi-class version somewhat non-standard. It is an in-
teresting open problem to establish linear convergence for
Algorithm 2.1.

Let us now discuss various ways of making Algorithm 2.1
more efficient. In the algorithm the examples are considered
in the given order i = 1, 2, . . . , l for updating. Any system-
atic regularities in the given order (for instance, all examples
of one class coming together) may lead to slow convergence.
So it is a good idea to randomly permute the examples. In
fact it is useful to do this random permutation before each
loop through the examples. We do this in our implemen-
tation of SDM. In [9] we found the same idea to be useful
for binary classification. Theorem 2.1 is valid even in the
presence of such random permutations.

In the solution of the sub-problem (10), the variables, αm
i

corresponding to the ‘most violating’ indices m ∈ {Mi, mi}
(see (7)) are particularly important. When the number of
classes is large, for efficiency one could consider solving the
sub-problem only for these two variables. An extended ver-
sion of this idea is the following. Since the inactive variables,
i.e., m : αm

i < Cm
i are important, we can optimize on the

variables αm
i for m = Mi and m : αm

i < Cm
i . In most prob-

lems the number of inactive variables per example is quite
small† (even when the number of classes is large) and so we
use this method in our implementation.

2.1 Heuristics for improving efficiency
Crammer and Singer [6] employed two heuristics to speed

up their algorithm. We employ these heuristics for SDM
too. We now discuss these heuristics.

Shrinking. Shrinking [11], a technique for removing vari-
ables that are not expected to change, is known to be a very
good way to speed up decomposition methods for binary
SVMs. In the multi-class case, it may turn out that for
many examples αm

i = 0 ∀m. So, for efficiency Crammer
and Singer [6] suggested the idea of concentrating the algo-
rithm’s effort on examples i for which there is at least one
non-zero αm

i . (If, for a given i there is at least one non-
zero αm

i , then it is useful to observe the following using the
special nature of the constraints in the dual problem: (i)
there are at least two non-zero αm

i ; and (ii) αyi

i > 0.) We
can get further improved efficiency by doing two modifica-
tions. The first modification is to also remove those i for
which there is exactly one m 6= yi with αm

i = −αyi

i = −C.
(In other words, apart from removing those i with αm

i = 0
∀m, we are also removing those i with exactly two non-zero
αm

i each having magnitude C.) At optimality this gener-
ically corresponds to arg maxm6=yi

wT
mxi being a singleton

and ξi = wT
mxi −wT

yi
xi + 1 > 0. As we approach optimal-

ity, for the m that attains the arg max above we expect αm
i

to stay at −C, αyi

i to stay at C and αm
i = 0 for all other m.

If there are many such examples, then this modification will
give good benefits. The second modification is the follow-

†This corresponds to the observation that for any given ex-
ample the confusion in classification is only amongst a few
classes.

ing: even within an example i that does not get removed,
consider for updating only those αm

i which are non-zero.
Efficiency improvement due to this modification can be sub-
stantial when the average number of non-zero αm

i for each
example is much smaller than the number of classes. With
these modifications included in shrinking SDM is changed
as follows. We alternate between the following two steps.

1. First do a full sequential loop over all examples.

2. Do several loops over only those examples i that do
not satisfy the condition for removal discussed above.
When doing this, for each i that is included, evaluate
gm

i and optimize αm
i only for those m that have non-

zero αm
i . Repeat these ‘shrunk’ loops until either ǫ-

optimality is satisfied on all the positive αm
i or the

effort associated with these loops exceeds a specified
amount.‡

Cooling of accuracy parameter. Suppose we desire to
solve the dual problem quite accurately using a small value
of ǫ. When shrinking is employed there is a tendency for
the algorithm to spend a lot of effort in the ‘shrunk’ loops.
The algorithm has to wait for the next full loop (where other
optimality-violating αm

i get included) to make a decent im-
provement in the dual objective function. To avoid a stair-
case behavior of the objective function with computing time,
it is a good idea to start with a large value for ǫ and decrease
it in several graded steps until the final desired ǫ is reached.
In our implementation we start from ǫ = 1 and decrease it
by a factor of 10 in each graded step.

Figure 1 demonstrates the effectiveness of including the
heuristics on two datasets. Clearly, the heuristics are valu-
able when (4) needs to be solved quite accurately.

2.2 Comparison with Crammer and Singer’s
method

In [5, 6], Crammer and Singer gave a method for solving
(4) with nonlinear kernels in mind. Their method also uses
the basic idea of choosing an i and solving (10) to update
αi. Unlike our method which does a sequential traversal of
the i, Crammer and Singer’s method always chooses the i
for which the optimality violation vi in (6) is largest at the
current α. To appreciate Crammer and Singer’s motivation
for doing this, first note that the gm

i are key quantities for
calculating the vi as well as for setting up (10). So let us
look at the computational complexity associated with gm

i in
some detail.

For problems with a nonlinear kernel K(xj , xi), the gm
i

need to be computed using

gm
i =

X

j

αm
j K(xj , xi) + em

i ∀ i, m. (12)

Let us recall the notations gi, αi and δαi given above
(10). Direct computation of gi for one given i via (12) takes
O(lkn̄) effort. On the other hand, suppose we maintain gj

∀j. In a typical step of Crammer and Singer’s method, an
i is chosen and αi is changed as αi ← αi + δαi; in such a
case the gj can be updated using

gj ← gj + K(xj , xi)δαi ∀ j. (13)

‡In our implementation we count the total number of gm
i

evaluations, divide it by kl to get the number of effective
loops and terminate the ‘shrunk’ loops when the number of
effective loops exceeds 5.

10
−2

10
0

10
2

10
4

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

R
el

at
iv

e
F

un
ct

io
n

V
al

ue
 D

iff
er

en
ce

10
−2

10
0

10
2

10
4

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

R
el

at
iv

e
F

un
ct

io
n

V
al

ue
 D

iff
er

en
ce

Figure 1: Comparison of SDM with (Red, dashdot)
and without (Blue, solid) the shrinking and cooling
heuristics on MNIST (top) and COVER (bottom)
datasets. The horizontal axis is Training time in
seconds.

which also requires (total, for all j) only O(lkn̄) effort. There-
fore maintaining gj ∀j does not cost more than the direct
computation of a single gi using (12). As using gj ∀j implies
fewer iterations (i.e., faster convergence due to the ability to
choose for updating the i that violates optimality most), of
course one should take this advantage. This clearly moti-
vates the scheme for choosing i in Crammer and Singer’s
method.

However, the situation for linear SVM is very different.
With the cheap O(kn̄) way (gm

i = wT
mxi + em

i ∀m) of com-
puting gi and the cheap O(kn̄) way (wm ← wm + δαm

i xi

∀m) of updating the wm, each update of αi takes only O(kn̄)
effort, and so, if l is large, SDM can do many more (O(l))
updates of the wm for the same effort as needed by Cram-
mer and Singer’s method for one update of the wm. Hence,
for linear SVM, always choosing the i that yields the maxi-
mum vi is unwise and sequential traversal of the i is a much
better choice.

2.3 Comparison with other methods
We now compare our method with other methods for solv-

ing (1). The cutting plane method of Joachims et al. [13]
and the bundle method of Teo et al. [23] are given for the
more general setting of SVMs with structured outputs, but
they also specialize to multi-class linear SVMs using the
Crammer-Singer formulation. These methods combine the
loss term C

P

i
ξi in (1) into a single loss function and build

convex, piecewise linear lower bounding approximations for
this function by using sub-differentials of it from various
points encountered during the solution. A negative aspect

10
0

10
1

10
2

10
3

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

R
el

at
iv

e
F

un
ct

io
n

V
al

ue
 D

iff
er

en
ce

10
0

10
1

10
2

10
3

20

30

40

50

60

70

80

90

T
es

t S
et

 A
cc

ur
ac

y

10
0

10
1

10
2

10
3

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

R
el

at
iv

e
F

un
ct

io
n

V
al

ue
 D

iff
er

en
ce

10
0

10
1

10
2

10
3

20

30

40

50

60

70

80

90

T
es

t S
et

 A
cc

ur
ac

y
Figure 2: Comparison of SDM (Red, dashdot), EG (Blue, dashed) and Bundle (Green, solid) on MNIST dataset.
The horizontal axis is Training time in seconds. Each row corresponds to one C value; Row 1: C = 10; Row
2: C = 0.1

of these algorithms is their need to scan the entire training
set in order to form one sub-differential mentioned above;
as we will see below in the experiments, this causes these
algorithms to be slow to converge. Barring some differences
in implementation the algorithms in [13] and [23] are the
same and we will simply refer to them jointly as the Cut-
ting Plane (CP) method. For comparison we use the im-
plementation in http://www.cs.cornell.edu/People/tj/

svm_light/svm_multiclass.html.
The Exponentiated Gradient (EG) method [4] also ap-

plies to structured output problems and specializes to the
Crammer-Singer multi-class linear SVM formulation. It uses
a dual form that is slightly different from (4), but is equiv-
alent to it by a simple translation and scaling of variables.
Like our method the EG method updates the dual variables
associated with one example at a time, but the selection of
examples is done in an online mode where an i is picked ran-
domly each time. The EG method does an approximate de-
scent via a constraint-obeying exponentiated gradient step.
By its very design all dual inequality constraints remain
inactive (i.e., αm

i < Cm
i ∀i, m) throughout the algorithm,

though, as optimality is reached some of them may asymp-
totically become active. The EG method is very straightfor-
ward to implement and we use our own implementation for
the experiments given below.

We now compare our method (SDM) against CP and EG
on the five datasets used in this paper, both with respect
to the ability to converge well to the optimum of (4) as
well as the ability to reach steady state test set performance
fast. We evaluate the former by the Relative Function Value
Difference given by (f − f⋆)/f⋆ where f⋆ is the optimal
objective function value of (4), and the latter by Test Set
Accuracy which is the percentage of test examples that are
classified correctly. For simplicity we set C = 1 for this ex-
periment. Figure 3 (see the last page of the paper) gives

plots of these two quantities as a function of training time
for the five datasets. Overall, SDM is much faster than EG,
which in turn is much faster than CP. This is true irrespec-
tive of whether the aim is to efficiently reach the optimum
dual objective very closely or reach the steady state test ac-
curacy fast. On COVER (see the bottom left row of Figure
3) EG has difficulty reaching the optimal objective function
value, which is possibly due to numerical issues associated
with large exponential operations involved in its updates.

When the regularization parameter C needs to be tuned,
say via cross-validation techniques, it is necessary to solve
(4) for a range of C values. It is important for an algorithm
to be efficient for widely varying C values. For one dataset,
MNIST, Figure 2 compares the three methods for large and
small C values (C = 10 and C = 0.1); for the intermediate
value of C = 1, see also the plots for MNIST in Figure 3.
When actually finding solutions for an ordered set of several
C values, the optimal α and the wm obtained from the
algorithm for one C value can be used to form initializations
of corresponding quantities of the algorithm for the next C
value. This is a standard seeding technique that improves
efficiency, and is also used in the EG method [4].

Stochastic gradient descent methods [22, 3] can be applied
to the online version of (1) and they are known to achieve
steady state test performance quite fast. We have not eval-
uated SDM against these methods. However, our evaluation
in [9] shows that, for binary classification SDM is faster than
stochastic gradient methods. So we expect the same result
to hold for the multi-class case too. The modified MIRA
algorithm proposed by Crammer and Singer [7] has some
similarities with our sequential dual method, but it is given
in an online setting and does not solve the batch problem.
Also, ideas such as shrinking do not apply to it. Bordes et
al. [1] apply a coordinate descent method for multi-class
SVM, but they focus on nonlinear kernels.

3. SDM FOR WESTON-WATKINS FORMU-
LATION

Let em
i and δm

i be as defined in section 2. In [25], We-
ston and Watkins proposed an approach for the multi-class
problem by formulating the following primal problem:

min
{wm},{ξm

i
}

1

2

X

m

‖wm‖
2 + C

X

i

X

m6=yi

ξm
i

s.t. w
T
yi

xi −w
T
mxi ≥ em

i − ξm
i , ξm

i ≥ 0 ∀m 6= yi, ∀i. (14)

The decision function remains the same as in (2). The dual
problem of (14) involves a vector α having dual variables
αm

i ∀i, m 6= yi. For convenience let us set

αyi

i = −
X

m6=yi

αm
i ,

and define

wm(α) = −
X

i

αm
i xi. (15)

The dual of (14) can now be written as

min
α

f(α) = 1

2

P

m
‖wm(α)‖2 +

P

i

P

m6=yi
αm

i

s.t. 0 ≤ αm
i ≤ C ∀m 6= yi, ∀i. (16)

The gradient of f is given by

gm
i =

∂f(α)

∂αm
i

= wyi
(α)T

xi −wm(α)T
xi − 1 ∀ i, m 6= yi.

(17)
Optimality can be checked using vm

i , m 6= yi, defined as:

vm
i =

8

>

<

>

:

|gm
i | if 0 < αm

i < C,

max(0,−gm
i) if αm

i = 0,

max(0, gm
i) if αm

i = C.

(18)

Clearly vm
i ≥ 0. Optimality holds when:

vm
i = 0 ∀m 6= i, ∀i. (19)

For practical termination we can approximately check this
using a tolerance parameter, ǫ > 0:

vm
i < ǫ ∀m 6= i, ∀i. (20)

The value ǫ = 0.1 is a good choice for a practical implemen-
tation.

Like in section 2, the Sequential Dual Method (SDM)
for the Weston-Watkins formulation consists of sequentially
picking one i at a time and solving the restricted problem of
optimizing only αm

i ∀m 6= yi. To do this, we let δαm
i denote

the additive change to be applied to the current αm
i , and

optimize δαm
i ∀m 6= yi. Let αi, δαi and gi be vectors that

respectively gather the elements αm
i , δαm

i and gm
i over all

m 6= yi. With Ai = ‖xi‖
2 the sub-problem of optimizing

δαi is given by

min
δαi

1

2
Ai‖δαi‖

2 + 1

2
Ai(1

T δαi)
2 + gT

i δαi

s.t. 0 ≤ δαi ≤ C1− αi (21)

Like (10), the sub-problem (21) too has a simple form. We
solve it also using the active set method. We note that
the Hessian of the objective function in (21) is Ai(I + 11T)
(where I is the identity matrix), and so, any of its block diag-
onal sub-matrices can be analytically and cheaply inverted.
Therefore the active-set method is very efficient and we used

Algorithm 3.1 SDM for Weston-Watkins Formulation

• Initialize α and the corresponding wm ∀m.
• Until (19) holds in an entire loop over examples do:

For i = 1, . . . , l

(a) Compute gm
i ∀m 6= yi and obtain vi

(b) If maxm vm
i 6= 0, solve (21) and set:

αm
i ← αm

i + δαm
i ∀m 6= yi

Set δαyi

i = −
P

m6=yi
δαm

i .

wm ← wm − δαm
i xi ∀m

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

R
el

at
iv

e
F

un
ct

io
n

V
al

ue
 D

iff
er

en
ce

10
−2

10
0

10
2

10
4

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

R
el

at
iv

e
F

un
ct

io
n

V
al

ue
 D

iff
er

en
ce

Figure 4: Comparison of SDM (Weston-Watkins)
with (Red, dashdot) and without (Blue, solid) the
shrinking and cooling heuristics on MNIST (top)
and COVER (bottom) datasets. The horizontal axis
is Training time in seconds.

this method in our implementation. A complete description
of SDM for the Weston-Watkins formulation is given in Al-
gorithm 3.1. The initialization, as well as time and memory
complexity analysis given earlier for Crammer-Singer SDM
also hold for this algorithm. Turning to convergence, let us
assume, like in section 2, that Ai > 0 ∀i. Unlike (4), the
dual (16) does not have any equality constraints. Algorithm
3.1 is a block coordinate descent method for which conver-
gence results from the optimization literature (see [18] and
in particular section 6 there) can be applied to show that
Algorithm 3.1 has linear convergence. Finally, similar to
section 2.2 we can argue that, the method of Hsu and Lin
[10] is suited for nonlinear kernels, but SDM is better for the
linear SVM case.

For efficiency, (21) can be solved only for some restricted
variables, say only the δαm

i for which vm
i > 0. The heuris-

tics given for Crammer-Singer SDM can be extended to the
Weston-Watkins version too. In the shrinking phase, for
each i, among all m 6= i we only compute gm

i and update

αm
i for those m which satisfy 0 < αm

i < C. Figure 4 shows
the effectiveness of including the heuristics on MNIST and
COVER datasets.

4. COMPARISON WITH ONE-VERSUS-REST
The One-Versus-Rest (OVR) method which consists of de-

veloping, for each class m, a binary classifier (wm) that sep-
arates class m from the rest of the classes, and then using (2)
for inference, is one of the popular schemes to solve a multi-
class problem. For nonlinear SVMs, Rifkin and Klatau [21]
argue that OVR is as good as any other approach if the
binary classifiers are well-tuned regularized classifiers like
SVMs. The main points in defense of OVR (and against
direct multi-class methods) are: (1) complicated implemen-
tation of direct multi-class methods, (2) their slow training,
and (3) OVR yields accuracy similar to that given by di-
rect multi-class methods. These points should be viewed
differently when considering linear SVMs. Firstly, a method
such as SDM is easy to implement. Secondly, with respect
to training speed, the following simplistic analysis gives in-
sight. It is reasonable to take the cost of solution of a dual
problem (whether it is a binary or a direct multi-class one)
to be a function T (ld) where ld is the number of dual vari-
ables in that problem.§ In OVR we solve k binary problems
each of which has l dual variables and so its cost is kT (l).
For a direct multi-class solution, e.g. Crammer-Singer, the
number of dual variables is kl and therefore its cost is T (kl).
For nonlinear SVMs T (·) is a nonlinear function (some em-
pirical studies have shown it to be close to a quadratic) and
so OVR solution is much faster than direct multi-class solu-
tions. On the other hand, for linear SVMs, T (·) tends to be
a linear function and so the speeds of OVR and direct multi-
class solutions are close. We observe this in an experiment
given below. Thirdly, performance differences between OVR
and direct multi-class methods is dependent on the dataset.
The experiments below offer more insight on this aspect.

First we do an implementation of OVR in which each SVM
binary classifier employing the standard hinge loss is solved
using the binary version of SDM, as developed in [9]. By
the results in [9] this is probably the fastest solver for OVR
for the types of datasets considered in this paper. We be-
gin with a simple experiment where we fix C = 1 and solve
the multi-class problems using OVR and SDM for Crammer-
Singer and Weston-Watkins formulations. For MNIST and
COVER datasets Figure 5 gives the behavior of test set per-
formance as the solutions progress in time. For the OVR
method test set performance was evaluated after each loop
of the training set in each binary classifier solution, whereas,
for the direct multi-class SDM the evaluation was done on
a finer scale, four times within one loop. Clearly, all three
methods take nearly the same amount of computing time
to reach their respective steady state values. This is in
agreement with our earlier mention that, for linear SVMs
OVR and direct multi-class solutions have similar complex-
ity. Also, in these datasets the final test set accuracies of
Crammer-Singer and Weston-Watkins formulations are bet-
ter than the accuracy of OVR.

Since accuracy depends on the choice of C, we do a more
detailed study on the accuracy aspects further. For each of

§This can be seen from the complexity analysis of section 2
coupled with the assumption that a fixed small number of
loops gives good enough convergence.

2 4 6 8 10 12 14 16 18 20
80

82

84

86

88

90

92

94

T
es

t A
cc

ur
ac

y
(%

)

20 40 60 80 100 120 140 160 180 200
60

62

64

66

68

70

72

74

T
es

t A
cc

ur
ac

y
(%

)

Figure 5: Comparison of One-Versus-Rest (Green,
solid), Crammer-Singer (Red, dashdot) and Weston-
Watkins (Blue, dashed) on MNIST (top) and
COVER (bottom) datasets. The horizontal axis is
Training time in seconds.

the 5 datasets, we combined the training and test datasets
and make 10 random 60%/20%/20% train/validation/test
class-stratified partitions. For each of the three multi-class
methods the C parameter is tuned using the train and val-
idation sets by considering the following set of C values:
{0.01, 0.03, 0.1, 0.3, 1, 3, 10}. For the best C value that gives
the largest validation set accuracy, a re-training is done on
the train+validation set and the resulting classifier is eval-
uated on the test set. The mean and standard deviation
values of test set accuracies are reported in Table 4.2. We
conduct Wilcoxon sign-rank test with a significance level of
0.01 to compare OVR against the direct multi-class meth-
ods on each dataset; see Table 4.3. Comparison of OVR
and Crammer-Singer indicates that the observed differences
are statistically significant in favor of Crammer-Singer for
SECTOR, MNIST, RCV1 and COVER datasets. Compar-
ison of OVR and Weston-Watkins indicates that the re-
sults are statistically significant for all the datasets. How-
ever, on NEWS20 and SECTOR the results are in favor of
OVR while on the other three datasets they are in favor
of Weston-Watkins. Though statistical significance analy-
sis may not mean practically significant improvements, we
do note that the improvements shown by the direct multi-
class methods over OVR on MNIST and COVER datasets
are quite good. Overall, for linear SVMs it may be bet-
ter to employ the direct multi-class methods (in particular,
Crammer-Singer) whenever fast solvers for them (such as
ones based on SDM) are available. It is worth noting that,
of the five datasets under consideration only MNIST and
COVER are un-normalized, i.e. ‖xi‖ is not the same for all
i. It is possible that OVR’s performance is more affected by

Table 4.2: Test set accuracy (Mean and Standard
deviation) comparison of One-Versus-Rest (OVR),
and Multi-class SDMs for Crammer-Singer (CS) and
Weston-Watkins (WW) formulations with C tuned
for each method.

Dataset OVR CS WW

NEWS20 85.39 ± 0.37 85.26 ± 0.37 85.10 ± 0.43

SECTOR 94.83 ± 0.56 95.17 ± 0.62 94.37 ± 0.57

MNIST 91.46 ± 0.23 92.50 ± 0.20 91.84 ± 0.21

RCV1 90.85 ± 0.10 91.19 ± 0.07 91.10 ± 0.11

COVER 71.35 ± 0.33 72.31 ± 0.37 72.40 ± 0.25

Table 4.3: p-values from Wilcoxon sign-rank test.

Dataset OVR-CS OVR-WW

NEWS20 0.43 0.01

SECTOR 0.01 3.9 × 10−3

MNIST 2.0 × 10−3 2.0 × 10−3

RCV1 2.0 × 10−3 2.0 × 10−3

COVER 2.0 × 10−3 2.0 × 10−3

the lack of data normalization and therefore direct multi-
class solutions may be more preferred in such situations. A
more detailed analysis is needed to check this.

5. CONCLUSION
In this paper we have presented sequential descent meth-

ods for the Crammer-Singer and the Weston-Watkins multi-
class linear SVM formulations that are well suited for solving
large scale problems. The basic idea of sequentially looking
at one example at a time and optimizing the dual variables
associated with it can be extended to more general SVM
problems with structured outputs, such as taxonomy, multi-
label and sequence labeling problems. We note that, for
the structured outputs setting, Tsochantaridis et al. [24]
mentioned the sequential dual method as a possibility (see
Variant (b) in Algorithm 1 of that paper), but did not pur-
sue it as a potentially fast method. In such extensions the
quadratic programming sub-problem associated with each
example does not have a simple form such as those in (10)
and (21), and some care is needed to solve this sub-problem
efficiently. We are currently conducting experiments on such
extensions and will report results in a future paper.

6. REFERENCES
[1] A. Bordes, L. Bottou, P. Gallinari, and J. Weston.

Solving multiclass support vector machines with
LaRank. In ICML, 2007.

[2] B. E. Boser, I. Guyon, and V. Vapnik. A training
algorithm for optimal margin classifiers. In COLT,
1992.

[3] L. Bottou. Stochastic gradient descent examples, 2007.
http://leon.bottou.org/projects/sgd.

[4] M. Collins, A. Globerson, T. Koo, X. Carreras, and
P. Bartlett. Exponentiated gradient algorithms for
conditional random fields and max-margin Markov
networks. JMLR, 2008. To appear.

[5] K. Crammer and Y. Singer. On the learnability and

design of output codes for multiclass problems. In
COLT, 2000.

[6] K. Crammer and Y. Singer. On the algorithmic
implementation of multiclass kernel-based vector
machines. JMLR, 2:265–292, 2001.

[7] K. Crammer and Y. Singer. Ultraconservative online
algorithms for multiclass problems. JMLR, 3:951–991,
2003.

[8] R. Fletcher. Practical Methods of Optimization. John
Wiley and Sons, 1987.

[9] C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. S. Keerthi,
and S. Sundararajan. A dual coordinate descent
method for large-scale linear SVM. In ICML, 2008.

[10] C.-W. Hsu and C.-J. Lin. A comparison of methods
for multi-class support vector machines. IEEE TNN,
13(2):415–425, 2002.

[11] T. Joachims. Making large-scale SVM learning
practical. In B. Schölkopf, C. J. C. Burges, and A. J.
Smola, editors, Advances in Kernel Methods - Support
Vector Learning, Cambridge, MA, 1998. MIT Press.

[12] T. Joachims. Training linear SVMs in linear time. In
ACM KDD, 2006.

[13] T. Joachims, T. Finley, and C.-N. J. Yu. Cutting
plane training of structural SVMs. MLJ, 2008.

[14] K. Lang. Newsweeder: Learning to filter netnews. In
ICML, pages 331–339, 1995.

[15] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner.
Gradient-based learning applied to document
recognition. Proceedings of the IEEE,
86(11):2278–2324, November 1998. MNIST database
available at http://yann.lecun.com/exdb/mnist/.

[16] D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. RCV1:
A new benchmark collection for text categorization
research. JMLR, 5:361–397, 2004.

[17] C.-J. Lin. A formal analysis of stopping criteria of
decomposition methods for support vector machines.
IEEE TNN, 13(5):1045–1052, 2002.

[18] Z.-Q. Luo and P. Tseng. On the convergence of
coordinate descent method for convex differentiable
minimization. JOTA, 72(1):7–35, 1992.

[19] A. McCallum and K. Nigam. A comparison of event
models for naive bayes text classification. In
Proceedings of the AAAI’98 Workshop on Learning for
Text categorization, 1998.

[20] J. D. M. Rennie and R. Rifkin. Improving multiclass
text classification with the Support Vector Machine.
Technical Report AIM-2001-026, MIT, 2001.

[21] R. Rifkin and A. Klautau. In defense of one-vs-all
classification. JMLR, 5:101–141, 2004.

[22] S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos:
primal estimated sub-gradient solver for SVM. In
ICML, 2007.

[23] C. H. Teo, A. Smola, S. V. Vishwanathan, and Q. V.
Le. A scalable modular convex solver for regularized
risk minimization. In ACM KDD, 2007.

[24] I. Tsochantaridis, T. Joachims, T. Hofmann, and
Y. Altun. Large margin methods for structured and
interdependent output variables. JMLR, 2005.

[25] J. Weston and C. Watkins. Multi-class support vector
machines. In M. Verleysen, editor, Proceedings of
ESANN99, Brussels, 1999. D. Facto Press.

10
−1

10
0

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

R
el

at
iv

e
F

un
ct

io
n

V
al

ue
 D

iff
er

en
ce

10
−1

10
0

10
1

10
2

10
3

70

72

74

76

78

80

82

84

86

88

90

T
es

t S
et

 A
cc

ur
ac

y

10
0

10
1

10
2

10
3

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

R
el

at
iv

e
F

un
ct

io
n

V
al

ue
 D

iff
er

en
ce

10
0

10
1

10
2

10
3

65

70

75

80

85

90

95

T
es

t S
et

 A
cc

ur
ac

y

10
0

10
1

10
2

10
3

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

R
el

at
iv

e
F

un
ct

io
n

V
al

ue
 D

iff
er

en
ce

10
0

10
1

10
2

10
3

20

30

40

50

60

70

80

90
T

es
t S

et
 A

cc
ur

ac
y

10
0

10
2

10
4

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

R
el

at
iv

e
F

un
ct

io
n

V
al

ue
 D

iff
er

en
ce

10
0

10
2

10
4

50

55

60

65

70

75

80

85

90

95

T
es

t S
et

 A
cc

ur
ac

y

10
0

10
1

10
2

10
3

10
4

10
5

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

R
el

at
iv

e
F

un
ct

io
n

V
al

ue
 D

iff
er

en
ce

10
0

10
1

10
2

10
3

10
4

10
5

35

40

45

50

55

60

65

70

75

T
es

t S
et

 A
cc

ur
ac

y

Figure 3: Comparison of SDM (Red, dashdot), EG (Blue, dashed) and Bundle (Green, solid) on various datasets
with C=1: The horizontal axis is Training time in seconds. Each row corresponds to one dataset; Row 1:
NEWS20; Row 2: SECTOR; Row 3: MNIST; Row 4: RCV1; and Row 5: COVER.

