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Abstract

Recently the Reduced Support Vector Machine (RSVM) was proposed as an alternate of the

standard SVM. Motivated by resolving the difficulty on handling large data sets using SVM with

nonlinear kernels, it preselects a subset of data as support vectors and solves a smaller optimization

problem. However, several issues of its practical use have not been fully discussed yet. For example,

we do not know if it possesses comparable generalization ability as the standard SVM. In addition,

we would like to see for how large problems RSVM outperforms SVM on training time. In this paper

we show that the RSVM formulation is already in a form of linear SVM and discuss four RSVM

implementations. Experiments indicate that in general the test accuracy of RSVM are a little lower

than that of the standard SVM. In addition, for problems with up to tens of thousands of data, if

the percentage of support vectors is not high, existing implementations for SVM is quite competitive

on the training time. Thus, from this empirical study, RSVM will be mainly useful for either larger

problems or those with many support vectors. Experiments in this paper also serve as comparisons of

(1) different implementations for linear SVM; and (2) standard SVM using linear and quadratic cost

functions.

I. INTRODUCTION

We consider the support vector machine (SVM) with a quadratic cost function [25]: Given a training

set of instance-label pairs (xi, yi), i = 1, . . . , l where xi ∈ Rn and yi ∈ {1,−1}, the support vector

technique solves the following optimization problem:

min
w,b,ξ

1
2
wTw + C(

l∑
i=1

ξ2
i )

subject to yi(wTφ(xi) + b) ≥ 1− ξi. (1)

Since φ(x) maps x into a higher (maybe infinite) dimensional space, practically we solve its dual, a

quadratic programming problem with the number of variables equal to l :

min
α

1
2
αT (Q+

I

2C
)α− eTα

subject to yTα = 0, (2)

0 ≤ αi, i = 1, . . . , l,
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where e is the vector of all ones, Q is an l by l positive semi-definite matrix, Qij ≡ yiyjK(xi, xj),

and K(xi, xj) ≡ φ(xi)Tφ(xj) is the kernel function.

For large-scale problems, the difficulty of solving (2) results from the fully dense matrix (Q+ I
2C ),

which cannot be saved in the main memory. Thus traditional optimization algorithms like Newton or

Quasi-Newton cannot be directly used. Currently one major method is the decomposition method (for

example, [18], [20], [8]) which solves a sequence of smaller-sized problems so the memory difficulty

is avoided. However, for huge problems with many support vectors, the decomposition method still

suffers from slow convergence. On the other hand, if the linear kernel (i.e. K(xi, xj) = xTi xj) is used,

Q is directly the product of a rectangular matrix and its transpose so we can exploit more possibilities

to design efficient algorithms. Thus, here we mainly consider the more difficult case by using nonlinear

kernels.

Recently [10] proposed to restrict the number of support vectors by solving the reduced support

vector machines (RSVM). The main characteristic of this method is to reduce the matrix Q from l× l

to l×m, where m is the size of a randomly selected subset of training data considered as candidates

of support vectors. The smaller matrix can be stored in memory, so optimization algorithms such as

Newton method can be applied. RSVM is different from directly solving smaller SVM problems with

a subset of training because as the l constraints in the primal problem (1) are still kept during the

optimization process. In [10] the authors showed the performance (testing accuracy) is as good as the

regular SVM. As RSVM essentially uses less information than the regular SVM, we feel there is a

need to conduct some serious comparisons. This is the first aim of the paper. Our experiments show

that in general the testing accuracy of RSVM is a little lower than SVM.

Moreover, as the training efficiency is the main motivation of RSVM, we would like to discuss

its different implementations, and compare their training time with the regular SVM. In addition, we

investigate for how large problems, RSVM becomes an efficient alternate of SVM. Results show that

for problems with up to tens of thousands of data, if the percentage of support vectors is not high,

existing implementations for SVM are quite competitive on the training time. Thus, from this empirical

study, RSVM will be mainly useful for either larger problems or those with many support vectors. We

note that results here are mainly empirical and we do not conduct further theoretical analysis about

the generalization error.

This paper is organized as follows. In Section II, we outline the key modifications from standard

SVM to RSVM. In Section III, we detail the Smooth SVM (SSVM) method used in [11], and apply

three more techniques, the Least Square SVM (LS-SVM) [23], the Lagrangian SVM (LSVM) [15],

and the decomposition method to solve the RSVM problem. Issues related to practical implementations

such as stopping criteria and approaches for solving multi-class problems are in Section IV. Numerical

experiments are in Section V which present that the accuracy of RSVM is usually lower than that
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of SVM. We also discuss that different techniques for solving RSVM have some minor differences

on the accuracy, but using LS-SVM method is the fastest on training. In Section VII, there is an

attempt to make modifications on the original RSVM formulation. Finally we have some discussions

and conclusions in Section VIII.

II. REDUCED SUPPORT VECTOR MACHINE FORMULATION

Here we outline the key modifications from standard SVM to RSVM in [10]. They start from adding

an additional term b2/2 to the objective function of (1):

min
w,b,ξ

1
2

(wTw + b2) + C(
l∑
i=1

ξ2
i ) (3)

subject to yi(wTφ(xi) + b) ≥ 1− ξi. (4)

Its dual form becomes a simpler bound-constrained problem:

min
α

1
2
αT (Q+

I

2C
+ yyT )α− eTα

subject to 0 ≤ αi, i = 1, . . . , l. (5)

The approach of adding b2/2 and then obtaining a bounded dual was proposed in [4] and [14].

This is equivalent to adding a constant feature to the training data and finding a separating hyperplane

passing through the origin. Numerical experiments in [7] show that the accuracy does not vary much

when b2/2 is added.

It is known that, at the optimal solution, w is a linear combination of training data:

w =
l∑
i=1

yiαiφ(xi). (6)

If we substitute w into (3), using

yiw
Tφ(xi) =

l∑
j=1

yiyjαjφ(xj)Tφ(xi)

=
l∑

j=1

Qijαj = (Qα)i, and (7)

wTw =
l∑
i=1

yiαiφ(xi)Tw

=
l∑
i=1

αi(Qα)i = αTQα, (8)

we obtain a new optimization problem:

min
α,b,ξ

1
2

(αTQα+ b2) + C(
l∑
i=1

ξ2
i )

subject to Qα+ by ≥ e− ξ. (9)
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Though (9) is different from (5), the dual problem, we can show that for any optimal α of (9), the

corresponding w defined by (6) is also an optimal solution of (3), so we can solve (9) instead of (5).

We put the details in Appendix A. The reformulation of (3) to (9) was first used in [19].

The idea of RSVM is to reduce the number of support vectors. It is achieved by randomly selecting

a subset of m samples for constructing w:

w =
∑
i∈R

yiαiφ(xi), (10)

where R contains indices of this subset. By substituting (10) into (4), we can get a similar problem

as (9), with the number of major variables (i.e. α) reduced to m:

min
ᾱ,b,ξ

1
2

(ᾱTQRRᾱ+ b2) + C(
l∑
i=1

ξ2
i )

subject to Q:,Rᾱ+ by ≥ e− ξ, (11)

where ᾱ is the collection of all αi, i ∈ R. Note that now m is the size of R. We use Q:,R to

represent the sub-matrix of columns corresponding to R. Thus, there are still l constraints. Following

the generalized SVM by Mangasarian [13], [10] simplified the term 1
2 ᾱ

TQRRᾱ to 1
2 ᾱ

T ᾱ so RSVM

solves

min
ᾱ,b,ξ

1
2

(ᾱT ᾱ+ b2) + C(
l∑
i=1

ξ2
i )

subject to Q:,Rᾱ+ by ≥ e− ξ. (12)

Later on we will address more about this simplification. Note that throughout the discussion we omit

writing the constraint ξi ≥ 0 as it is always satisfied at the optimal solution.

The idea of using (10) is similar to the Radial Basis Function (RBF) networks [17] which either

select a subset of training data or generate some “centers” in order to construct a decision function. The

RBF networks directly start from a form similar to (10) and the regularization term used is ᾱT ᾱ/2.

If the inequality (12) is replaced by an equality, (12) is in a form of the RBF networks. There are

already comparisons between SVM and RBF networks. For example, [22] shows that SVM performs

better as the RBF networks use less information. Therefore, we are curious whether similar scenarios

apply to SVM and RSVM, which will be one of the main aims of this paper.

III. DIFFERENT IMPLEMENTATIONS FOR RSVM

In [10], the authors used Smooth SVM (SSVM) to solve RSVM, which basically approximates the

original problem by an unconstrained one. However, we observe that (12) is already in the primal

form of the original linear SVM. Therefore, existing methods which focus on solving linear SVM can

be applied here. To see this, suppose R contains indices {j1, . . . , jm}, in the following we point out

the relation between (3) and (12):
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SVM RSVM

n m

w ᾱ

xi [yiQij1 , . . . , yiQijm ]T

Therefore, if we consider [y1Qij1 , . . . , ymQijm ]T , i = 1, . . . , l as the training data, then the number

of attributes is m and (ᾱ, b) are coefficients of the separating hyperplane. In other words, it is like

that we are training a linear SVM with l data. For linear SVM the number of features is usually much

smaller than the number of data so there are methods which take this property. However, for nonlinear

SVM where the dimensionality of the feature space is large, such methods may not be applicable.

Thus, usually the dual problem is considered instead. Now we choose m� l so we are safe to apply

methods which were originally mainly suitable for linear SVM.

In Section III-A we will discuss the SSVM originally used in [10] while in Sections III-B- III-D,

we consider three methods which were suitable for linear SVM: Least Square SVM (LS-SVM) [23],

Lagrangian SVM (LSVM) [15], and the decomposition method for linear SVM.

Before describing different implementations, for the sake of convenience, with following substitution

Q̃ =
[
Q:,R y

]
, α̃ =

ᾱ
b

 ,
we consider a simpler form:

mineα,ξ
1
2
α̃T α̃+ C(

l∑
i=1

ξ2
i )

subject to Q̃α̃ ≥ e− ξ. (13)

A. Using SSVM

Define (·)+ ≡ max(·, 0), and apply the property that whenever ξi > 0, the ith constraint (13) must

be active, the constrained problem (13) can be transformed to the unconstrained one:

mineα
1
2
α̃T α̃+ C(

l∑
i=1

((e− Q̃α̃)i)2
+) (14)

If the objective function is differentiable (or twice differentiable), we can use general methods

(for example, Newton method, quasi-Newton method, etc.) to find an optimal solution. Unfortunately

(e− Q̃α̃)+ is not differentiable so SSVM approximates the function (t)+ by

Pβ(t) ≡ t+ β−1 log(1 + exp(−βt)),

where β is called the smoothing parameter. When β approaches to infinity, Pβ(t) converges to (t)+.

We observe that if C is large, sometimes huge objective values of (14) may cause numerical

difficulties. For example, if a method for solving (14) uses the absolute difference on objective values
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of two successive iterations as the stopping criterion, the large objective values may cause very long

iterations before reaching a specified tolerance. Hence, we divide the objective function by C:

mineα f(α̃) =
1

2C
α̃T α̃+

l∑
i=1

Pβ(e− Q̃α̃)2
i (15)

We solve (15) by a Newton’s method implemented in the software TRON [12], which uses both the

information of the first derivative (gradient) and the second derivative (Hessian).

While [10] did not give the explicit form of the gradient and the Hessian, we list them here as a

reference. By defining

v ≡ exp(−β(e− Q̃α̃)),

then

∇f(α̃) = −2Q̃T (diag(Pβ(e− Q̃α̃))diag(e+ v)−1)e+
1
C
α̃ and (16)

∇2f(α̃) = 2Q̃T diag(e+ v)−2(I + βdiag(v)diag(Pβ(e− Q̃α̃)))Q̃+
I

C
, (17)

where diag(v) is a diagonal matrix with elements of v on the diagonal. Details on deriving them can

be found in Appendix .

TRON was originally designed for large sparse problems. Now the Hessian is dense so we use the

modification in [7] to solve (15). As a Newton’s method is used, TRON possesses the property of

quadratic convergence.

Time complexity analysis: Now the Hessian is m by m so the Newton’s method takes O(m3)

operations in each iteration for inverting or factorizing the Hessian. However, in order to obtain the

Hessian, in (17), we need more operations: O(lm2). Hence O(lm2) is the complexity of each iteration.

B. Using Least-Square SVM

Least-square SVM (LS-SVM), first introduced in [23], can solve linear SVM efficiently. It changes

the inequality constraints to equalities, and solve the resulting linear system. Taking (3) as an example,

they change the primal inequalities (4) to yi(wTφ(xi) + b) = 1 − ξi and remove constraints ξi ≥ 0.

Thus substituting ξ into the objective function we get an unconstrained problem:

min
w,b

1
2

(wTw + b2) + C(
l∑
i=1

(1− yi(wTφ(xi) + b))2) (18)

Of course changing inequalities into equalities may affect the meaning of separating hyperplanes

though this is not the topic we would like to discuss here.

For linear SVM (i.e. xi instead of φ(xi) is used), we can solve (18) directly by a linear system of

(n+ 1) variables where n is the number of attributes as well as the length of w. For nonlinear SVM

where n� l, we must substitute w =
∑
i yiαiφ(xi) into (18) and solve a linear system with variables

α and b. Thus, when l is large, the same problem of conventional SVM formulations occurs: the l× l
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matrix cannot be placed in the main memory, so it is not easy to solve a large dense linear system.

As a result, LS-SVM so far is more suitable for linear SVM problems.

Following the same procedure, here we change the inequality (13) to an equality

Q̃α̃ = e− ξ, (19)

and substitute ξ into (13). Similar to the case of SSVM, we divide the objective function by C and

get an unconstrained problem where α̃ is the only variable:

mineα f(α̃) =
1

2C
α̃T α̃+

l∑
i=1

(e− Q̃α̃)2
i (20)

With

f(α̃) =
1

2C
α̃T α̃+ α̃T (Q̃T Q̃)α̃− 2eT Q̃α̃+ eT e,

we minimize f by finding the solution of ∂f
∂eαi

= 0, i = 1, . . . ,m:

1
C
α̃+ 2Q̃T Q̃α̃− 2Q̃T e = 0,

(Q̃T Q̃+
I

2C
)α̃ = Q̃T e, (21)

a positive definite linear system of size m. As m� l, (21) is small enough. Thus we can use direct

methods such as Gaussian elimination or Cholesky factorization to efficiently solve it.

Time complexity analysis: The cost of Gaussian elimination, O(m3), is less than that for computing

the matrix multiplication Q̃T Q̃ which costs O(lm2). Hence the total time complexity is O(lm2).

C. Using Lagrangian SVM

Here we discuss Lagrangian SVM (LSVM) [15], another technique to solve SVM problems. LSVM

is an iterative algorithm which solves the dual form (5). Define H ≡ Q+ I
2C + yyT , then the Karush-

Kuhn-Tucker (KKT) optimality conditions of (5) are

Hα− e ≥ 0, α ≥ 0

(Hα− e)Tα = 0.

Again we denote max(·, 0) by (·)+. The authors of [15] used the following identity between any two

vector a and b:

a ≥ 0, b ≥ 0, aT b = 0⇔ a = (a− βb)+,∀β > 0, (22)

so the optimality conditions are equivalent to

Hα− e = (Hα− e− βα)+,∀β > 0. (23)
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Thus, an optimal α is a solution of the fixed-point equation and they applied the following iterative

scheme:

αk+1 = H−1(e+ (Hαk − e− βαk)+). (24)

[15] showed that LSVM algorithm is linearly convergent if β is chosen so that

0 < β <
2
C
.

Though in each iteration, we must invert the l× l dense matrix H , for linear SVMs, the Sherman-

Morrison-Woodbury (SMW) identity can be used. But it cannot be applied to nonlinear kernels where

the input vectors are mapped into high (maybe infinite) dimensional spaces. Thus, LSVM method

so far is not practical for large-scale problems using nonlinear kernels. An earlier comparison with

LIBSVM, a decomposition method for standard SVM, is in [5], which shows that LSVM is slower

when using nonlinear kernels.

We have mentioned earlier that RSVM is equivalent to a linear SVM problem, so the Lagrangian

SVM algorithm can be used here. First we write down the dual form of (13):

min
α̂

1
2
α̂T (Q̃Q̃T +

I

2C
)α̂− eT α̂

subject to α̂i ≥ 0, i = 1, . . . , l. (25)

Let

H ≡ (Q̃Q̃T +
I

2C
).

Lagrangian SVM solves

α̂k+1 = H−1(e+ ((Hα̂k − e)− βα̂k)+)

= H−1(e+ ((Q̃Q̃T +
I

2C
− βI)α̂k − e)+).

Here H−1 is calculated using the SMW identity:

H−1 = (
I

2C
+ Q̃Q̃T )−1 = 2C(I − Q̃(

I

2C
+ Q̃T Q̃)−1Q̃T ).

In order to get α̃, now the primal variable, we apply the relationship (6):

α̃ = Q̃T α̂.

Time complexity analysis: The generation and then inversion of the m×m matrix ( I
2C + Q̃T Q̃)

costs O(lm2), where the main task is the matrix multiplication. This can be done before all iterations.

Then in each iteration, the main cost is several matrix-vector multiplications which costs O(lm)

operations. So the total time complexity is (#iterations)×O(lm)+O(lm2). Compared with SSVM,

LSVM method seems need more iterations since it guarantees only linear convergence.
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D. Using Decomposition Methods for Linear SVM

Originally the decomposition method [18], [8], [20] was proposed to handle the nonlinear SVM

whose kernel matrix is fully dense and cannot be stored. It is an iterative process where in each iteration

the index set of variables is separated to two sets B and N , where B is the working set. Then in that

iteration variables corresponding to N are fixed while a sub-problem on variables corresponding to B

is minimized.

If q � l is the size of the working set B and further techniques such as caching and shrinking are

not used, in each iteration q columns of the kernel matrix are used for calculating Q∆α, where Q is

the kernel matrix and ∆α is a vector with at most q nonzero modifications in one iteration. Therefore,

the total complexity is

#iterations×O(lqn),

where n is the number of attributes and we assume each kernel evaluation costs O(n). However, for

linear SVM, Q is in a form of XXT and X , an l × n matrix, contains all l training data. Thus,

Q∆α = X(XT∆α) (26)

costs only O(nq) +O(ln) = O(ln) operations.

Therefore, for large problems where caching recently used Qij is not very useful, in each iteration,

using (26) can be q times faster than the regular decomposition method. This trick has been imple-

mented in, for example, SVM light [8] and BSVM (version 2.03 and after) [7]. Of course the selection

of q becomes an issue. It should be larger than the one used for nonlinear SVM but also cannot be too

large. Otherwise solving the sub-problem which has q variables may cost more than O(ln) for (26).

For RSVM, since m� l, we consider RSVM as a linear SVM and apply a decomposition method

to solve its dual. However, we consider the formulation with linear cost function C
∑l
i=1 ξi so instead

of (25), the dual problem is

min
α̂

1
2
α̂T Q̃Q̃T α̂− eT α̂

subject to 0 ≤ α̂i ≤ C, i = 1, . . . , l. (27)

The reason is that we will use the software BSVM which solves (27) but not (25).

In the following we summarize the time complexity of the four approaches discussed earlier:

Method Time complexity

SSVM #iterations×O(lm2)

LS-SVM (w/ direct method) O(lm2)

LSVM #iterations×O(lm) +O(lm2)

Decomposition #iterations×O(lm)
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IV. IMPLEMENTATION ISSUES

A. Stopping Criteria

In order to compare the performance of different methods, we should use comparable stopping

criteria for them. However, so many differences among these methods prohibit us from finding precisely

equivalent stopping criteria for all methods. Still, we try to use reasonable criteria which will be

described below in detail.

In the next section we will use LIBSVM as the representative for solving the regular nonlinear SVM

so we first explain its stopping criterion. LIBSVM is a decomposition method which solves the dual

form of the standard SVM with a linear cost function:

min
α

f(α) =
1
2
αTQα− eTα (28)

subject to yTα = 0,

0 ≤ αi ≤ C, i = 1, . . . , l.

It is shown in [3] that if C > 0, the KKT condition of (28) is equivalent to

m(α) = max( max
αi<C,yi=1

−∇f(α)i, max
αi>0,yi=−1

∇f(α)i)

≤ min( min
αi<C,yi=−1

∇f(α)i, min
αi>0,yi=1

−∇f(α)i) = M(α). (29)

For practical implementations, a stopping tolerance ε is set, and the stopping criterion can be

m(α) ≤M(α) + ε, (30)

where we choose ε = 0.001.

To check the performance of using linear and quadratic cost functions, we also modify LIBSVM

to solve (2). It is easy to see that a similar stopping criterion can be used. Another decomposition

software BSVM is used for solving RSVM as described in Section III-D. It also has a similar stopping

criterion.

The LSVM method, another implementation for RSVM, solves problems in the dual form (25),

hence a stopping criteria can be similar: Now

∇f(α̂) = (Q̃Q̃T +
I

2C
)α̂− e.

The KKT condition of (25) shows that if

min∇f(α̂)i ≥ max
α̂i>0

∇f(α̂)i and α̂i ≥ 0,∀i,

then α̂ is an optimal solution. Note that during LSVM iterations, the α̂i ≥ 0 constraints are not

maintained. Thus, we consider a stopping criterion as follows:

max
α̂i>ε/100

∇f(α̂) ≤ min∇f(α̂) + ε and α̂i ≥ −ε/100,∀i. (31)
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We also set ε = 0.001 here.

For the SSVM, we simply employ the original stopping criterion of TRON:

‖∇f(α̃k)‖2 ≤ ε‖∇f(α̃1)‖2, (32)

where f(α̃) is defined in (15), α̃1 is the initial solution, and ε = 10−5.

Note that for LS-SVM implementation, we use direct methods to solve the linear system, therefore

no stopping criterion is needed.

B. Multi-class RSVM

Although SVM was originally designed for binary classification, several methods have been pro-

posed to solve multi-class classification. A common way is by considering a set of binary SVM

problems, while some authors also proposed methods that consider all classes at once. These methods

in general can also be applied to RSVM.

There have been some comparisons of methods for multi-class SVM. In [6] we compare different

decomposition implementations, and in [24] some comparisons of methods for multi-class LS-SVM

are given. They both indicate that the one-against-one method performs well in practice. So we use it

for our implementation here. Suppose there are k classes of data. This method constructs k(k− 1)/2

classifiers where each one trains data from two classes. In classification we use a voting strategy: each

binary classification is considered to be a voting where votes can be cast for all data points x - in the

end point is designated to be in a class with maximum number of votes.

The implementation of all methods mentioned above is available upon request.

V. EXPERIMENTS

In this section we conduct experiments on some commonly used problems. We choose large multi-

class datasets from the Statlog collection: dna, satimage, letter, and shuttle [16]. We also consider

mnist [9], an important benchmark for handwritten digit recognition. The problem ijcnn1 is from the

first problem of IJCNN challenge 2001 [21]. Note that we use the winner’s transformation of raw data

[2]. Problem protein, is a data set for protein secondary structure prediction [26]. Finally, the problem

adult, from the UCI “adult” data set [1] and compiled by Platt [20], is also included. For the adult

dataset, there are several realizations. Here, we only consider the realization with the smallest training

set; the full dataset with training data (including duplicated ones) removed is taken as the test set. We

choose this dataset because it has been tested in the RSVM paper [10]. Our preparation of the training

and test sets are also similar to theirs. Except problems dna, ijcnn1, protein, and adult whose data

values are either binary or already in a small range, we scale all training data to be in [−1, 1]. Then

test data, available for all problems, are adjusted to [−1, 1] accordingly. Note that for problem mnist,

it takes too much training time if the whole 60,000 training samples are used, so we consider the
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training and testing data together (i.e. 70,000 samples) and then cut the first 30% for training and test

the remaining 70%. Also note that for the problem satimage, there is one missing class. That is, in

the original application there is one more class but in the data set no examples are with this class. We

give problem statistics in Table V.1. Some problems with a large number of attributes may be very

sparse. For example, for each instance of protein, only 17 of the 357 attributes are nonzero.

TABLE V.1

PROBLEM STATISTICS

Problem #training data #testing data #class #attribute

dna 2000 1300 3 180

satimage 4435 2000 6 36

letter 15000 5000 26 16

shuttle 43500 14500 7 9

mnist 21000 49000 10 780

ijcnn1 49990 45495 2 22

protein 17766 6621 3 357

adult 1605 32561 2 123

We compare four implementations of RSVM discussed in Section III with two implementations of

the regular SVM: linear and quadratic cost functions ((28) and (2)). For regular SVM with the linear

cost function, we use the software LIBSVM which implements a simple decomposition method. We

can easily modify LIBSVM to solve the formulation with a quadratic cost function, which we will

refer to as LIBSVM-q in the rest of this paper. However, we will not use it for solving RSVM as

LIBSVM implements an SMO type algorithm where the size of the working set is restricted to two. In

Section III-D we have shown that larger working sets should be used when applying decomposition

methods to linear SVM.

The computational experiments for this section were done on a Pentium III-1000 with 1024MB

RAM using the gcc compiler. For three of the four RSVM methods (SSVM, LS-SVM, and LSVM),

the main computational work is some basic matrix operations so we use ATLAS to optimize the

performance [27]. This is very crucial as otherwise a direct implementation of these matrix operations

can at least double or triple the computational time. For decomposition methods where the kernel

matrix cannot be fully stored we allocate 500MB memory as the cache for storing recently used

kernel elements. Furthermore, LIBSVM,LIBSVM-q, and BSVM all use a shrinking technique so if

most variables are finally at bounds, they solve smaller problems by considering only free variables.

The details on the shrinking technique are in [3, Section 4].

Next we discuss the selection of parameters in different implementations. It is of course a tricky

issue on selecting m, the size of the subset of RSVM. This depends on practical situations such as
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how large the problem is. Here in most cases we fix m to be 10% of the training data, which was

also considered in [10]. For multi-class problems, we cannot use the same m for all binary problems

as the data set may be highly unbalanced. Hence we choose m to be 10% of the size of each binary

problem so a smaller binary problem use a smaller m. In addition, for problems shuttle, ijcnn1, and

protein, binary problems may be too large for training. Thus, we set m = 200 for these large binary

problems. This is similar to how [10] deals with large problems. Once the size is determined, for all

four implementations, we select the same subset for each binary RSVM problem.

We need to decide some additional parameters prior to experiments. For SSVM method, the smooth-

ing parameter β is set to 5 because the performance is almost the same for β ≥ 5. For LSVM method,

we set β = 1.9
C which is the same as that in [15]. We do not conduct cross validation for selecting

them as otherwise there are too many parameters. For BSVM which is used to solve linear SVM

arising from RSVM, we use all default settings. In particular, the size of the working set is 10.

The most important criterion for evaluating the performance of these methods is their accuracy rate.

However, it is unfair to use only one parameter set and then compare these methods. Practically for

any method we have to find the best parameters by performing the model selection. This is conducted

on the training data where the test data are assumed unknown. Then the best parameter set is used

for constructing the model for future testing. To reduce the search space of parameter sets, here we

consider only the RBF kernel K(xi, xj) ≡ e−γ‖xi−xj‖2 , so the parameters left for decision are kernel

parameter γ and cost parameter C. In addition, for multi-class problems we consider that C and γ of

all k(k − 1)/2 binary problems via the one-against-one approach are the same.

For each problem, we estimate the generalized accuracy using different γ = [24, 23, 22, . . . , 2−10]

and C = [212, 211, 210, . . . , 2−2]. Therefore, for each problem we try 15 × 15 = 225 combinations.

For each pair of (C, γ), the validation performance is measured by training 70% of the training set and

testing the other 30% of the training set. Then we train the whole training set using the pair of (C, γ)

that achieves the best validation rate and predict the test set. The resulting accuracy is presented in

the “rate” columns of Table V.2. Note that if several (C, γ) have the same accuracy in the validation

stage, we apply all of them to the test data and report the highest rate. If there are several parameters

that achieve the same highest testing rate, we report the one with the minimal training time.

VI. RESULTS

A. Accuracy

Table V.2 shows the result of comparing LIBSVM, LIBSVM-q, and the four RSVM implementations.

We present the optimal parameters (C, γ) and the corresponding accuracy rates. It can be seen that

optimal parameters (C, γ) are in various ranges for different implementations so it is essential to test so

many parameter sets. We observe that LIBSVM and LIBSVM-q have very similar accuracy. This does
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TABLE V.2

A COMPARISON ON TESTING ACCURACY

SVM RSVM

LIBSVM LIBSVM-q SSVM LS-SVM LSVM Decomposition

Problem C,γ rate C,γ rate C,γ rate C,γ rate C,γ rate C,γ rate

dna 24,2−6 95.44722,2−6 95.447212,2−10 92.83324,2−6 92.32725,2−7 93.00229,2−6 92.327

satimage24,20 91.3 23,20 91.9 212,2−1 89.8 212,2−3 89.9 22,2−1 90 211,2−1 90

letter 24,22 97.98 25,21 97.88 211,2−1 95.9 212,2−2 95.14 212,2−1 95.42 212,2−1 92.76

shuttle 211,23 99.924211,23 99.938212,24 99.78 212,24 99.58 210,23 99.814212,24 99.772

mnist 26,2−5 97.75327,2−5 97.75327,2−6 96.83329,2−6 96.48 24,2−5 96.578212,2−5 96.129

ijcnn1 21,21 98.76 20,20 98.692212,2−3 95.9492−2,2−2 91.676212,2−3 96.767212,2−1 96.11

protein 21,2−3 69.97 21,2−3 69.79321,2−5 65.95722,2−6 66.24420,2−5 65.957211,2−6 66.138

adult 24,2−6 83.8692−2, 2−4 83.974211, 2−8 83.872211, 2−7 83.788211, 2−8 83.842212,2−9 83.899

TABLE V.3

NUMBER OF SUPPORT VECTORS

SVM RSVM

LIBSVM LIBSVM-q SSVM LS-SVM LSVM Decomposition

Problem #SV #SV (all same)

dna 973 1130 372

satimage 1611 1822 1826

letter 8931 8055 13928

shuttle 285 652 4982

mnist 8333 8364 12874

ijcnn1 4555 9766 200

protein 14770 16192 596

adult 642 1137 160

not contradict the current understanding in this area as we have not seen any report which shows one

has higher accuracy than the other. Except ijcnn1, the difference of the four RSVM implementations

is also small. This is reasonable as essentially they solve (12) with minor modifications.

For all problems, LIBSVM and LIBSVM-q perform better than RSVM implementations. We can

expect this because for RSVM the support vectors are randomly chosen in advance, therefore we

cannot ensure that the support vectors are important representatives of the training data. This seems

imply that if problems are not too large, we would like to stick on the original SVM formulation. We

think this situation is like the comparison between RBF networks and SVM [22] since RBF networks

select only several centers, it may not extract enough information.
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TABLE V.4

TRAINING TIME AND TESTING TIME (IN SECONDS)

SVM RSVM

LIBSVM LIBSVM-q SSVM LS-SVM LSVM Decomposition

Problem training testing training testing training training training training testing

dna 7.09 4.65 8.5 5.39 5.04 2.69 23.4 7.59 1.52

satimage 16.21 9.04 19.04 10.21 23.77 11.59 141.17 43.75 11.4

letter 230 89.53 140.14 75.24 193.39 71.06 1846.12 446.04 149.77

shuttle 113 2.11 221.04 3.96 576.1 150.59 3080.56 562.62 74.82

mnist 1265.67 4475.54 1273.29 4470.95 1464.63 939.76 4346.28 1913.86 7836.99

ijcnn1 492.53 264.58 2791.5 572.58 57.87 19.42 436.46 16152.54 6.36

protein 1875.9 687.9 9862.25 808.68 84.21 64.6 129.47 833.35 35

adult 1.89 15.2 2.67 39.89 8.43 1.37 27.91 16.67 3.73

In general the optimal C of RSVM is much larger than that of the regular SVM. As RSVM is

indeed a linear SVM with a lot more data than the number of attributes, it tends to need a larger C

so that data can be correctly separated. How this property affects its model selection remains to be

investigated.

We also observe that the accuracy of LS-SVM is a little lower than SSVM and LSVM. In particular,

for problem ijcnn1 the difference is quite large. Note that ijcnn1 is an unbalanced problem where 90%

of the data have the same label. Thus the 91.7% accuracy by LS-SVM is quite poor. We suspect that

the change of inequalities to equalities for LS-SVM may not be suitable for some problems.

B. Number of Support Vectors

In Table V.3 we report the number of “unique” support vectors for each method. We say “unique”

support vectors because for the one-against-one approach, one training data may be a support vector

of different binary classifiers. Hence, we report only the number of training data which corresponds

to at least one support vector of a binary problem. Note that as we specified, all three RSVM

implementations have the same number of support vectors.

For letter, shuttle and mnist the RSVM approach has a large number of support vectors. A reason

is that subsets selected for all binary problems are quite different. This is unlike standard SVM where

important vectors may appear in different binary problems so the number of unique support vectors

is not that large. An alternative way for RSVM may be to select a subset of all data first and then for

each binary problem support vectors are elements in this subset which belong to the two corresponding

classes. This will reduce the testing time as [6] has discussed that if the number of classes is not huge,

it is proportional to the number of unique support vectors. On the contrary, training time will not be
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affected much as the size of binary problems is still similar.

Though the best parameters are different, roughly we can see LIBSVM-q requires more support

vectors than LIBSVM. This is consistent with the common understanding that the quadratic cost

function leads to more data with small nonzero ξi’s. For protein LIBSVM and LIBSVM-q both

require many training data as support vectors. Indeed most of them are “free” support vectors (i.e.

corresponding dual variables αi not at the upper bound). Such cases are very difficult for decomposition

methods and their training time will be discussed in the next subsection.

C. Training and Testing Time

We report the training time and testing time in Table V.4. For the four RSVM implementations, we

find their testing time is quite close so we post only that of the LSVM implementation. Note that here

we report only the time for solving the optimal model. Except the LS-SVM implementation for RSVM

which solves a linear equation for each parameter set, the training time of all other approaches depends

on parameters. In other words, their number of iterations may vary for different parameter sets. Thus,

results here cannot directly imply which method is faster as the total training time depends on the

model selection strategy. However, generally we can see for problems with up to tens of thousands of

data, the decomposition method for the traditional SVM is still competitive. Therefore, RSVM will

be mainly useful for larger problems. In addition, RSVM possesses more advantages on solving large

binary problems because for multi-class data sets we can afford to use decomposition methods to solve

several smaller binary problems.

Table V.4 also indicates that the training time of decomposition methods for SVM strongly depends

on the number of support vectors. For the problem ijcnn1, compared to the standard LIBSVM the

number of support vectors using LIBSVM-q is doubled and then the training time is a lot more.

This has been known in the literature as starting from the zero vector as the initial solution, the

smaller the number of support vectors (i.e. nonzero elements at an optimal solution) is, the fewer

variables may need to be updated in the decomposition iterations. As discussed earlier, protein is

a very challenging case for LIBSVM and LIBSVM-q due to the high percentage of training data as

support vectors. For such problem RSVM is a promising alternate: Using very few data as support

vectors, the computational time is largely reduced and the accuracy does not suffer much.

Among the four RSVM implementations, the LS-SVM method is the fastest in the training stage.

This is obvious as its cost is just that of one iteration of the SSVM method. Therefore, from the

training time of both implementations we can roughly see the number of iterations of the SSVM

method. As expected, the Newton’s method converges quickly, usually in less than 10 iterations. On

the other hand, LSVM which is cheaper for each iteration, needs hundreds of iterations. For quite a

few problems it is the slowest.
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It is interesting to see that the decomposition method, not originally designed for linear SVM,

performs well on some problems. However, it is not very stable as for some difficult cases, the

number of training iterations is prohibitive.

VII. MODIFICATIONS ON THE RSVM FORMULATION

Remember we mentioned in Section II that following the generalized SVM the authors of [10]

replace 1
2 ᾱ

TQRRᾱ in (11) by 1
2 ᾱ

T ᾱ in (12). So far we only see that for the LSVM implementation,

if without doing so we may have troubles to obtain and use the dual problem. For SSVM and LS-

SVM, 1
2 ᾱ

TQRRᾱ can be kept and the same methods can still be applied. As the change leads to the

loss of the property on maximizing the margin, we are interested in whether the performance (testing

accuracy) is sacrificed or not.

Without changing the 1
2 ᾱ

TQRRᾱ term in (20), LS-SVM formulation is

mineα f(α̃) =
1

2C
α̃TQRRα̃+

l∑
i=1

(e− Q̃α̃)2
i (33)

Thus we will solve a different linear system:

(Q̃T Q̃+
1

2C
QRR)α̃ = Q̃T e. (34)

Though (34) is nearly the same as (21), it is only a positive semi-definite but not positive definite

system. Thus, LU factorization instead of Cholesky factorization is used. This change affects very

little to the training time according to the time complexity analysis in Section III-B. A comparison on

the testing accuracy between solving (21) and (34) is in Table VII.1. We can see that their accuracy

is very similar. Therefore, we conclude that the use of a simpler quadratic term in RSVM is basically

fine.

TABLE VII.1

TESTING ACCURACY: A COMPARISON ON SOLVING (21) AND (34)

LS-SVM (21) LS-SVM (34)

Problem (C, γ) rate (C, γ) rate

dna (24, 2−6) 92.327 (24, 2−10) 93.086

satimage (212, 2−3) 89.9 (28, 2−3) 89.7

letter (212, 2−2) 95.14 (212, 2−3) 94.62

shuttle (212, 24) 99.58 (27, 24) 99.7

mnist (29, 2−6) 96.48 (27, 2−6) 96.484

ijcnn1 (2−2, 2−2) 91.676 (2−2, 2−6) 90.962
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VIII. DISCUSSIONS AND CONCLUSIONS

We have discussed four multi-class implementations for the RSVM formulations and have compared

them with two decomposition methods based on LIBSVM. Experiments indicate that in general the

test accuracy of RSVM is a little worse than that of the standard SVM. Though RSVM keeps similar

constraints to the primal form of SVM, restricting support vectors from a randomly selected subset

still downgrades the performance. For the training time which is the main motivation of RSVM we

show that based on the current implementation techniques, RSVM will be faster than the regular SVM

on large problems or some difficult cases with many support vectors. Therefore, for median-sized

problems, standard SVM should be used but for large problems, as RSVM can effectively restrict the

number of support vectors, it can be an appealing alternate. Regarding the implementation of RSVM,

least-square SVM (LS-SVM) is the fastest among the four methods compared here though its accuracy

is a little lower. Thus, for very large problems it is appropriate to try this implementation first.

ACKNOWLEDGMENTS

This work was supported in part by the National Science Council of Taiwan via the grant NSC

90-2213-E-002-111. The authors thank M. Heiler, Y.-J. Lee, and X.-F. Lu for many helpful comments.

REFERENCES

[1] C. L. Blake and C. J. Merz. UCI repository of machine learning databases. Technical report, Uni-

versity of California, Department of Information and Computer Science, Irvine, CA, 1998. Available at

http://www.ics.uci.edu/˜mlearn/MLRepository.html.

[2] C.-C. Chang and C.-J. Lin. IJCNN 2001 challenge: Generalization ability and text decoding. In Proceedings of IJCNN,

2001.

[3] C.-C. Chang and C.-J. Lin. LIBSVM: a library for support vector machines, 2001. Software available at

http://www.csie.ntu.edu.tw/˜cjlin/libsvm.

[4] T.-T. Friess, N. Cristianini, and C. Campbell. The kernel adatron algorithm: a fast and simple learning procedure for

support vector machines. In Proceedings of 15th Intl. Conf. Machine Learning. Morgan Kaufman Publishers, 1998.

[5] M. Heiler. Optimization criteria and learning algorithms for large margin classifiers. Master’s thesis, University of

Mannheim, Germany, Department of Mathematics and Computer Science, Computer Vision, Graphics, and Pattern

Recognition Group, D-68131 Mannheim, Germany, 2001.

[6] C.-W. Hsu and C.-J. Lin. A comparison of methods for multi-class support vector machines. IEEE Transactions on Neural

Networks, 13(2):415–425, 2002.

[7] C.-W. Hsu and C.-J. Lin. A simple decomposition method for support vector machines. Machine Learning, 46:291–314,

2002.

[8] T. Joachims. Making large-scale SVM learning practical. In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors,

Advances in Kernel Methods - Support Vector Learning, Cambridge, MA, 1998. MIT Press.

[9] Y. LeCun. MNIST database of handwritten digits. Available at http://yann.lecun.com/exdb/mnist/.

[10] Y.-J. Lee and O. L. Mangasarian. RSVM: Reduced support vector machines. In Proceedings of the First SIAM International

Conference on Data Mining, 2001.

[11] Y.-J. Lee and O. L. Mangasarian. SSVM: A smooth support vector machine for classification. Computational Optimization

and Applications, 20(1):5–22, 2001.



19
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APPENDIX

The derivation from (7) and (8) to (9) shows only that if (w∗, b∗, ξ∗) and α∗ are primal and dual

optimal solutions, respectively, then (α∗, b∗, ξ∗) is feasible for (9). Hence, before using (9) in practice

we want to make sure that any optimal (α, ξ, b) of (9) can construct an optimal w for the primal

problem (3).

It is easy to see this. By using w =
∑
i∈B yiαiφ(xi), (w, b, ξ) is feasible for (3). Since we have
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shown that (α∗, b∗, ξ∗) is feasible for (9),

1
2

(w∗)Tw∗ + (b∗)2 + C

l∑
i=1

(ξ∗i )2

=
1
2

(α∗)TQα∗ + (b∗)2 + C

l∑
i=1

(ξ∗i )2

≥ 1
2
αTQα+ b2 + C

l∑
i=1

ξ2
i

=
1
2
wTw + b2 + C

l∑
i=1

ξ2
i .

Thus, (w, b, ξ) is optimal for the primal.

In order to simplify the complex Pβ(e− Q̃α̃) term, we define the vector

v ≡ exp(−β(e− Q̃α̃)), (35)

and then

Pβ(e− Q̃α̃) = (e− Q̃α̃) + β−1 log(1 + v). (36)

The differentiations of v and Pβ are:

∂vk
∂α̃i

=
∂

∂α̃i
exp(−β(e− Q̃α̃)k)

= −β(−Q̃ki) exp(−β(e− Q̃α̃)k)

= βQ̃kivk.

∂Pβ(e− Q̃α̃)k
∂α̃i

=
∂

∂α̃i
(e− Q̃α̃+ β−1 log(1 + v))k

= −Q̃ki + β−1(1 + vk)−1 ∂vk
∂α̃i

= −Q̃ki + β−1(1 + vk)−1βQ̃kivk

= −Q̃ki + Q̃ki(1 + vk)−1vk

= −Q̃ki(1 + vk)−1.

Finally we obtain the gradient and Hessian of f :

∂f

∂α̃i
=

∂

∂α̃i
(
l∑

k=1

Pβ(e− Q̃α̃)2
k) +

∂

∂α̃i
(

1
2C

α̃T α̃)

= 2(
l∑

k=1

Pβ(e− Q̃α̃)k
∂Pβ(e− Q̃α̃)k

∂α̃i
) +

1
C
α̃i

= −2C(
l∑

k=1

Q̃kiPβ(e− Q̃α̃)k(1 + vk)−1) +
1
C
α̃i
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∂2f

∂α̃i∂α̃j
=

∂

∂α̃j
(
∂f

∂α̃i
)

=
∂

∂α̃j
(
∂

∂α̃i
(−2(

l∑
k=1

Q̃kiPβ(e− Q̃α̃)k(1 + vk)−1))) +
1
C

∂

∂α̃j
α̃i

= −2(
l∑

k=1

Q̃ki
∂

∂α̃j
(Pβ(e− Q̃α̃)k(1 + vk)−1)) +

1
C
δij

= −2(
l∑

k=1

Q̃ki(
∂

∂α̃j
(Pβ(e− Q̃α̃)k)(1 + vk)−1 + Pβ(e− Q̃α̃)k

∂

∂α̃j
(1 + vk)−1)) +

1
C
δij

= −2(
l∑

k=1

Q̃ki(−Q̃kj(1 + vk)−2 + Pβ(e− Q̃α̃)k(−1)(1 + vk)−2βQ̃kjvk)) +
1
C
δij

= 2(
l∑

k=1

Q̃kiQ̃kj(1 + vk)−2(1 + βvkPβ(e− Q̃α̃)k)) +
1
C
δij ,

where δij is defined as

δij =

1 if i = j,

0 if i 6= j.

If we define diag(v) ≡

[
v1 0

. . .
0 vd

]
for vector v with dimension d, we obtain a more clear matrix

form:

∇f(α̃) = −2Q̃T (diag(Pβ(e− Q̃α̃))diag(e+ v)−1)e+
I

C
α̃,

∇2f(α̃) = 2Q̃T diag(e+ v)−2(I + βdiag(v)diag(Pβ(e− Q̃α̃)))Q̃+
I

C
.


