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Abstract

The asymptotic convergence in Lin [6] can be applied to a modified SMO algorithm by Keerthi et al.

[5] with some assumptions. Here we show that for this algorithm those assumptions are not necessary.

I. Introduction

Given training vectors xi ∈ Rn, i = 1, . . . , l, in two classes, and a vector y ∈ Rl such that

yi ∈ {1,−1}, the support vector machines (SVM) [9] require the solution of the following

optimization problem:

min
α

f(α) =
1

2
αTQα− eTα

0 ≤ αi ≤ C, i = 1, . . . , l, (1)

yTα = 0,

where C > 0 and e is the vector of all ones. Training vectors xi are mapped into a higher

dimensional space by φ and Qij ≡ yiyjK(xi, xj) where K(xi, xj) ≡ φ(xi)
Tφ(xj) is the

kernel.

Due to the density of the matrix Q, currently the decomposition method is one of the

major methods to solve (1) (e.g. [7], [3], [8]). It is an iterative process where in each

iteration the index set of variables are separated to two sets B and N , where B is the

working set. Then in that iteration variables corresponding to N are fixed while a sub-

problem on variables corresponding to B is minimized.

Among these methods, Platt’s Sequential Minimal Optimization (SMO) [8] is a simple

algorithm where in each iteration only two variables are selected in the working set so the

sub-problem can be analytically solved without using an optimization software. Keerthi et

al. [5] pointed out a problem in the original SMO and proposed two modified versions. The
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one using the two indices which have the maximal violation of the Karush-Kuhn-Tucker

(KKT) condition may be now the most popular implementation among SVM software (e.g.

LIBSVM [1], SVMTorch [2]). It is also a special case of another popular software SVM light

[3]. For convergence Keerthi and Gilbert [4] has proved that under a stopping criterion

and any stopping tolerance, it terminates in finite iterations. However, this result does

not imply the asymptotic convergence. On the other hand, the asymptotic convergence

of Lin [6] for the software SVM light can be applied to this algorithm when the size of

the working set is restricted to two. However, in [6, Assumption IV.1] it requires the

assumption that any two by two principal sub-matrix of the Hessian matrix Q is positive

definite. This assumption may not be true if, for example, some data points are the

same. In this paper we show that without this assumption results in [6] still follow. Hence

existing implementations are asymptotically convergent without any problem.

The method by Keerthi et al. is as follows: Using yi = ±1, the KKT condition of (1)

can be rewritten to

max( max
αi<C,yi=1

−∇f(α)i, max
αi>0,yi=−1

∇f(α)i)

≤ min( min
αi<C,yi=−1

∇f(α)i, min
αi>0,yi=1

−∇f(α)i), (2)

where ∇f(α) = Qα− e is the gradient of f(α) defined in (1). Then they consider

i ≡ argmax({−∇f(α)t | yt = 1, αt < C}, {∇f(α)t | yt = −1, αt > 0}), (3)

j ≡ argmin({∇f(α)t | yt = −1, αt < C}, {−∇f(α)t | yt = 1, αt > 0}), (4)

and use B ≡ {i, j} as the working set. That is, i and j are the two elements which violate

the KKT condition the most.

If {αk} is the sequence generated by the decomposition method, the asymptotic conver-

gence means that any convergent subsequence goes to an optimum of (1). The result of

finite termination by Keerthi and Gilbert cannot be extended here because both sides of

the inequality (2) are not continuous functions of α. In [6], the asymptotic convergence

has been proved but the author has to assume that the matrix Q satisfies

min
I

(min(eig(QII))) > 0, (5)
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where I is any subset of {1, . . . , l} with |I| ≤ 2 and min(eig(·)) is the smallest eigenvalue

of a matrix ([6, Assumption IV.1]). The main purpose of this paper is to show that (5) is

not necessary.

II. Main Results

The only reason why we need (5) is for Lemma IV.2 in [6]. It proves that there exists

σ > 0 such that

f(αk+1) ≤ f(αk)− σ

2
‖αk+1 − αk‖2, for all k. (6)

In the following we will show that without (5), (6) is still valid. First we note that if αk is

the current solution and B = {i, j} is selected using (3) and (4), the required minimization

on the sub-problem takes place in the rectangle S = [0, C] × [0, C] along a path where

yiαi + yjαj = −yTNαkN is constant. Let the parametric change in α on this path be given

by α(t):

αi(t) ≡ αki + t/yi, αj(t) ≡ αkj − t/yj, αs(t) ≡ αks , ∀s 6= i, j.

The sub-problem is to minimize ψ(t) ≡ f(α(t)) subject to (αi(t), αj(t)) ∈ S. Let t̄ denote

the solution of this problem and αk+1 = α(t̄). Clearly,

|t̄| = ‖αk+1 − αk‖/
√

2. (7)

As ψ(t) is a quadratic function on t,

ψ(t) = ψ(0) + ψ′(0)t+ ψ′′(0)t2/2. (8)

Since

ψ′(t) =
l∑

s=1

∇f(α(t))sα
′
s(t)

= yi∇f(α(t))i − yj∇f(α(t))j

= yi(
l∑

s=1

Qisαs(t)− 1)− yj(
l∑

s=1

Qjsαs(t)− 1) and (9)

ψ′′(t) = Qii +Qjj − 2yiyjQij, (10)
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we have

ψ′(0) = yi∇f(αk)i − yj∇f(αk)j and (11)

ψ′′(0) = φ(xi)
Tφ(xi) + φ(xj)

Tφ(xj)− 2y2
i y

2
jφ(xi)

Tφ(xj)

= ‖φ(xi)− φ(xj)‖2. (12)

Then our new lemma is as follows:

Lemma II.1 If the working set selection is by using (3) and (4), there exists σ > 0 such

that for any k, (6) holds.

Proof: Since Q is positive semidefinite, ψ′′(t) ≥ 0 so we can consider the following

two cases:

Case 1 ψ′′(0) > 0. Let t∗ denote the unconstrained minimum of ψ, i.e. t∗ =

−ψ′(0)/ψ′′(0). Clearly, t̄ = γt∗ where 0 < γ ≤ 1. Then, by (8),

ψ(t̄)− ψ(0) = γ
−ψ′(0)2

ψ′′(0)
+
γ2

2

ψ′(0)2

ψ′′(0)

≤ −γ
2

2

ψ′(0)2

ψ′′(0)
= −ψ

′′(0)

2
t̄2 = −ψ

′′(0)

4
‖αk+1 − αk‖2, (13)

where the last equality is from (7).

Case 2 ψ′′(t) = 0. By (12), φ(xi) = φ(xj). Using this, (9), and (11) we get

ψ′(0) = yi

l∑
s=1

Qisα
k
s − yj

l∑
s=1

Qjsα
k
s

= yi(
l∑

s=1

yiysφ(xi)
Tφ(xs)α

k
s − 1)− yj(

l∑
s=1

yjysφ(xj)
Tφ(xs)α

k
s − 1)

= yj − yi.

With (11), since descent is assured, ψ′(0) 6= 0. Thus yi 6= yj and hence |ψ′(0)| = 2. Since

ψ′′(0) = ψ′′(t) = 0 implies ψ′(t) is a linear function, with ψ(t̄) ≤ ψ(0) and |t̄| ≤ C,

ψ(t̄)− ψ(0) = −|ψ′(0)t̄| ≤ − 2

C
t̄2 = −‖α

k+1 − αk‖2

C
. (14)

Note that ψ(0) = f(αk) and ψ(t̄) = f(αk+1). Thus, using (10), (7), and (14), if we get

σ ≡ min{ 2

C
,min
i,j
{Qii +Qjj − 2yiyjQij

2
: Qii +Qjj − 2yiyjQij > 0}},

then the proof is complete.
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III. Conclusion

Using [6, Theorem IV.1], results here can be extended to the decomposition method for

support vector regression which selects the two-component working set in a similar way.

The future challenge will be to remove the same assumption when the size of the working

set is more than two.
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