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One-class SVM Probabilistic Outputs
Zhongyi Que and Chih-Jen Lin, Fellow, IEEE

Abstract—One-class SVM is an extension of SVM to handle
unlabeled data. As a mature technique for outlier detection, one-
class SVM has been widely used in many applications. However,
similar to standard two-class SVM, the design of one-class SVM
does not give probabilistic outputs. For two-class SVM, some
methods have been proposed to effectively obtain probabilistic
outputs, but due to the difficulty of no label information, less
attention has been paid on one-class SVM. Our aim in this
work is to propose some practically viable techniques to generate
probabilistic outputs for one-class SVM. We investigate existing
methods for two-class SVM and explain why they may not be
suitable for one-class SVM. Due to the lack of label information,
we think a feasible setting is to have probabilities mimic to
the decision values of training data. Based on this principle,
we propose several new methods. Detailed experiments on both
artificial and real-world data demonstrate the effectiveness of the
proposed methods.

Index Terms—Probability estimation, One-class SVM, Platt
scaling, Outlier detection.

I. INTRODUCTION

One-class SVM [1] is an extension of SVM to handle
unlabeled data. As a mature technique for outlier detection,
one-class SVM has been widely used in many applications.
However, similar to standard two-class SVM, the design of
one-class SVM does not give probabilistic outputs. For two-
class SVM, some methods have been proposed to effectively
obtain probabilistic outputs, but less attention has been paid
on one-class SVM. The reason is apparently due to the lack
of label information. Our aim in this work is to propose some
practically viable techniques to generate probabilistic outputs
for one-class SVM.

We consider training vectors xi ∈ Rn, i = 1, . . . , l, where l
is the number of observations and n is the number of features.
The optimization problem of one-class SVM is as follows.

min
w,ξ,ρ

1

2
wTw − ρ+ 1

νl

l∑
i=1

ξi (1)

subject to wTϕ(xi) ≥ ρ− ξi,
ξi ≥ 0, i = 1, . . . , l,

where ν ∈ (0, 1) is a given parameter and ϕ(xi) is a function
to map xi into a vector of higher dimensionality. Similar to
the standard SVM, to address the possible high dimensionality
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of ϕ(xi), we can prove that the solution w of (1) is a linear
combination of all ϕ(xi) with coefficients α:

w =

l∑
i=1

αiϕ(xi)

and solve a dual problem with the variable α. Then all the
calculation can rely on using kernel operations.

K(x,x′) = ϕ(x)Tϕ(x′).

After (1) is solved, the decision value of one-class SVM is

f(x) =wTϕ(x)− ρ (2)

=

l∑
i=1

αiϕ(xi)
Tϕ(x)− ρ,

and a negative decision value leads to the prediction of an
outlier. The parameter ν is very essential in one-class SVM
because it is shown to be an upper bound on the number of
training instances considered as outliers [2].

The above setting leads to only a decision value of an
instance but not the probability as an outlier. This situation
is similar to two-class SVM, which does not give proba-
bilistic outputs. By using decision values, some past works
have successfully developed methods to predict an instance’s
probability to be in each class (e.g., [3]–[6]). Among them,
Platt scaling [3] is an effective technique by assuming the
following probability model.

P (y = 1|x) ≈ 1

1 + exp(Af +B)
, (3)

where y = ±1 is the class label, f is the decision value f(x)
of the instance x, and A, B are the parameters to be decided
from the training data.

In contrast to the situation for two-class SVM, the proba-
bilistic outputs of one-class SVM are less studied. The very
few existing works often assume the availability of some
label information. For example, [7] assumes that normal data
instances are known, while the set of outliers is either empty
or under-represented. Some works (e.g., [8]–[10]) apply one-
class SVM to handle unbalanced data in two classes. In such
a situation, methods for two-class probabilistic outputs may
be applicable on the decision values obtained by one-class
SVM. On the other hand, works such as [9], [11]–[13] pro-
posed combining several one-class SVM problems as a more
sophisticated optimization problem. Then through the several
obtained decision boundaries, we can predict probabilistic
outputs. Different from existing works, this study focuses on
the fully unsupervised setting, where no or very little (e.g.
ratio of outliers) label information is available. Further, we
aim at a simple setting for obtaining probabilities after solving
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(1), so sophisticated modifications of (1) are not within our
consideration.

In this work, we broadly check possible approaches and
develop feasible methods for generating probabilistic outputs.
To begin, although Platt scaling is an outstanding probability
estimation method for two-class classification, through the-
oretical analysis and experiments, we explain that it is not
appropriate for one-class SVM. The main reasons are first the
lack of label information, and second different scenarios of
data distributions for two-class and one-class SVM. We then
check other methods such as isotonic regression, kNN and
EM-based algorithms, which have been applied to two-class
SVM. Unfortunately, they are not suitable for one-class SVM
for the reason of lacking labels. We finally think the best we
can do is to have probabilities mimic to the decision values of
training data. To this end, we propose two methods, where
one is non-parametric and the other is parametric. All the
methods are evaluated on artificial data and real-world data.
Experiments demonstrate the effectiveness of the proposed
methods.

This paper is organized as follows. In Section II, we
review how Platt scaling gives the probability of the two-class
SVM and discuss why it is not suitable for one-class SVM’s
probability estimation. In Section III, we investigate several
parametric or non-parametric methods and discuss if they are
applicable to one-class SVM. We propose new methods in
Section IV. In Section V, we present detailed experiments
and analysis. Section VI is the conclusion. Supplementary
materials and programs for experiments are available at https://
www.csie.ntu.edu.tw/∼cjlin/papers/oneclass prob/. This paper
is an extension of the first author’s master thesis [14].

One of the proposed methods has been incorporated into the
popular package LIBSVM [15] for support vector machines
(version 3.3 and after).

II. ISSUES IN EXTENDING PLATT’S TWO-CLASS SVM
PROBABILISTIC OUTPUTS TO ONE-CLASS SVM

We begin with illustrating why the popular approach by
Platt [3] is suitable for two-class SVM. This discussion is then
extended in Section II-C and Section II-D to explain why the
same approach may not be suitable for one-class SVM.

A. A Review of the Approach by Platt

The idea of Platt scaling is that the model in (3) as a function
of −(Af +B) is a sigmoid function illustrated in Figure 1a.
It satisfies the following property

P (y = 1|x)


→ 1 if − (Af +B)→∞,
= 0.5 if − (Af +B) = 0,

→ 0 if − (Af +B)→ −∞.

To identify the parameters A and B, the standard way is to
minimize the negative log-likelihood

min
A,B

−
l∑

i=1

log(P (yi|xi)), (4)
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(a) Platt scaling probability
model.
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(b) An assumed distribution of
decision values.

Fig. 1: The left figure is an example of the probability model
in (3). The right figure is an example assuming that decision
values of two classes of data follow (10). If P (f |y = −1)
and P (f |y = 1) are like the right figure, then the probabilistic
output is in a shape shown in the left figure.

where yi ∈ {−1, 1} is the class label of xi. To avoid
overfitting the training data, in Platt scaling [3] a revised
problem is solved:

min
A,B

−
l∑

i=1

(ti log(P (yi = 1|xi))+

(1− ti) log(1− P (yi = 1|xi))), (5)

where

ti =

{
N++1
N++2 if yi = +1

1
N−+2 if yi = −1

, i = 1, ..., l, (6)

and N+ and N− are the numbers of positive data and negative
data respectively.

B. Why Fitting a Sigmoid Function is Appropriate for Two-
class Problems

We explain why a sigmoid function is a reasonable choice
in the two-class scenario, where part of our derivation follows
[10]. A binary classifier is often designed in a way of assuming
that the distributions of the two classes are two clusters on
both sides of the decision value f = 0; see an illustration
in Figure 1b. For example, in two-class SVM, positive and
negative data are assumed to have their corresponding decision
values satisfying f ≥ 0 and f < 0, respectively.

By Bayes’ Theorem, the probability of a sample x with
decision value f in the class y = 1 is

P (y = 1|f) (7)

=
P (f |y = 1)P (y = 1)

P (f)

=
P (f |y = 1)P (y = 1)

P (f |y = 1)P (y = 1) + P (f |y = −1)P (y = −1)

=
1

1 + e−z
, (8)
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where

z = log
P (f |y = 1)P (y = 1)

P (f |y = −1)P (y = −1)

= log
P (f |y = 1)

P (f |y = −1)
+ log

P (y = 1)

P (y = −1)

= log
P (f |y = 1)

P (f |y = −1)
+ a constant. (9)

Here the logarithmic ratio between P (y = 1) and P (y = −1)
is a constant.

Consider the example in Figure 1b, where the decision
values of the two classes of data follow Gaussian distributions
with the following probability density functions.

P (f |y = 1) =
1√
2π
e−

1
2 (f−1.5)2 ,

P (f |y = −1) = 1√
2π
e−

1
2 (f+1.5)2 . (10)

Then (7) and (9) imply that

P (y = 1|f) = 1

1 + e−3f−(a constant) ,

which is a special case of (3). This example roughly explains
the validity of assuming the probability model in (3).

Note that our derivation is not formal because for a con-
tinuous random variable, we have P (f) = P (f |y = 1) = 0.
However, the result is the same if we consider a formal setting
lim∆f→+0 P (f ≤ F ≤ f+∆f |y = 1), where F is the random
variable of decision values.

C. Lack of Labels in Maximizing the Likelihood

For one-class SVM, a serious problem is that no true labels
are available for constructing the optimization problem in (4).
What we can do is to solve a one-class problem first and then
treat the predicted labels as the true labels. However, we will
show that this setting cannot effectively produce probabilistic
outputs.

Specifically, if predicted labels are used in the optimization
problem (4), the following perfect situation holds.

yi = 1 if and only if fi ≥ 0. (11)

This property and the maximization of the likelihood cause
that the resulting model satisfies P (y = 1|f)→ 1 as soon as
f is changed from zero to positive, especially when the size of
training data is large. Even with the technique in (6) to avoid
overfitting, the resulting sigmoid curve is still very close to a
0-1 function shown in Figure 2.

Thus, Platt scaling cannot give a good probability estimation
without true labels. This issue has been mentioned in other
works such as [10]. In fact, many other methods of proba-
bilistic outputs suffer the same issue if the situation in (11)
holds. We will show more examples in Section IV.

D. Fitting a Sigmoid Function may not be Suitable for One-
class SVM

Besides the issue discussed in Section II-C, another issue
is that, under certain data scenarios, the probability model of
one-class SVM may not be resemble to a sigmoid function.
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Fig. 2: An illustration of the probability model if (11) holds.
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(b) P (normal|f).

Fig. 3: A conceptual illustration of one-class SVM probabilis-
tic outputs. Assume data are generated by a standard normal
distribution as in the left figure. Data not in [−∆,∆] are
considered as outliers. Then the curve of P (normal|f) shapes
like the right figure, which uses (22) with ∆ ≈ 1.15 leading
to P [−∆ ≤ X ≤ ∆] = 0.75.

The goal of one-class SVM is to separate the ma-
jority of data from others, where these two groups of
data my occur in many different ways. For example, the
work in [10] empirically finds that, for certain problems,
P (f |x is a normal point) follows an exponential distribution,
while P (f |x is an outlier) still follows a normal distribution.
They then construct a likelihood function to obtain parameters
of the two probability models. In this subsection we analyze
one-class SVM by considering another scenario of the data.

From the viewpoint of outlier detection, we may think that
data are generated from the same distribution and those oc-
curred in the tail are considered as outliers [2]. By considering
the RBF kernel, we derive the analytic form of the model
P (normal|x) to directly show that it is not a sigmoid function
of the decision value f .

Now consider a simplified scenario so that each instance is
a one-dimensional point generated by a Gaussian distribution
with mean 0 and variance 1. Thus the probability density
function is

ψ(x) =
1√
2π
e−

1
2x

2

, (12)

which is shown in Figure 3a. Naturally, values too large or too
small can be considered as outliers. We further assume that
our one-class SVM has successfully identified (−∞,−∆) ∪
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(∆,∞) as the range of outliers. Then the decision function of
one-class SVM should satisfy

f(x) =

{
≥ 0 if x ∈ [−∆,∆],
< 0 otherwise.

(13)

Because the model P (normal|x) should satisfy

P (normal|x) =

{
1 if x = 0,

0 if x→ ±∞,

we can consider

P (normal|x) ≡ P (X ≤ −|x| or X ≥ |x|), (14)

where X is the random variable in generating x. That is, in
our example X has the density function in (12). Then

P (X ≤ −|x| or X ≥ |x|) = 1 + erf(
−|x|√

2
), (15)

where erf(·) is the so called error function in mathematics and
(15) serves as its definition. From (13), the probabilistic output
should satisfy

P (normal|x = ∆) = 0.5. (16)

To this end, if

∆̄ ≡ 1 + erf(
−∆√
2
), (17)

the value in (15) should be scaled so the probabilistic output
P (normal|x) is{

(1 + erf(−|x|√
2
)− ∆̄)× 0.5

1−∆̄
+ 0.5 if x ∈ [−∆,∆],

(1 + erf(−|x|√
2
))× 0.5

∆̄
otherwise.

(18)

From (17), ∆̄ is the ratio of data as outliers. Therefore, after
training one-class SVM, we can set ∆̄ to be the ratio of
training data considered as outliers. Alternatively, because ν
is an upper bound of this ratio of training data, we can set

∆̄ = ν. (19)

By considering each instance to be one-dimensional, we
have discussed how to get the ideal probabilistic outputs in
(18) from an assumed data distribution. However, an instance
may have multiple features so in practice decision values
instead of the original data are often used to generate the
probabilistic output. Thus we need to investigate the relation
between the decision values in one-class SVM and the original
data.

By considering the most commonly used RBF kernel:

K(x,x′) = e−γ∥x−x′∥2

, (20)

where γ > 0 is the kernel parameter, in supplementary
materials we show that if γ is small, the decision boundary
of the one-class SVM is nearly a hyper-sphere and the data
points outside the sphere are outliers, a situation similar to the
Support Vector Data Description (SVDD) [16]. Specifically,
the decision value can be approximated by

f(x) ≈ −γ∥x− x̄∥2 + C, (21)

where C is a positive constant and x̄ is the mean of training
data. We are able to derive the probabilistic output and the
decision value P (normal|f) as follows.(1 + erf(−

√
∆2−f/γ√

2
)− ν)× 0.5

1−ν + 0.5 if x ∈ [−∆,∆],

(1 + erf(−
√

∆2−f/γ√
2

))× 0.5
ν otherwise.

(22)
By considering γ = 0.1 and ν = 0.25 the curve is like that in
Figure 3b.

From (22) and Figure 3b, clearly the curve of P (normal|f)
is very different from a sigmoid function in Figure 1a. First,
the range of valid f is no longer (−∞,∞). Instead, the valid
range is now (−∞, γ∆2]. Second, for the curve in Figure
1a, as −(Af + B) → ∞, a negative curvature leads to a
flattened curve. In contrast, the function in (22) always has
a positive curvature even as f → γ∆2. Therefore, fitting the
sigmoid model by minimizing the problem in (4) cannot give
an accurate probability estimate.

Recall we consider P (normal|f) instead of P (normal|x)
because x may be multi-dimensional. All the above analysis
on one-dimensional data can be extended though we leave
details in supplementary materials.

In Appendix, we give a similar illustration by assuming that
data are generated under a distribution other than (12).

In summary, because one-class SVM may deal with data
from the same distribution, the class probability may not
follow the form in (3) by Platt’s method for two-class clas-
sification. We will conduct experiments in Section V and
supplementary materials to confirm the points made in this
section.

III. OTHER EXISTING PROBABILITY ESTIMATION
METHODS

In Section II, we discuss why Platt scaling, an appropri-
ate probability estimation method for two-class classification
problems, is not a good choice for one-class SVM. In this
section, we check other existing parametric or non-parametric
settings for generating probabilistic outputs. Most require the
availability of true labels and are not applicable for one-class
SVM probabilistic outputs. We then discuss some works that
attempt to address this issue.

A. Isotonic Regression

Isotonic regression is a non-parametric method for proba-
bility estimation [17]. Assume that instances have been sorted
according to the decision values such that

fi ≤ fi+1, i = 1, ..., l − 1.

The idea is that if the ranking by decision values is correct,
then a non-decreasing mapping of probabilities should be
obtained. To this end, this method obtains the probabilistic
output pi by solving a least square problem.

min
p

l∑
i=1

(ti − pi)2, (23)

subject to pi+1 ≥ pi, i = 1, . . . , l − 1,
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where

ti =

{
1 if yi = 1,
0 if yi = −1.

A common method to solve the optimization problem (23)
is through the pair-adjacent violators (PAV) algorithm [18],
though here we do not get into details.

Unfortunately, this method is not applicable to one-class
SVM, which is an unsupervised learning model with no true
labels. When the isotonic regression is applied, only predicted
labels are available to generate the target values ti,∀i. From
(11), all of the data with non-negative decision values have
the corresponding target value 1, while others have 0. Since
there is no interleaving of 0 and 1 in the sequence of scores,
the result of isotonic regression is a 0-1 function which does
not give meaningful probabilistic outputs.

B. The Method of k Nearest Neighbors

The method of k nearest neighbors (kNN) is a widely used
non-parametric approach for classification. It can be extended
to give probability estimation.

For a coming test point, the algorithm firstly finds the k
nearest neighbors in the training data. Here k is a user-defined
positive integer. Then it determines which class the test point
belongs to by the majority voting among those k nearest
neighbors. For the probability estimation problem, the test
point can directly take the ratio of the target class samples
in the k nearest neighbors as the probability. Therefore, the
probabilistic output strongly relies on the availability of true
labels.

With the absence of true labels, we use predicted labels as
the replacement in one-class SVM. For any coming instance,
unless the decision value is very close to 0, this instance and
almost all its neighbors have the same label. Therefore, if the
parameter k is not too large, we tend to obtain a 0-1 function.

Another issue is the selection of the parameter k. In two-
class classification, k is often chosen by a cross-validation
procedure. This is not possible for one-class SVM because
true labels are not available.

C. Modeling Sigmoid Probability Using an EM-based Algo-
rithm

To address the issue of lacking labels, [10] proposed an
expectation-maximization (EM) algorithm to fit a sigmoid
function like Platt did, but also learn the labels simultaneously.

In this EM-based algorithm, the core target is still to
minimize the negative log-likelihood shown in (5). However,
we treat the missing labels ti as hidden variables. Thus
the missing labels and the unknown parameters (A,B) in
the probability model (3) are simultaneously solved by an
iterative procedure in the EM algorithm. At the sth iteration the
procedure involves an E-step and an M-step. First, with current
parameter θs = (As, Bs), we assign the expected values to
the missing labels T s = {tsi | i = 1, ..., l}. Second, a new
parameter θs+1 is computed by minimizing the negative log-
likelihood given the values of T s. A pseudocode of the EM
algorithm is shown in Algorithm 1.

Algorithm 1 EM algorithm to model the sigmoid probability
[10]
Require: The set of decision values F in (24).
Ensure: Model parameters, θ = (A,B).
s← 0.
Initialize the parameters to θ0.
repeat

E-step: Set tsi = E(ti|F, θs).
M-step: Compute θs+1 = argminθ L(T

s|F ).
Set s← s+ 1.

until convergence

In the E-step, under the condition of the current parameter
θs and the decision values

F = {fi | i = 1, . . . , l}, (24)

the expect labels are decided by (3). Therefore,

tsi = E(ti|F, θs) =

{
1 if Asfi +Bs ≤ 0,

0 if Asfi +Bs > 0.
(25)

Let L(T s|F ) represent the negative log-likelihood function in
(5). Parameters θs+1 = (As+1, Bs+1) are obtained in the M-
step by minimizing the following function.

L(T s|F ) = −
l∑

i=1

(tsi log(P (yi = 1|xi))

+ (1− tsi ) log(1− P (yi = 1|xi))). (26)

Once ti,∀i are fixed, (26) is the same as (5), which is the
optimization problem solved in Platt scaling. To avoid the
overfitting situation, techniques in (6) can be incorporated in
the label prediction by (25). Unfortunately, our experiments
indicate that even though ti is now iteratively updated, the
final curve is still close to the 0-1 curve. Therefore, it seems
this algorithm has not fully addressed the issue of Platt scaling
for one-class probabilistic outputs.

D. Converting a Sequence of Scores into Probabilities by
Regularization and Normalization

For outlier detection problems, a widely used method to
get probabilistic outputs is by regularizing and normalizing a
sequence of scores [19]. Decision values in one-class SVM
can also be treated as a sequence of scores.

In this method, a score S is called regular if S(x) ≥ 0 for
any instance x. Since usually a small portion of data instances
are outliers, the authors of [19] consider

S(x)

{
≈ 0 if x is a normal instance,
≫ 0 if x is an outlier.

(27)

Next, to obtain probabilistic outputs, we must convert S(x) to
the interval [0, 1]. In [19], a converted score S is called normal
if S is regular and the values are restricted by S(x) ∈ [0, 1].1

1This definition is about a score S. It is not related to whether an instance
is normal or not.
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In one-class SVM, normal data always have larger decision
values than outliers. To make outliers have larger values, the
simplest way is to take the difference between each score
f(x) and the maximal observed score fmax. By the following
definition our scores satisfy S(x) ≥ 0, ∀x.

S(x) = fmax − f(x). (28)

We can then linearly scale S(x) to [0, 1] for obtaining prob-
abilistic values. However, because the scores are usually not
distributed uniformly, a nonlinear way to convert scores to
probabilities is needed. Some possibilities are Gaussian scaling
and Gamma scaling [19].

Gaussian scaling assumes the scores follow a Gaussian
distribution when the sample size is large enough. Since
Gaussian distribution has just two parameters, mean µ and
variance σ2, this method is not susceptible to overfitting. Two
estimators can be easily got by

µ̂ = E(S), (29)

and
σ̂2 = E(S2)− E(S)2. (30)

Because of (27), values on the right end of the distribution
have higher possibility to be outliers. Further, if S(x) ≤ µ,
then very unlikely the point is an outlier and we can impose the
probability to be zero. To this end, a score can be transformed
to a probability value in [0, 1] by the way in (31).

P (outlier|x) ≈ max
{
0, erf(S(x)−µ

σ·
√
2

)
}
. (31)

However, scores are not always distributed in Gaussian.
For example, [19] have pointed out that the scores of kNN-
based methods on low-dimensional data instead resemble a
Gamma distribution. By assuming the Gamma distribution,
[19] introduced Gamma scaling, which is conceptually similar
to Gaussian scaling. From µ̂ and σ̂2 obtained by (29) and (30),
the parameters k and θ of the Gamma distribution Γ(k, θ) can
be respectively approximated by

k̂ =
µ̂2

σ̂2
, θ̂ =

σ̂2

µ̂
.

The CDF of Gamma distribution Γ(k, θ) is given by

CDFgamma(S(x)) =
γ(k, S(x)/θ)

Γ(k)
, (32)

where γ(·) is the lower incomplete gamma function and Γ(·)
is the gamma function. Then similar to (31), the probability
can be obtained by the following way.

P (outlier|x) ≈ max
{
0, CDFgamma(S(x))−µCDF

1−µCDF

}
, (33)

where µCDF = CDFgamma(µ).
We can see that (31) and (33) are proposed to enhance

the contrast between outlier and normal data. An instance’s
probability to be an outlier is directly assigned to 0 if its
regular score is less than the mean.

E. Advanced Methods by Modifying Data or Optimization
Problem

Since the lack of labels is one of the biggest challenges in
one-class SVM probability estimation, some existing studies
tried to address this issue by modifying the data set used or
the optimization problem.

The work [7] considers the situation where normal data
instances are known, but the set of outliers is empty or under-
represented. While labels of training data are known, due to
the high class imbalance, they apply one-class SVM. To apply
Platt’s probabilistic outputs, the authors of [7] point out the
over-fitting issue when the set of outliers is empty or too small.
Then they artificially generate outliers to address the issue.
Thus for this approach the training data set is expanded from
the original one.

In the work [11], the idea is to solve several one-class SVM
problems to obtain more information of the data distribution.
By considering

0 < νq < · · · < ν1 < 1,

they devise an extension of one-class SVM to obtain q
parallel separating hyper-planes in the mapped space. Then
the decision boundaries in the input space become nested level
sets like a contour. This setting can be used for obtaining
probabilistic outputs. By the property that ν is an upper bound
of support vectors, αi = 1−νi can be treated as the probability
P (normal|x). Then for any test point x, we simply check
which level set it falls into. Other works that have applied
similar ideas include, for example, [9], [12], [13].

However, we do not consider the above works for the
following reasons.

• We aim to have a simple way for providing probabilistic
outputs for one-class SVM. Therefore, data modification
or augmentation is beyond our consideration.

• For approaches such as q-OCSVM in [11], an optimiza-
tion problem much larger than that of standard one-
class SVM is solved. The number of variables is q
times.2 The training process may be time consuming, but
here we want a simple and efficient setting. Moreover,
even though their design has utilized properties of the
parameter ν, they still need to decide other parameters
such as the kernel parameters.

Nevertheless, in Section V-C for experiments, we include a
simplified setting of q-OCSVM (called I-OCSVM) by solving
q independent optimization problems.

F. An Extension of SVDD for Probabilistic Outputs

Support Vector Data Description (SVDD) is a variant of
one-class SVM that can also be used for outlier detection [16].
The work [20] modifies the loss function of SVDD to be the
logistic loss so that probabilistic outputs can be produced. This
extension, called Import Vector Domain Description (IVDD)
is essentially kernel SVDD logistic regression. The relation
between SVDD and IVDD is the same as that between kernel
two-class SVM and kernel logistic regression. By similar

2See Eq. (5) in [11].
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concepts we can extend kernel one-class SVM to kernel one-
class logistic regression for directly getting the probabilities.
Details of our derivations are in supplementary materials.

However, we note a concern about using kernel one-class
logistic regression. In the two-class scenario, the main differ-
ences between SVM and logistic regression can be summa-
rized as follows.

• For kernel logistic regression, every instance is a support
vector and therefore, the model size is generally much
larger than that of kernel SVM.

• Kernel logistic regression can directly give probabili-
ties, but kernel SVM cannot. This situation is exactly
why some methods for probabilistic outputs (e.g., Platt’s
method) are needed for SVM.

The same property holds for one-class SVM and SVDD; see,
for example, [20] mentioned that every instance is a support
vector by saying “at the optimum, all alphas are positive and
that they sum to 1”. To reduce the model size, the authors of
[20] then rely on an early stopping criterion of the optimization
process to gain some sparsity. Therefore, if we prefer kernel
one-class SVM over logistic regression for a smaller model
involving only a subset of data, then we need techniques
proposed in this work for probabilistic outputs.

IV. METHODS TO GENERATE PROBABILISTIC OUTPUTS
FOR ONE-CLASS SVM

In previous sections we discuss some mature approaches
widely used in probability estimation, but many are not suit-
able for one-class SVM. In this section, we propose a new non-
parametric method and a new parametric method to estimate
the probabilities. To address the difficulty of not having true
labels of training data, our methods are designed based on the
principle to have probabilities mimic to the decision values of
training data.

A. Binning by Decision Values

Binning by decision values has been an existing approach
to generate probabilistic outputs [21]. The idea is to cut the
range of the decision values into several intervals, and let
the samples with decision values in the same interval have
the same class probability. For two-class classification, the
probability value of each interval is decided by the ratio of
positive instances. Now for one-class SVM, true labels are
not available, so our idea is to obtain the probabilistic output
solely by using decision values of training data. Because a
larger decision value indicates a higher probability of being
positive, we generate several intervals to cover all training
data’s decision values and assign probability values to these
intervals in an increasing manner. While this idea is simple,
some details must be specified and we discuss them below.

To begin, it is reasonable to assume

P (normal|f = 0) = 0.5.

Take f = 0 as a mark, and we should pick some other marks
from [fmin, fmax], where fmin and fmax are respectively the
minimal and the maximal decision values among training data,
and each mark (except the one at f = 0) is designated as
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(a) Binning equidistantly.
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(b) Binning according to density.

Fig. 4: Illustrations for the two binning methods. Black dots
on the x-axis are the decision values of training set. The
vertical dotted lines show the marks we selected, and the blue
line segments represent the bins with different probabilistic
outputs.

the center of an interval. Assume that we select five marks
with f > 0 and another five with f < 0. Then the easiest
way to pick the marks is to respectively select 5 points from
[fmin, 0] and [0, fmax] equidistantly. Specifically, we obtain the
following marks.

fmin, 4×fmin/5, . . . , fmin/5, 0, fmax/5, . . . , 4×fmax/5, fmax.

The 11 marks correspond to 11 probability values 0, 0.1, . . .,
1. For a coming decision value, its probability of being a
normal data instance is decided by its nearest mark. Figure
4a illustrates the idea.

For the first and the last marks, assigning values 0 and
1 respectively may not be appropriate as some uncertainty
should remain. Thus we may instead consider values such as
0.001 and 0.999.

An issue of picking the marks in an equidistant setting is
that the model may be affected by some outliers. For example,
if fmax is extremely large and all other positive training
decision values are in [0, fmax/2], the model may end up with
predicting most data to have P (normal|f) ≤ 0.75. A possible
remedy is to generate intervals according to the density of
decision values. That is, all positive decision values are sorted
and split into equal-sized groups. An illustration is in Figure
4b.

For some implementation details, see Section 8.3 in LIB-
SVM implementation document [15].

B. A New Gamma Scaling

In Section III-D, we described the method in [19] to convert
scores (decision values) to probabilities. However, the setting
in (31) implies that

P (normal|x) = 1 if S(x) ≤ µ̂. (34)

This property may not be desired because we hope to have
that P (normal|x) gradually increases to 1 as S(x) goes to
zero. The setting in (33) of assuming the Gamma distribution
possesses the same problem. In this section, by taking prop-
erties of one-class SVM into account, we propose a method
to address the issue. In particular, we need to check if the
decision values are under certain distributions.
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1) Kernel Selection: To get decision values by kernel one-
class SVM, we must consider a suitable kernel. Past works
such as [22] have argued that for one-class SVM, kernels
that can reflect the similarity between two input instances
are preferable. That is, a kernel function should show a high
similarity if the two vectors are close to each other and a
low similarity if the two vectors are distant. Therefore, the
maximal similarity occurs if the two input vectors are identical.
However, kernels like linear kernel or polynomial kernel do
not have this property.

In this way, good candidates for one-class SVM should be
distance based kernels like RBF kernel and Laplacian kernel.
Here we focus on considering the RBF kernel.

2) Distribution of the Decision Values: In (21), we intro-
duced an approximation form of decision values. Here we still
assume that the training set has n independent features, and
for a sample xi, its jth feature x(j)i is under a Gaussian distri-
bution of N(µ(j), (σ(j))2). From (21), the domain of decision
values is in the range of (−∞, C]. Then the maximum decision
value that appears in the training data is approximately

fmax ≈ f(x̄) = C. (35)

To know the distribution clearly, we regularize the decision
values into a non-negative domain by the following setting.

f(x)Reg = fmax − f(x) ∈ [0,∞) (36)

≈ γ∥x− x̄∥2, (37)

where (37) is from (21) and (35).
If the training data x is one-dimensional, from the assump-

tion that the feature is under a Gaussian distribution, we know
that (x − x̄)/σ follows a standard normal distribution. Thus
the regularized decision value

f(x)Reg ≈ γσ2(
x− x̄
σ

)2

can be considered as a weighted Chi-square random variable
with one freedom degree and weight γσ2.

Multi-dimensional training data can be considered in the
same way. The formulation of the regularized decision value
is a weighted sum of Chi-square random variables.

f(x)Reg ≈ γ∥x− x̄∥2

= γ

n∑
j=1

(x(j) − µ(j))2

=

n∑
j=1

γ(σ(j))2(
x(j) − µ(j)

σ(j)
)2.

3) Transformation to Probabilities: Although the weighted
sum of Chi-square random variables has no specific probability
density function, there exist various approaches to approximate
it by other distributions. Satterthwaite-Welch approximation is
an efficient method which involves matching the moments of
the weighted sum of Chi-square random variables to a Gamma
distribution [23]. To be specific, it is a kind of method of
moment, and only needs the mean and the variance. Define S
to be the value f(x)Reg in (36). We can firstly get the estimated
mean and variance by

µ̂ = E(S),

and
σ̂2 = E(S2)− E(S)2.

These two estimators can then help to estimate the shape
parameter k and the scale parameter θ of the target Gamma
distribution by

k̂ =
µ̂2

σ̂2
, θ̂ =

σ̂2

µ̂
.

Since the regularized decision values have the characteristic
that the greater the more likely to be an outlier, we can model
P (outlier|x) as

P (outlier|x) ≡ P (X ≤ f(x)Reg),

where X stands for a random variable having the same
distribution with fReg. Similar to (32), the probability can also
be represented by a CDF of the Gamma distribution with shape
k̂ and scale θ̂

P (outlier|x) =CDFgamma(f(x)Reg)

=
γ(k, f(x)Reg/θ)

Γ(k)
. (38)

Notice that the γ function in (38) represents a lower incom-
plete gamma function rather than the parameter in RBF kernel.
For one-class SVM, samples located at the hyper-plane should
have the same probabilities belonging to the normal and the
outlier classes. That is, samples with decision value 0 have the
probability 0.5 to be an outlier. From (36),

f(x)Reg = fmax if f(x) = 0, (39)

so similar to (18), the scaled probabilistic output P (normal|x)
is{

CDFgamma(fmax)−CDFgamma(f(x)Reg)
CDFgamma(fmax)

× 0.5 + 0.5 if f(x) ≥ 0,
(1−CDFgamma(f(x)Reg)
1−CDFgamma(fmax)

× 0.5 otherwise.
(40)

4) Advantages of the New Gamma Scaling: Compared with
the methods discussed before, we think the new Gamma
scaling is competitive for the following reasons.

• The new Gamma scaling is a parametric probability
estimation method. The three parameters µ̂, σ̂2 and fmax

can be obtained in linear time O(l).
• The probability function in (40) is continuous, so its

values may more accurately reflect the distribution than
the binning methods.

• Although we only consider the RBF kernel here, this
method may be applied to other distance-based kernels
like the Laplacian kernel.

V. EXPERIMENTS

In this section, we first give our performance measure,
describe the setting of the experiments, and then show our
evaluation result of various methods. We use the one-class
SVM implementation in LIBSVM [15] for experiments. The
RBF kernel in (20) is considered because it is the most
commonly used kernel.
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A. Performance Measure

If ground-truth probabilities can be obtained, we take the
mean squared error (MSE) as a criterion

MSE =
1

l

l∑
i=1

(pi − p̂i)2,

where pi means the ground truth probability of data xi, and
p̂i means the probabilistic output obtained by the method to
be evaluated.

For artificial data used in our experiments, they are cre-
ated according to certain distribution patterns (e.g., Gaussian
distribution, uniform distribution), so we can get their ideal
probabilities as the ground truth. On the other hand, we have
no clear knowledge about the distribution of most real-world
data sets, so we do not have their ground truth in the evaluation
stage. In this way, MSE is only applicable on the data sets
generated under known distributions.

If ground truth is not available, we consider the quantile-
quantile plot (Q-Q plot) to check if the probability estimation
results can reflect the distribution of the decision values
accurately. The reason is that an important aspect of estimating
probabilities is to maintain some semblance to the original
score distribution [24]. Statistical methods like drawing a Q-
Q plot provide an idea to compare samples from any two
distributions.

Here is a brief introduction about how the Q-Q plot works.
Consider an example to check if n samples follow any target
distribution. Firstly we sort the data from the smallest to the
largest. Then we consider the density function of the target
distribution and find the n points that make the area under the
density function split to n+1 equally spaced areas. We draw
a scatter plot with the given n values and the n values from
the target distribution. The resulting figure is called the Q-Q
plot. If the data set to be checked closely follow the target
distribution, the dots in the resulting plot should almost locate
on the line of y = x. In this way, the Q-Q plot can helps to
verify if the distributions of the two sets of data are the same.

In the evaluation by using a Q-Q plot, we use the generated
probabilities of the test set to get the sample quantiles, and
scale the percentile of training data’s decision values to get the
theoretical quantiles (i.e., values from the target distribution).
A scaling step is necessary because data with zero decision
value should have their probabilities to be normal around 0.5.
Here we denote the percentile at f(x) = 0 as P̂rc(0).3 Then,
by settings similar to (22) and (50), we calculate each sample’s
percentile Prc(f(x)) from the decision value f(x) and have

Prc(f(x))−P̂rc(0)
1−P̂rc(0)

× 0.5 + 0.5 if Prc(f(x)) ≥ P̂rc(0),
Prc(f(x))

P̂rc(0)
× 0.5 otherwise.

(41)

B. Artificial Data: Data Generation

The purpose of considering artificial data is twofold: first,
because the theoretical probabilities are known, the perfor-
mance comparison of different probabilistic output methods

3In general no sample’s decision value is right at 0, so we take the one
which has the minimum absolute decision value as the replacement.

is possible. Second, we would like to verify the analysis in
Section II, which shows that fitting a sigmoid function may
not be suitable for one-class SVM. Note that for each set,
to apply the theoretical probability in the case of imbalanced
normal and outlier data, we need to scale it by the same setting
in (18) according to the proportion of outlier data.

We begin with generating two kinds of artificial data sets
by following the discussion in Section II-D. Each set has
10,000 instances and all the instances are one-dimensional.
We assume 25% of the instances are outliers. Test sets are
generated in the same way as training sets.

In the first artificial data set (ART1), we generate the data
randomly in Gaussian distribution with mean 0 and variance
1 in (12). By setting ν = 0.25 in (18), ∆ is approximately
1.15 and we have

P (normal|x) =

{
1 + erf(−|x|√

2
)× 2

3 if x ∈ [−∆,∆],

(1 + erf(−|x|√
2
))× 2 otherwise.

(42)
The second artificial data set (ART2) is similar to the

first one, but we replace the 75% instances closest to the
mean 0 with the uniform distribution as we described in (49).
The probabilistic output is in the form of (50), and ∆ is
approximately 1.15. By setting ν = 0.25 in (50), we have

P (normal|x) =

{
1 +

|x|×erf(− ∆√
2
)

∆ × 2
3 if x ∈ [−∆,∆],

(1 + erf(−|x|√
2
))× 2 otherwise.

(43)
The two sets ART1 and ART2 are one-dimensional. To

check the performance on multi-dimensional data, we arti-
ficially generate some sets by assuming that each feature
of the n-dimensional data follows an independent Gaussian
distribution with mean 0 and standard deviation 1.

In this way, we generate a 5-dimensional set called ART 5d
and a 10-dimensional set called ART 10d. Both sets include
10,000 instances and we assume 25% of them are outliers.
From the derivation in supplementary materials, by setting ν =
0.25, then P (normal|x) is

P (normal|x) =


1−

∫ ∥x∥√
2

0 e−u2
un−1du∫ ∞

0
e−u2un−1du

× 2
3 if ∥x∥ ≤ ∆,

(1−
∫ ∥x∥√

2
0 e−u2

un−1du∫ ∞
0

e−u2un−1du
)× 2 otherwise.

(44)
Next, we generate a set ART3 that has different char-

acteristics from the earlier ones. Some of the methods we
proposed (e.g., the new Gamma scaling) assume that γ in
the RBF kernel is small. From (21), a small γ implies that
the decision function is like a hyper-sphere4 no matter how
many clusters there exist in the data set. Then the obtained
model may not be capable of predicting the sparse samples
that locate between clusters as outliers. To check how our
proposed methods perform in such a situation, we generate a
2-dimensional artificial data set called ART3 by the following
ways.

4Note that we mean a hyper-sphere in the input space rather than the feature
space after kernel mappings.
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• First, two clusters are respectively generated by multi-
variate normal distributions N(µ1,Σ1) and N(µ2,Σ2)
with

µ1 =

[
6
5

]
, Σ1 =

[
1 0
0 1

]
,

µ2 =

[
−6
−5

]
, Σ2 =

[
1 0
0 1

]
,

(45)

and each cluster has 4,950 samples.
• Second, 100 outliers are generated by a uniform distri-

bution in the range [−10, 10] for both dimensions.
Since the ratio of outliers in ART3 is very low, we can cal-

culate the nearly ideal probability by ignoring the distribution
of the outliers. The probability density function of the mixture
distribution in ART3 can be approximated to

1

2
ψ1(x) +

1

2
ψ2(x), (46)

where x is a vector with two features, and ψ1(x) and
ψ2(x) are the probability density functions of distributions
N(µ1,Σ1) and N(µ2,Σ2), respectively. Similar to (13), we
can consider the instances that are far from the dense places
as outliers. Without loss of generality, let x be an instance
closer to µ1. We can derive the following ideal probability
P (normal|x) by assuming that the ratio of predicted outliers
is ν.{

(1−P (outlier|x)−ν)
1−ν × 0.5 + 0.5 if P (outlier|x) ≤ 1− ν,

(1−P (outlier|x))
ν × 0.5 otherwise,

(47)
where

P (outlier|x) =
∫ ∫

∥X−µ1∥≤∥x−µ1∥

1

2π
e−

X2
1+X2

2
2 dX1dX2,

and X is a random variable in generating x. Details of the
derivation are in supplementary materials.

C. Artificial Data: Results

For ART1 and ART2, we set parameter ν = 0.25 since
we have that 25% of the artificial data are outliers. We set
γ = 0.0001 because a small γ is needed in the discussion in
Section II-D and supplementary materials, and we have the
following relationship between an instance x and its decision
value f .

f ≈ −γ(x− x̄)2 + γ∆2, (48)

where x̄ is the mean of training data. With (48), in Figure 5a
and Figure 5b respectively for ART1 and ART2 we present
the relation between decision values and probabilistic outputs
by the following methods.

• Ideal probability: see (42), (43) and we also use (48).
• Platt scaling: see Section II-A.
• Binning methods: see Section IV-A. We have two set-

tings: binning by density and binning equidistantly.
• New Gamma scaling: see Section IV-B.

From Figure 5, we have the following observations.
• The curves of Platt scaling are extremely steep around 0

as we discussed before. Its probabilistic outputs are very

(a) ART1.

(b) ART2.

Fig. 5: Relationship between probabilistic outputs and decision
values for artificial data sets ART1 and ART2.

close to either 0 or 1. Some additional experiments to
analyze Platt scaling for one-class SVM are in supple-
mentary materials.

• Results of the two binning approaches and the new
Gamma scaling are not clustered around 0 or 1. More
specifically, the estimation results of binning by density
and the new Gamma scaling are very close to the ideal
probabilities.

Table I shows the MSE of probabilistic outputs by various
methods. We include one more method for the comparison.

• I-OCSVM: this stands for independent one-class SVMs.
Recall that in Section III-E we discussed the approach
q-OCSVM [7]. A simplified setting experimented in the
same paper is to consider q independent one-class SVM
problems with ν = ν1, . . . , νq . Details of our implemen-
tation are in supplementary materials.

From the result in Table I, the performance of the new
Gamma scaling on ART1 and ART2 is outstanding with the
smallest MSE, and binning by density also performs well. For
the two binning methods, the equidistance setting is clearly
inferior. The performance of I-OCSVM is close to binning by
density though the former must solve q instead of one SVM
problems.

In Section IV-B we developed a new Gamma scaling method
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ART1 ART2 ART 5d ART 10d ART3 (γ = 0.1) ART3 (γ = 0.0001)
Platt scaling 0.077723 0.077020 0.078548 0.077663 0.081106 0.105299
Binning: equidistantly 0.026122 0.020175 0.012999 0.013073 0.024938 0.047060
Binning: by density 0.001056 0.001135 0.001087 0.001132 0.002000 0.051590
New Gamma scaling 0.000003 0.000212 0.000041 0.000079 0.007661 0.058946
I-OCSVM 0.001044 0.001161 0.001088 0.001119 0.002458 0.051775

TABLE I: Mean squared error (MSE) of the probabilistic outputs by various methods. For each set, the method with the
smallest MSE is bold-faced.

because from the discussion in Section III-D, the method
of [19] satisfies the undesired property in (34). To confirm
the need of our proposed method, we conduct a comparison
in supplementary materials. Results indicate that (34) really
causes inferior performance.

Next, we consider the two multi-dimensional data sets
ART 5d and ART 10d. Parameters are set in the same way
as those for ART1 and ART2. From MSE shown in Table I,
both the new Gamma scaling and the binning by density work
well.

Finally, we check the set ART3. Recall ART3 contains
two clusters of normal data, while outliers (1% of total data)
are those that are away from the two clusters. We apply the
following parameter settings.

• For ν, we consider ν = 0.05, instead of the ratio of
outliers (0.01). Because 0.01 is small, we impose a larger
value as ν for hoping that the model can predict enough
outliers.

• For the kernel parameter γ, we check two values.

γ = 0.1 and γ = 0.0001.

It is known that a larger γ implies a higher nonlinearty
of the decision boundary.

To see how the model performs, in Figure 6 we plot some
randomly selected points. Next to each point, we show the
decision values after the training procedure. We observed that
if γ = 0.1 is used, the one-class SVM model leads to two non-
linear curves that roughly circle the two clusters. In contrast,
if γ = 0.0001 is used, one-class SVM leads to a larger
sphere that covers almost all the points. In this situation,
outliers cannot be identified. Next, we separately generate
corresponding probabilistic outputs and report MSE in Table I.
As expected, the MSE under γ = 0.0001 is much worse than
that under γ = 0.1. This result fully demonstrates that a bad
one-class SVM model leads to inappropriate decision values
and then poor probabilistic outputs. Further, in contrast to the
MSE results for ART1 and ART2, now the binning by density
is better than the new Gamma scaling. The reason may be that
the latter assumes each feature follows a Gaussian distribution,
but the data generation of ART3 violates this assumption.

In summary, binning by density is a reliable choice because
it solely relies on the quality of decision values rather than
other assumptions. Of course obtaining a good one-class SVM
model with suitable decision values can still be challenging,
but the same issue has occurred in conducting classification
instead of finding probabilistic outputs. On the other hand,
although the performance of I-OCSVM is close to binning
by density, training several one-class SVM models is not
necessary.

(a) γ = 0.1.

(b) γ = 0.0001.

Fig. 6: An illustration of ART3. Blue points indicate normal
data and red points are outliers. The value next to each point
is the decision value.

Now we use Q-Q plots in Figure 7 to check the relation
between the obtained probabilistic outputs and the decision
values. As mentioned earlier, if points in the Q-Q plot are close
to the y = x line, then the probabilistic outputs can represent
the distribution of decision values well. From the figures we
have the following observations. Platt scaling cannot reflect the
distribution of decision values at all. Binning by density is a
conservative approach so that their probability results always
have nearly a fixed error pattern. Finally, the new Gamma
scaling works extremely well for ART1 and ART2, but is not
as good for ART3. This result is reasonable because, as we
mentioned earlier, decision values of ART3 may not satisfy
the assumption made by the new Gamma scaling.



12

ART1 ART2 ART3 (γ = 0.1) fourclass USPS cifar10 gisette

(a) Platt scaling.

(b) Binning by density.

(c) The new Gamma scaling.

Fig. 7: Q-Q plots for comparing decision values and probabilistic outputs obtained by different methods.

fourclass USPS cifar10 gisette
Classes (original) 2 10 10 2
Features 2 256 3,072 5,000
Training set 245/81 584/194 5,000/1,666 3,000/1,000
Test set 61/20 146/48 1,000/333 500/166

TABLE II: Details of the real-world data sets. The sizes
of training sets and test sets are in the form of normal
data/outliers.

D. Real-world Data

We use four real-world data sets, which are widely used
classification benchmarks. We pick one class as the normal
data and randomly select a small number of data from other
classes as outliers.

The first set is the “fourclass” problem.5 We choose the
positive class as the normal samples and randomly select
instances from the negative class as outliers. The second set
is from the “USPS” problem,6 which includes 10 handwritten
digits. We choose digit 3 as the normal data, and randomly
pick the outliers from the other nine classes uniformly. The
third set is from the “cifar10” problem.7 which includes image
information. We choose the class of automobile as the normal
data and randomly pick the outliers from the other nine classes
uniformly. The forth set is from the “gisette” problem.8 We
choose the positive class as the normal samples and randomly
select instances from the negative class as outliers.

5https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/binary.html#
fourclass. We use the scaled version, where each feature is linearly scaled to
[-1,1].

6https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/multiclass.html#
usps

7https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/multiclass.html#
cifar10. We use the scaled version, where each feature is linearly scaled to
[0,1].

8https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/binary.html#
gisette

Both training sets and test sets for the four real-world data
sets includes about 25% of outliers. The details of the data
sets are in Table II.

Figure 7 shows the evaluation results on real-world data sets.
As in the case of artificial data, Platt scaling does not reflect the
distribution of decision values. Both the new Gamma scaling
and binning by density perform well on USPS, cifar10 and
gisette. However, they are not as good on the fourclass set.
One reason might be that the size of the data set is small so the
distributions of training and test sets are not similar. Another
possible reason is that, since the proportion of outliers is less
than 0.5, the scaling in (40) stretches the probabilities on the
outlier side. Thus, the error is magnified.

VI. CONCLUSIONS

This paper analyzes the reasons why one traditional prob-
ability estimation method (Platt scaling) for two-class clas-
sification problems may not be appropriate for one-class
SVM. The possibility of applying other mature probability
prediction methods is also discussed. To let probabilities reflect
the distribution of decision values, we propose two methods
to obtain the probability. One is binning, a non-parametric
method, and another is a parametric method called the new
Gamma scaling. Both methods can obtain probabilistic outputs
in linear time. We show their stability and effectiveness in
compared with existing methods through detailed experiments.
Based on this study, the simple binning method by density is
chosen as the way of generating one-class SVM probabilistic
outputs in the popular SVM package LIBSVM.

APPENDIX
AN ADDITIONAL ILLUSTRATION FOR SECTION II-D

We give an illustration similar to that in Section II-D by
assuming that data are generated in a different way. The
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Fig. 8: A conceptual illustration of one-class SVM probabilis-
tic outputs. Assume normal data are distributed uniformly as in
the left figure. Data out of [−∆,∆] are considered as outliers
and they are generated by a Gaussian distribution as in Figure
3a. The curve of P (normal|f) shapes like the right figure with
∆ ≈ 1.15.

example in Section II-D assumes all the normal data (i.e.,
x ∈ [−∆,∆]) follow a Gaussian distribution. Now let us
assume that these points follow a uniform distribution, so the
density function becomes

ψ(x) =

{
−

erf(− ∆√
2
)

2∆ if x ∈ [−∆,∆],
1√
2π
e−

1
2x

2

otherwise.
(49)

See the curve shown in Figure 8a. The probabilistic output for
an instance x can be formed in the same way as in (14). With
(19), P (normal|x) can be modified from (18) to the following
form.{

(1 +
|x|×erf(− ∆√

2
)

∆ − ν)× 0.5
1−ν + 0.5 if x ∈ [−∆,∆],

(1 + erf(−|x|√
2
))× 0.5

ν otherwise.
(50)

The curve of P (normal|f) is shown in Figure 8b. Clearly, the
curve is again very different from a sigmoid function.
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