
One-class Field-aware Factorization Machines for
Recommender Systems with Implicit Feedbacks

BOWEN YUAN, National Taiwan University

MENG-YUAN YANG∗, ETH Zurich

JUI-YANG HSIA, National Taiwan University

HONG ZHU, ZHIRONG LIU, and ZEHNHUA DONG, Noah’s ark lab, Huawei

CHIH-JEN LIN, National Taiwan University

Recommender systems with implicit feedbacks is a typical one-class scenario, where only positive labels are

available. Such positive-unlabeled (PU) learning problems can be solved by one-class matrix factorization

(OCMF). Recently, OCMF with side information (OCMFSI) on users and items has been proposed as a powerful

extension of OCMF. Interestingly, OCMFSI is strongly related to Factorization Machines (FM), which is a

general classification and regression model. This link motivates us to investigate if models superior to FM (e.g.,

Field-aware Factorization Machines) can be effectively extended to PU learning. In this paper, we propose a

novel One-class Field-aware Factorization Machines (OCFFM) model. An efficient optimization algorithm is

developed such that OCFFM can be trained on the large-scale data sets. Finally, through experiments on four

data sets, OCFFM shows its superiority over other one-class models.

CCS Concepts: • Information systems� Recommender systems; Collaborative filtering; • Computing
methodologies� Learning from implicit feedback; Factor analysis; • Mathematics of computing
� Nonconvex optimization.

Additional Key Words and Phrases: Field-aware factorization machine, Block coordinate descent, PU learning

1 INTRODUCTION
Many real-world applications involve recommendation with implicit user feedbacks [15, 24, 30, 32].

This topic, as part of the broader field of positive-unlabeled (PU) learning problems, is now very

important in the study of recommender systems.

In a typical PU-learning scenario, we observe some positive (user, item) pairs as the incomplete

information of a 0/1 matrix 𝑌 ∈ R𝑚×𝑛 of𝑚 users and 𝑛 items. The set of positive pairs, denoted

as Ω+, has 𝑌𝑖 𝑗 = 1,∀(𝑖, 𝑗) ∈ Ω+ and |Ω+ | ≪ 𝑚𝑛. The goal is to predict whether unobserved pairs

are zero or one. To accomplish this, one-class extensions of matrix factorization (MF) have been

proposed as an effective technique [15, 24, 30, 32]. It differs from traditional rating-based MF for

recommender systems because only one-class information (i.e., observed positive pairs) is available.

The rating-based MF finds two low-rank latent matrices

𝑊 ∈ R𝑚×𝑘 and 𝐻 ∈ R𝑛×𝑘 ,

such that

𝒘𝑇𝑖 𝒉 𝑗 ≈ observed rating of (𝑖, 𝑗), (1)

∗
Work done at Huawei.

Authors’ addresses: Bowen Yuan, Department of Computer Science, National Taiwan University, f03944049@csie.ntu.edu.tw;

Meng-Yuan Yang, Department of Computer Science, ETH Zurich, meyang@ethz.ch; Jui-Yang Hsia, Department of Computer

Science, National Taiwan University, hsiajuiyang5174@gmail.com; Hong Zhu; Zhirong Liu; Zehnhua Dong, Noah’s ark

lab, Huawei, zhuhong8@huawei.com, liuzhirong@huawei.com, dongzhenhua@huawei.com; Chih-Jen Lin, Department of

Computer Science, National Taiwan University, cjlin@csie.ntu.edu.tw.

where 𝑘 is a specified latent dimension with 𝑘 ≪ 𝑚 and 𝑘 ≪ 𝑛, and 𝒘𝑖 ∈ 𝑅𝑘 and 𝒉 𝑗 ∈ 𝑅𝑘 are

respectively the 𝑖th row of𝑊 and 𝑗th row of 𝐻 . That is,

𝑊 =


𝒘𝑇

1

...

𝒘𝑇𝑚

 and 𝐻 =


𝒉𝑇

1

...

𝒉𝑇𝑛

 .
1.1 Selection of Negative Pairs: Subsampled versus Non-subsampled
Unfortunately, for the one-class scenario finding a model achieving (1) leads to the positive pre-

diction for all unobserved pairs. Existing one-class extensions of MF thus additionally take the

unobserved pairs into consideration. Specifically, an intuitive idea is to treat some unobserved pairs

as negative. By considering a point-wise loss on each pair, the task is converted to the following

conventional rating-based MF problem.∑
(𝑖, 𝑗) ∈Ω+∪Ω−

𝐶𝑖 𝑗 ℓ (𝑌𝑖 𝑗 , 𝑌𝑖 𝑗) +
𝜆

2

(∥𝑊 ∥2
F
+ ∥𝐻 ∥2

F
), (2)

where Ω− is the set of unobserved pairs selected as negative, we assume true class labels are

𝑌𝑖 𝑗 =

{
1 , ∀(𝑖, 𝑗) ∈ Ω+,
𝑟 , ∀(𝑖, 𝑗) ∈ Ω−,

(3)

the predicted values are 𝑌𝑖 𝑗 = 𝒘𝑇𝑖 𝒉 𝑗 , ∥ · ∥F is the Frobenius norm, 𝜆 is the regularization parameter,

ℓ (𝑦,𝑦) is the loss function, and𝐶𝑖 𝑗 is a cost parameter. Because all (𝑖, 𝑗) ∉ Ω+ are treated as negative,
in general 𝑟 = 0 or 1 in (2) is considered. For the selection of Ω−, currently two approaches are

commonly considered in past studies. The first approach [24, 25] is “subsampled” approach. It

constructs Ω− by subsampling partial unobserved pairs, where |Ω+ ∪Ω− | is generally much smaller

than𝑚𝑛. Another widely-used setting [12, 32–34] is to include all unobserved pairs into Ω−. By
following this non-subsampled setting, also named as “non-subsampled” or “full” approach in some

literatures, (2) becomes the following optimization problem.

min

𝑊,𝐻

𝑚∑
𝑖=1

𝑛∑
𝑗=1

𝐶𝑖 𝑗 ℓ (𝑌𝑖 𝑗 , 𝑌𝑖 𝑗) +
𝜆

2

(∥𝑊 ∥2
F
+ ∥𝐻 ∥2

F
). (4)

It has been shown that the non-subsampled setting of considering all unobserved pairs gives a

better model than the subsampled setting [32]. However, a difficulty to solve (4) is that the loss

term involves O(𝑚𝑛) values, which are prohibitive for most large-scale applications. Recently,

some training algorithms have been proposed [1, 6, 12, 32, 33] to efficiently solve (4) without any

O(𝑚𝑛) cost. With the success of the non-subsampled approach, in this work we focus on (4) and

its extensions. Thus in our description we refer to (4) as the one-class MF (OCMF) problem.

Instead of using the point-wise loss, another popular approach called BPR (Bayesian personalized

ranking) [30] considers a pair-wise ranking loss. It assumes that for each user 𝑖 , all observed pairs

(𝑖, 𝑗) ∈ Ω+ should be ranked higher than other unobserved pairs. With a logistic ranking loss,

BPR-MF solves the following optimization problem.

min

𝑊,𝐻

∑
(𝑖, 𝑗1) ∈Ω+,(𝑖, 𝑗2)∉Ω+

log(1 + 𝑒−(𝑌𝑖 𝑗1−𝑌𝑖 𝑗2)) + 𝜆
2

(∥𝑊 ∥2
F
+ ∥𝐻 ∥2

F
). (5)

Because the number of (𝑖, 𝑗) ∉ Ω+ is huge, BPR-MF considers stochastic gradient (SG) methods for

optimizing (5). At each SG step, an observed pair (𝑖, 𝑗1) ∈ Ω+ and an unobserved pair (𝑖, 𝑗2) ∉ Ω+

are sampled for updating 𝒘𝑖 , 𝒉 𝑗1 and 𝒉 𝑗2 . As |Ω+ | ≪ 𝑚𝑛, in the optimization process with a

2

limited number of epochs, in general only a subset of unobserved pairs can be touched. From

this perspective, both the subsampled setting in (2) and the BPR approach can be considered as

subsampled approaches but with different loss functions. Experiments in [32] indicate that BPR is

also inferior to the non-subsampled setting in (4).

1.2 One-class Models Incorporating Side Information
Although the MF-based approaches discussed above have been useful techniques for recommender

systems with implicit feedbacks, there are two main drawbacks for real-world applications. First,

MF only learns the latent vectors of the users in Ω+. For new users, MF is not applicable to provide

meaningful recommendations (i.e., a cold-start problem for recommender systems [9]). Second,

context information such as user or item features, if available, may improve the model predictability,

but MF can not take them into consideration.

To address these issues, OCMF with side information (OCMFSI) has been proposed in [1, 33].

Assume that 𝑌 is now a matrix of𝑚 contexts and 𝑛 items with the observed set Ω+. Each context 𝑖

is associated with a feature vector 𝒖𝑖 ∈ R𝐷𝑢 including user and other information (e.g., weather,

time) and 𝒗 𝑗 ∈ R𝐷𝑣 is a feature vector of the item 𝑗 . OCMFSI lets the latent matrices be

𝑊 ∈ R𝐷𝑢×𝑘 and 𝐻 ∈ R𝐷𝑣×𝑘 ,
and considers

𝑌𝑖 𝑗 ≈ 𝑌𝑖 𝑗 = (𝑊𝑇 𝒖𝑖)𝑇 (𝐻𝑇𝒗 𝑗),∀(𝑖, 𝑗) ∈ Ω+. (6)

The idea of (6) is to follow the non-subsampled approach in (4) but treat𝑊𝑇 𝒖𝑖 and 𝐻𝑇𝒗 𝑗 rather
than 𝒘𝑖 and 𝒉 𝑗 as the new latent vectors. We can further consider (6) from a viewpoint of data

classification and regression. Let

𝑌𝑖 𝑗 as a label and 𝒙
𝑖, 𝑗 =

[
𝒖𝑖

𝒗 𝑗

]
as a feature vector. (7)

Then for any test data 𝒙 = [𝒖𝒗], the output function is

𝑦 (𝒙) = (𝑊𝑇 𝒖)𝑇 (𝐻𝑇𝒗) =
𝐷𝑢∑
𝑗1=1

𝐷𝑢+𝐷𝑣∑
𝑗2=𝐷𝑢+1

(𝒘 𝑗1
𝑇𝒉 𝑗2−𝐷𝑢)𝑥 𝑗1𝑥 𝑗2 . (8)

Interestingly, a recent work [1] has noticed that this function is a simplification of a general

classification and regression model called FactorizationMachines (FM) [28], which has the following

output function.
1

𝑦FM (𝒙) =
𝐷𝑢+𝐷𝑣∑
𝑗1=1

𝐷𝑢+𝐷𝑣∑
𝑗2=𝑗1+1

(𝒘 𝑗1
𝑇𝒘 𝑗2)𝑥 𝑗1𝑥 𝑗2 , (9)

where 𝒘 𝑗 ,∀𝑗 are the latent vectors. If we split the latent vectors to two groups respectively of

contexts and items, (9) can be expanded as

𝐷𝑢∑
𝑗1=1

𝐷𝑢∑
𝑗2=𝑗1+1

(· · ·) +
𝐷𝑢∑
𝑗1=1

𝐷𝑢+𝐷𝑣∑
𝑗2=𝐷𝑢+1

(· · ·) +
𝐷𝑢+𝐷𝑣∑
𝑗1=𝐷𝑢+1

𝐷𝑢+𝐷𝑣∑
𝑗2=𝑗1+1

(· · ·). (10)

We can see that there exists two kinds of feature conjunctions in (10). The first kind includes those

in the first and the third summations, which are respectively self-conjunctions between context

features and between item features. The second kind includes those in the second summations, which

are cross-conjunctions across context and item features. Clearly, if we drop the self-conjunctions,

then (9) is reduced to (8). Following the above connection, Bayer et al. [1] propose a generic

1
We omit the linear and bias terms of FM in this paper

3

Table 1. The connections among various one-class models for recommender systems with implicit feedbacks,
where OCMF, OCMFSI and OCFM are special cases of the last one, OCFFM.

Approach Model

Side Self Field

information conjunction information

Subsampled

BPR-FM ✓ ✓ ✗
BPR-FFM ✓ ✓ ✓
BPR-DeepFM ✓ ✓ ✗

Non-subsampled

OCMF [15] ✗ ✗ ✗
OCMFSI [1, 33] ✓ ✗ ✗
OCFM [1] ✓ ✓ ✗
OCFFM (this paper) ✓ ✓ ✓

framework so that various classification/regression methods (e.g., FM and tensor factorization)

can be extended to one-class scenarios. It has been shown in [1] that with side information, the

performance of OCMFSI and one-class FM (OCFM) is significantly improved upon OCMF. The

techniques developed in [1] to solve optimization problems are coordinate-descent (CD) methods

that iteratively update variables corresponding to one latent dimension.

1.3 Motivation and Goal of This Work
Recently, for applications with highly sparse feature (e.g., computational advertising) several

classification/regression methods (e.g., filed-aware factorization machine (FFM) [16], DeepFM [11],

and deep interest network (DIN) [38]) superior to FM have been proposed. The superiority of

these advanced models over FM motivates us to investigate if they can be extended to one-class

scenario so that they are better than existing approaches such as OCMFSI and OCFM for PU-

learning. Currently, the only optimization method that has been used for these advanced models

is stochastic gradient (SG). A straightforward way to extend them to the one-class scenario is to

follow approaches applying the subsampled setting. By taking FM, FFM, and DeepFM as examples, a

detailed discussion of extending BPR-MF to BPR-FM, BPR-FFM, and BPR-DeepFM is given in Section

5. We will include them in our empirical comparison. However, for the non-subsampled approach

shown the superiority over subsampled-based approaches, the task turns out to be challenging. For

example, [32, 33] has pointed out issues in applying stochastic gradient for handling the O(𝑚𝑛)
instances in OCMF and OCMFSI. Because these advanced models are even more complicated,

stochastic gradient is likely not practically viable.

Among these advanced models, FFM extends FM to consider “field” information, so the output

function of FFM is

𝑦 (𝒙) =
𝐷∑
𝑗1=1

𝐷∑
𝑗2=𝑗1+1

𝒘 𝑗1,𝑓𝑗
2

𝑇𝒘 𝑗2,𝑓𝑗
1

𝑥 𝑗1𝑥 𝑗2 , (11)

where 𝐷 is the number of features, 𝑓𝑗1 and 𝑓𝑗2 are the fields of 𝑥 𝑗1 and 𝑥 𝑗2 , respectively,𝒘 𝑗1,𝑓𝑗
2

∈ R𝑘
is a 𝑘-dimensional latent vector of the feature 𝑗1, which learns the latent effect with the interacted

features that belong to the field 𝑓𝑗2 , and 𝑘 is a pre-specified value. From (9) and (11), the close

relation between FFM and FM inspires us to investigate if we can develop a non-SG optimization

method for FFM by referring to past similar efforts on FM. Then through this new optimization

method, we can efficiently train one-class FFM (OCFFM) under the non-subsampled setting.

For training general FM for classification/regression, many optimization methods have been

proposed. Some of them have been further developed to handle the one-class scenario. For example,

4

Table 2. Main notation. Upper: for settings of classification and regression. Lower: for settings of recommender
systems

𝐿, 𝐷, 𝐹, 𝑘 numbers of instances, features, fields, latent factors

𝒙, 𝒙 𝑓1 , 𝑦 feature vector, feature vector of field 𝑓1 and label

𝐷 𝑓1 numbers of features belonging to field 𝑓1

𝑊
𝑓2

𝑓1
embedding matrix of field 𝑓1 encoding field 𝑓2

𝐻
𝑓1

𝑓2
embedding matrix of field 𝑓2 encoding field 𝑓1

𝑌 rating matrix

Ω+ set of observed positive entries

Ω+𝑖 set of user (context) 𝑖’s observed positive entries

𝑚,𝑛 numbers of contexts and items

𝐹𝑢, 𝐹𝑣 number of fields of contexts and items

𝒖, 𝒗 feature vector of a context and an item

𝐷𝑢, 𝐷𝑣 numbers of features belonging to contexts and items

CD has been a common optimization method for FM [3], and [1] investigates how to alleviate the

O(𝑚𝑛) cost in the case of OCFM. To choose the method to work on for OCFFM, we discuss existing

optimization methods for FM in Section 2, and investigate their advantages and disadvantages.

In the end we decide to consider the optimization approach in [8], which follows [3] to use a

multi-block convex reformulation of FM.

The method in [8] is a block CD approach. Our main algorithmic developments are in Sections 3

and 4:

• While the eventual goal is to train one-class FFM, a byproduct in Section 3 is that we must

develop a block CD algorithm for general FFM first. We believe that this is the first opimization

method other than stochastic gradient developed for FFM.

• For one-class scenarios, as in the situation of other one-class models, if an optimization alogrithm

is directly applied, a prohibitive O(𝑚𝑛) cost occurs. We have successfully removed this cost in

Section 4

In Section 5, we review related works and several related models in the literature, where a summary

of their relationship is shown in Table 1. In section 6, based on extensive experiments of comparing

one-class models on some large-scale data sets, we show OCFFM performs better than other existing

models. Thus it is a novel and useful models for recommender systems with implicit feedbacks.

Finally, conclusions and future directions are in Section 7. Table 2 gives main notation in this paper.

2 FIELD-AWARE FACTORIZATION MACHINES AND THEIR OPTIMIZATION
In this section, we review FFM and discuss options for solving its optimization problem.

2.1 A Review of FFM
Both FM and FFM aim to learn coefficients of feature conjunctions. As indicated in Section 1, FFM

[16] extends FM by considering the field information. Specifically, the feature vector 𝒙 is considered

as a concatenation of 𝐹 sub-vectors

𝒙 =


𝒙1

...

𝒙𝐹

 ,
5

where 𝒙 𝑓 ∈ R𝐷𝑓 includes 𝐷 𝑓 features which belong to the field 𝑓 . Therefore, (11) can be also

written as

𝑦 (𝒙) =
𝐹∑
𝑓1=1

𝐹∑
𝑓2=𝑓1

(𝑊 𝑓2

𝑓1

𝑇
𝒙 𝑓1)𝑇 (𝑊

𝑓1

𝑓2

𝑇
𝒙 𝑓2) −

𝐹∑
𝑓 =1

𝐷𝑓∑
𝑗=1

𝒘𝑇
𝑗,𝑓
𝒘 𝑗,𝑓 𝑥

2

𝑗 , (12)

where

𝑊
𝑓2

𝑓1
= [𝒘1,𝑓2 , · · · ,𝒘𝐷𝑓

1
,𝑓2]𝑇 ∈ R𝐷𝑓1×𝑘 (13)

is the embedding matrix of the features in field 𝑓1, encoding their interactions to the features in

field 𝑓2. To encode all interactions among 𝐹 fields, there are overall 𝐹 2
blocks of parameters. Note

that by setting 𝐹 = 1, we can ignore the field information, and FFM is essentially reduced to FM.

Assume (𝑦𝑙 , 𝒙𝑙), 𝑙 = 1, ..., 𝐿 are the training set, where 𝑦𝑙 is the label or target value, and 𝒙𝑙 is
a feature vector. The parameters of FFM are determined by solving the following optimization

problem,

min

𝑊
𝑓
2

𝑓
1

,∀𝑓1,𝑓2

𝜆

2

𝐹∑
𝑓1=1

𝐹∑
𝑓2=1

∥𝑊 𝑓2

𝑓1
∥2
F
+

𝐿∑
𝑙=1

𝐶𝑙 ℓ (𝑦𝑙 , 𝑦𝑙), (14)

where

𝑦𝑙 = 𝑦 (𝒙𝑙), (15)

𝜆 is the regularization parameter, 𝑪 ∈ R𝐿 is the cost parameter, and ℓ (𝑦,𝑦) is a convex loss

function in 𝑦 to ensure that 𝑦 can be used to predict or approximate 𝑦. For practical regression and

classification, the squared loss

ℓ (𝑦,𝑦) = 1

2

(𝑦 − 𝑦)2 (16)

and the logistic loss

ℓ (𝑦,𝑦) = log(1 + 𝑒−𝑦𝑦̂) (17)

are commonly used. To solve the optimization problem, Juan et al. [16] propose an algorithm based

on Stochastic Gradient (SG) methods. At each SG step, an instance is randomly selected for update

with a cost of O(nnz(𝒙𝑙)2𝑘), where nnz(𝒙𝑙) is the number of non-zeros in 𝒙𝑙 . For SG usually an

epoch refers to 𝐿 updates, so the cost of per epoch is

O(nnz(𝒙)2𝐿𝑘), (18)

where O(nnz(𝒙)) is the average number of non-zeros in all training instances 𝒙1, · · · , 𝒙𝐿 .
Different from FM where each feature has only one latent vector to learn the latent effect with

any other features, by considering the filed information, in FFM, each feature has several latent

vectors for other features belonging to different fields. It has been reported [16] that this design

can greatly boost the performance for data sets with highly sparse features such as identity and

categorical features widely used in in recommender systems.

2.2 Issues for One-class Extension of FFM
If we follow (7) to treat OCFFM as a special case of FFM, the instance index 𝑙 in Section 2.1 is

changed to (𝑖, 𝑗) and the following optimization problem can be considered.

min

𝑊
𝑓
2

𝑓
1

,∀𝑓1,𝑓2

𝜆

2

𝐹∑
𝑓1=1

𝐹∑
𝑓2=1

∥𝑊 𝑓2

𝑓1
∥2
F
+

𝑚∑
𝑖=1

𝑛∑
𝑗=1

𝐶𝑖 𝑗 ℓ (𝑌𝑖 𝑗 , 𝑌𝑖 𝑗), (19)

where 𝑌𝑖 𝑗 is the label,

𝑌𝑖 𝑗 = 𝑦 (𝒙𝑖, 𝑗), and 𝒙𝑖, 𝑗 =
[
𝒖𝑖

𝒗 𝑗

]
. (20)

6

Here the output function 𝑦 (·) is the FFM in (11). We follow past works [32, 33] to set 𝐶𝑖 𝑗 as

𝐶𝑖 𝑗 =

{
1 (𝑖, 𝑗) ∈ Ω+,
𝜔 (𝑖, 𝑗) ∉ Ω+.

(21)

By the above setting, we transform a recommendation problem to a regression or classification

problem of𝑚𝑛 training instances.

From (18), the cost of one epoch in solving (19) by SG is O(nnz(𝒙)2𝑚𝑛𝑘). Because𝑚𝑛 is huge,

the cost per SG epoch is extremely high. The same issue has occurred in training OCMF by SG

[32], where they made efforts to make SG practical but failed. We think the same situation still

applies here. Therefore, designing some new algorithms for FFM is a essential precondition to make

OCFFM a feasible approach for recommender systems.

2.3 Existing Optimization Methods for Training FM
To develop methods other than SG for FFM, we review techniques that have been considered for

FM because as mentioned in Section 2.1, FM is a special case of FFM by setting 𝐹 = 1. In particular,

we check the following two efficient non-SG algorithms for learning FM, coordinate decent (CD)

algorithm [3, 29] and block CD algorithm [8].

For the CD algorithm, at each step variables corresponding to one latent dimension are updated by

solving an associated subproblem while other variables are fixed. In one cycle all latent dimensions

are considered and the algorithm runs through cycles until some stopping condition is met. On

the other hand, the main idea of the block CD algorithm for FM is to slightly modify the output

function from (9) to

𝑦FM (𝒙) = (𝑊𝑇𝒙)𝑇 (𝐻𝑇𝒙), (22)

where 𝐻 ∈ R𝐷×𝑘 is introduced such that (22) is a multi-block convex function [3]. Then some

efficient algorithms alternatively minimizing over𝑊 and 𝐻 can be applied for training FM. That is,

for the two blocks𝑊 and 𝐻 , if one is considered as the variable while the other is fixed, then (22)

is linear and the optimization problem is convex. Some dtailed comparisons between CD and block

CD for FM have been given in [8]. They show that block CD possesses the following advantages.

• The sub-problem of the CD approach involves only a vector variable associated with a latent

dimension, while the sub-problem of block CD involves about half of all the variables stored as a

matrix. Thus in solving the sub-problem of block CD, it is easier to apply matrix-based operations.

For example, [8] considers a truncated Newton method to solve each sub-problem. Then not only

is optimized implementations for matrix operations (e.g., optimized BLAS such as Intel® Math

Kernel Library) can be applied, but also the parallelization is easier.

• For some loss functions such as the logistic loss defined in (17), CD suffers from a relatively large

number of exponential/logarithmic operations. In this case, CD is not competitive because each

exponential/logarithmic operation costs much more than a basic operation. This issue has been

well studied in [8, 35].

From these past works, we can see that both CD and block CD algorithms may be extended into

solving FFM. However, in consideration of CD’s limitations discussed above, instead of investigating

CD to solve (19), our strategy here is to follow [8] to slightly modify the FFM problem so that it

may be easier to create effective optimization methods based on block CD.

3 BLOCK CD ALGORITHMS FOR LEARNING FFM
We investigate if FFM can be slightly modified so that the optimization problem becomes multi-block

convex. We then develop an efficient optimization method for training FFM.

7

Algorithm 1 Solving the FFM problem (25) via a block coordinate descent method.

1: Given initial𝑊
𝑓2

𝑓1
, 𝐻

𝑓1

𝑓2
,∀1 ≤ 𝑓1 ≤ 𝑓2 ≤ 𝐹 .

2: while stopping condition is not satisfied do
3: for 𝑓1← {1 · · · 𝐹 } do
4: for 𝑓2← {𝑓1 · · · 𝐹 } do
5: Solve (25) by fixing all blocks except𝑊

𝑓2

𝑓1

6: Solve (25) by fixing all blocks except 𝐻
𝑓1

𝑓2

7: end for
8: end for
9: end while

3.1 Multi-block Convex Reformulation of FFM
Inspired by the idea of [8], we investigate how FFM can be modified to a multi-block convex form.

Interestingly, if 𝑓1 ≠ 𝑓2, then each

(𝑊 𝑓2

𝑓1

𝑇
𝒙 𝑓1)𝑇 (𝑊

𝑓1

𝑓2

𝑇
𝒙 𝑓2) (23)

in (12) is already in the same form in (22). Thus all we need is to modify the term of 𝑓1 = 𝑓2 by

introducing a new block. Let

𝐻
𝑓1

𝑓2
=

{
𝑊

𝑓1

𝑓2
𝑓2 > 𝑓1,

[𝒉1,𝑓1 , · · · ,𝒉𝐷𝑓
1
,𝑓1]𝑇 𝑓1 = 𝑓2,

where [𝒉1,𝑓1 , · · · ,𝒉𝐷𝑓
1
,𝑓1]𝑇 is new. Then

𝑦 (𝒙) =
𝐹∑
𝑓1=1

𝐹∑
𝑓2=𝑓1

(𝑊 𝑓2

𝑓1

𝑇
𝒙 𝑓1)𝑇 (𝐻

𝑓1

𝑓2

𝑇
𝒙 𝑓2)

=

𝐹∑
𝑓1=1

𝐹∑
𝑓2=𝑓1

𝒑 𝑓1,𝑓2
𝑇 𝒒𝑓2,𝑓1 ,

(24)

where

𝒑 𝑓1,𝑓2 =𝑊
𝑓2

𝑓1

𝑇
𝒙 𝑓1 and 𝒒𝑓2,𝑓1 = 𝐻

𝑓1

𝑓2

𝑇
𝒙 𝑓2 .

The optimization problem over all blocks is

min

𝑊
𝑓
2

𝑓
1

,𝐻
𝑓
1

𝑓
2

,∀𝑓1≤𝑓2

𝜆

2

𝐹∑
𝑓1=1

𝐹∑
𝑓2=𝑓1

(∥𝑊 𝑓2

𝑓1
∥2
F
+ ∥𝐻 𝑓1

𝑓2
∥2
F
) +

𝐿∑
𝑙=1

𝐶𝑙 ℓ (𝑦𝑙 , 𝑦𝑙), (25)

which is multi-block convex. The total number of blocks is only slightly increased from 𝐹 2
to 𝐹 2 + 𝐹 .

3.2 Block CD Method for FFM with the Squared Loss
With the reformulation, (25) becomes a multi-block convex optimization problem and can be solved

by block CD methods. We obtain (𝐹 + 1)𝐹 convex sub-problems by sequentially selecting one

block and fixing the others. Then (25) can be solved by cyclically minimizing sub-problems. We

summarize the procedure in Algorithm 1. For simplicity, we assume that the squared loss is used

though extensions to other losses are possible.

8

Next we discuss how to solve each sub-problem. The objective function of the sub-problem is

now convex quadratic because of the squared loss. We analyze the quadratic function and show

that a linear system must be solved. If𝑊
𝑓2

𝑓1
is the block to be updated and 𝑆 is the imposed change,

then the new value is

𝑊
𝑓2

𝑓1
+ 𝑆 ∈ R𝐷𝑓1×𝑘 . (26)

The output value 𝑦𝑙 is changed to

𝑦𝑙 + (𝑆𝑇𝒙𝑙𝑓1)
𝑇 𝒒𝑙

𝑓2,𝑓1
= 𝑦𝑙 + 𝒙𝑙𝑓1

𝑇
𝑆𝒒𝑙

𝑓2,𝑓1
. (27)

From (26)-(27), the objective function of the corresponding sub-problem can be written as

𝜆

2

∥𝑊 𝑓2

𝑓1
+ 𝑆 ∥2

F
+ 1

2

𝐿∑
𝑙=1

𝐶𝑙
(
𝑦𝑙 + 𝒙𝑙𝑓1

𝑇
𝑆𝒒𝑙

𝑓2,𝑓1
− 𝑦𝑙

)
2

. (28)

Therefore, the sub-problem is a quadratic minimization over a matrix variable 𝑆 . For easy analysis,

we rewrite (28) to a vector form in (31) by defining

𝒔̃ = vec(𝑆), 𝒘̃ = vec(𝑊 𝑓2

𝑓1
), 𝒙̃𝑙 = 𝒒𝑙

𝑓2,𝑓1
⊗ 𝒙𝑙

𝑓1
, (29)

and

𝒚̃ = [𝑦1 − 𝑦1, · · · , 𝑦𝐿 − 𝑦𝐿]𝑇 ∈ R𝐿, (30)

where vec(·) stacks all columns of a matrix to a vector and ⊗ is the Kronecker product.

(28) =
𝜆

2

∥𝒘̃ + 𝒔̃∥2 + 1

2

𝐿∑
𝑙=1

𝐶𝑙
(
𝑦𝑙 + 𝒔̃𝑇 𝒙̃𝑙

)
2

. (31)

Note that we use

𝒗𝑇
1
𝑀𝒗2 = vec(𝑀)𝑇 (𝒗2 ⊗ 𝒗1) (32)

to have

𝒔̃𝑇 𝒙̃𝑙 = 𝒙𝑙
𝑓1

𝑇𝑆𝒒𝑙
𝑓2,𝑓1

.

Now (31) is a simple quadratic function of 𝒔̃. Taking the gradient (i.e., the first derivative) to zero

leads to the following linear system

𝜆(𝒘̃ + 𝒔̃) +
𝐿∑
𝑙=1

𝐶𝑙 (𝑦𝑙 + 𝒔̃𝑇 𝒙̃𝑙)𝒙̃𝑙 = 0.

We can rewrite it in a matrix-based form by defining

𝑋̃ =
[
𝒙̃1, · · · , 𝒙̃𝐿

]𝑇 ∈ R𝐿×𝐷𝑓1𝑘 and 𝐶 =


𝐶1

. . .

𝐶𝐿


as a diagonal matrix.

(𝜆𝐼 + 𝑋̃𝑇𝐶𝑋̃)𝒔̃ = −(𝑋̃𝑇𝐶𝒚̃ + 𝜆𝒘̃), (33)

where 𝐼 is identity matrix.

Up to now we have shown that solving a sub-problem is equivalent to simply solving a linear

system. However, for large-scale applications, not only is the matrix in (33) too large to be stored

in the computer memory, but also the matrix inversion is computationally expensive. Following

past works (e.g., [8, 21]), by taking the special structure of the linear system (33) into account, the

conjugate gradient (CG) method can be applied to solve the linear system without explicitly storing

𝑋̃𝑇𝐶𝑋̃ . CG [13] is one of the most used iterative methods for solving a linear system. The main

9

Algorithm 2 Conjugate gradient procedure for approximately solving the sub-problem of𝑊
𝑓2

𝑓1
.

Note that ⟨·, ·⟩F is the Frobenius inner product between two matrices.

1: Given 𝜉 ≤ 1, 𝑋𝑓1 , 𝐶 , 𝒚̃, 𝑄
𝑓1

𝑓2
, 𝜆, and current𝑊

𝑓2

𝑓1
.

2: 𝐺 ← 𝑋𝑇
𝑓1

diag(𝐶𝒚̃)𝑄 𝑓1

𝑓2
+ 𝜆𝑊 𝑓2

𝑓1

3: Let 𝑅 ← −𝐺 , 𝑉 ← 𝑅, 𝑆 ← 0𝐷𝑓
1
×𝑘 and 𝛾 ← ∥𝑅∥2

F
.

4: while True do
5: if ∥𝑅∥F ≤ 𝜉 ∥𝐺 ∥F then
6: break
7: end if
8: 𝒛 ← ((𝑋𝑓1𝑉) ⊙ 𝑄

𝑓1

𝑓2
)1𝑘×1

9: 𝑍 ← 𝑋𝑇
𝑓1

diag(𝐶𝒛)𝑄 𝑓1

𝑓2
+ 𝜆𝑉

10: 𝛼 ← 𝛾/⟨𝑉 ,𝑍 ⟩F
11: 𝑆 ← 𝑆 + 𝛼𝑉
12: 𝑅 ← 𝑅 − 𝛼𝑍
13: 𝛾new ← ∥𝑅∥2

F

14: 𝛽 ← 𝛾new/𝛾
15: 𝑉 ← 𝑅 + 𝛽𝑉
16: 𝛾 ← 𝛾new

17: end while
18: 𝑊

𝑓2

𝑓1
←𝑊

𝑓2

𝑓1
+ 𝑆

operation is a sequence of products between the matrix of the linear system and a vector 𝒗̃, where
𝒗̃ is the variable used in the CG procedure. By the following computation sequence,

(𝜆𝐼 + 𝑋̃𝑇𝐶𝑋̃)𝒗̃ = 𝜆𝒗̃ + 𝑋̃𝑇
(
𝐶 (𝑋̃ 𝒗̃)

)
, (34)

the explicit storing of the matrix 𝑋̃𝑇𝐶𝑋̃ can be avoided.

3.3 Solving the Linear System (33) by Matrix Operations
In Section 3.2, we derive the sub-problems (31) so that the variable is a vector 𝒔̃. Then we can

easily get the gradient (i.e., the first derivative) with respect to 𝒔̃ for obtaining the linear system
(33). However, for efficient implementations, we should not directly consider the matrix 𝑋̃ , which

is a large matrix coming from 𝒙̃𝑙 defined in (29). In fact 𝑋̃ never needs to be formed. A similar

situation has occurred in [8] for training FM. Here we give a general description so that not only is

the procedure in [8] covered, but also we can use it for the development in one-class scenarios in

Section 4. The main result is in the following theorem.

Theorem 3.1. Consider
𝒙𝑙 ∈ R𝐷 , 𝒒𝑙 ∈ R𝑘 , 𝑙 = 1, · · · , 𝐿,

and
𝑋̃ =

[
𝒒1 ⊗ 𝒙1, · · · , 𝒒𝐿 ⊗ 𝒙𝐿

]𝑇 ∈ R𝐿×𝐷𝑘 .
Then for any 𝒚̃ ∈ R𝐿 and any diagonal matrix 𝐶 ∈ R𝐿×𝐿 , we have

𝑋̃𝑇𝐶𝒚̃ = vec(𝑋𝑇 diag(𝐶𝒚̃)𝑄) = vec(
𝐿∑
𝑙=1

𝒙𝑙𝐶𝑙𝑦𝑙𝒒
𝑙𝑇), (35)

10

where
𝑋 =

[
𝒙1, · · · , 𝒙𝐿

]𝑇 ∈ R𝐿×𝐷 , 𝑄 =
[
𝒒1, · · · , 𝒒𝐿

]𝑇 ∈ R𝐿×𝑘 ,
and diag(𝐶𝒚̃) is a diagonal matrix with elements of the vector 𝐶𝒚̃ on the diagonal.
Further, for any matrix 𝑉 ∈ 𝑅𝐷×𝑘 ,

𝑋̃𝑇𝐶𝑋̃ vec(𝑉) = vec(𝑋𝑇 diag(𝐶𝒛)𝑄), (36)

where
𝒛 = ((𝑋𝑉) ⊙ 𝑄)1𝑘×1 with 𝑧𝑙 = 𝒙𝑙

𝑇
𝑉 𝒒𝑙 , 𝑙 = 1, · · · , 𝐿, (37)

the ⊙ symbol is the Hadamard (i.e., element-wise) product between two matrices, and 1𝑘×1 is the vector
of ones.

The proof is in Section A of supplementary materials. From the definition of 𝑋̃ , 𝑋 , and 𝑄 in

Theorem 3.1, clearly if 𝑋̃ is formed, the storage is 𝑘-fold of 𝑋 and 𝑄 . Thus our results in Theorem

3.1 effectively reduces the memory consumption.

Now we are ready to present in Algorithm 2 the CG procedure to solve the linear system (33).

The algorithm is the same as the CG procedure in any textbook (e.g., [10]), but every operation is

matrix rather than vector-based. In particular, by defining

𝑋𝑓1 =

[
𝒙1

𝑓1
, · · · , 𝒙𝐿

𝑓1

]𝑇
and 𝑄

𝑓1

𝑓2
=

[
𝒒1

𝑓2,𝑓1
, · · · , 𝒒𝐿

𝑓2,𝑓1

]𝑇
, (38)

we can apply Theorem 3.1 to obtain the right-hand side of the linear system at line 2 and conduct

each matrix-vector product in line 8-9 of Algorithm 2.

For the stopping condition of CG iterations, a common setting is to check if the error is relatively

smaller than the norm of the right-hand side of the linear system in (33).

∥(𝑋̃𝑇𝐶𝒚̃ + 𝜆𝒘̃) + (𝜆𝐼 + 𝑋̃𝑇𝐶𝑋̃)𝒔̃∥ ≤ 𝜉 ∥𝑋̃𝑇𝐶𝒚̃ + 𝜆𝒘̃ ∥, (39)

where 0 < 𝜉 ≤ 1 is a small stopping tolerance. For Algorithm 3 that conducts the CG procedure in

a form of matrix operations, we also tranform (39) to a matrix form. For example, from (35) and

(38), right-hand side in (39) is the same as

∥𝑋𝑇
𝑓1

diag(𝐶𝒚̃)𝑄 𝑓2

𝑓1
+ 𝜆𝑊 𝑓2

𝑓1
∥F;

see line 5-7 in Algorithm 2.

4 BLOCK CD METHOD FOR OCFFM
Because OCFFM is a special case of FFM, block CD can be directly applied. That is, all sub-problems

in Algorithm 1 can be formed in (31) and solved by Algorithm 2. However, the total number of

instances in the one-class scenario is𝑚𝑛, which is tremendously large. The reason is that from (20)

each instance 𝒙𝑙 in FFM is now indexed by (𝑖, 𝑗):

𝒙𝑙 → 𝒙𝑖, 𝑗 .

From and (37) the cost of the matrix products in (35) and (36) are prohibitively proportional to

𝑚𝑛. Subsequently we show that properties of one-class problems can be used to avoid the O(𝑚𝑛)
complexity.

To begin, we check the right-hand side of the linear system (33). From (29), (30) and (35), by

rewriting index 𝑙 to 𝑖, 𝑗 , we have

𝑦𝑙 → 𝑌𝑖 𝑗 − 𝑌𝑖 𝑗 , 𝐶𝑙 → 𝐶𝑖 𝑗

11

and what we must calculate now is

𝑚∑
𝑖=1

𝑛∑
𝑗=1

𝒙𝑖, 𝑗
𝑓1
𝐶𝑖 𝑗 (𝑌𝑖 𝑗 − 𝑌𝑖 𝑗)𝒒𝑖, 𝑗𝑓2,𝑓1

𝑇
. (40)

To avoid the O(𝑚𝑛) summations, the main idea is that in (40), some values indexed by 𝑖, 𝑗 may

depend only on 𝑖 or 𝑗 . Suppose the features of contexts and items can be respectively grouped into

𝐹𝑢 , 𝐹𝑣 fields. Accordingly, we have

𝒖𝑖 =


𝒖𝑖

1

...

𝒖𝑖
𝐹𝑢

 and 𝒗 𝑗 =


𝒗 𝑗
𝐹𝑢+1
...

𝒗 𝑗
𝐹𝑢+𝐹𝑣

 .
From (7), 𝒙𝑖, 𝑗

𝑓
can be represented by considering the range of the field 𝑓 as:

𝒙𝑖, 𝑗
𝑓

=

{
𝒖𝑖
𝑓

𝑓 ≤ 𝐹𝑢,
𝒗 𝑗
𝑓

𝑓 > 𝐹𝑢 .
(41)

Now we see for example, if 𝑓 ≤ 𝐹𝑢 , then 𝒙𝑖, 𝑗
𝑓
,∀𝑗 share the same context feature vector 𝒖𝑖

𝑓
. Similarly,

𝒒𝑖, 𝑗
𝑓2,𝑓1

can be just written as 𝒒𝑖
𝑓2,𝑓1

or 𝒒 𝑗
𝑓2,𝑓1

depending on 𝑓2:

𝒒𝑖, 𝑗
𝑓2,𝑓1
→

{
𝒒𝑖
𝑓2,𝑓1

= 𝐻
𝑓1

𝑓2
𝒖𝑖
𝑓2

𝑓2 ≤ 𝐹𝑢,
𝒒 𝑗
𝑓2,𝑓1

= 𝐻
𝑓1

𝑓2
𝒗 𝑗
𝑓2

𝑓2 > 𝐹𝑢 .
(42)

Therefore, the calculation of (40) is separated to the following possible situations of 𝑓1 and 𝑓2:
𝑓1, 𝑓2 ≤ 𝐹𝑢,
𝑓1, 𝑓2 > 𝐹𝑢,

𝑓1 ≤ 𝐹𝑢, 𝑓2 > 𝐹𝑢 .

(43)

The calculation is very complicated, so we leave most details in supplementary materials. Here we

only check the first situation as an illustration.

With (41) and (42), if 1 ≤ 𝑓1, 𝑓2 ≤ 𝐹𝑢 , (40) can be written as

𝑚∑
𝑖=1

(
𝑛∑
𝑗=1

𝐶𝑖 𝑗 (𝑌𝑖 𝑗 − 𝑌𝑖 𝑗))𝒖𝑖𝑓1𝒒
𝑖
𝑓2,𝑓1

𝑇
. (44)

We investigate the summation over 𝑗 in detail. From the definition of 𝑌𝑖 𝑗 and 𝐶𝑖 𝑗 in (3) and (21)

respectively,

𝑛∑
𝑗=1

𝐶𝑖 𝑗 (𝑌𝑖 𝑗 − 𝑌𝑖 𝑗) =
∑
𝑗 ∈Ω+

𝑖

(𝑌𝑖 𝑗 − 1) +
∑
𝑗∉Ω+

𝑖

𝜔 (𝑌𝑖 𝑗 − 𝑟)

=
∑
𝑗 ∈Ω+

𝑖

(𝑌𝑖 𝑗 − 1 − 𝜔 (𝑌𝑖 𝑗 − 𝑟)) + 𝜔
𝑛∑
𝑗=1

(𝑌𝑖 𝑗 − 𝑟)

=
∑
𝑗 ∈Ω+

𝑖

((1 − 𝜔)𝑌𝑖 𝑗 − 1 + 𝜔𝑟) + 𝜔
𝑛∑
𝑗=1

𝑌𝑖 𝑗 − 𝜔𝑛𝑟, (45)

12

where Ω+𝑖 is the set including the observed items of the 𝑖th context. The bottleneck is the O(𝑛) term∑𝑛
𝑗=1
𝑌𝑖 𝑗 because |Ω+𝑖 | ≪ 𝑛. To address this bottleneck we show that each 𝑌𝑖 𝑗 can be decomposed to

terms solely related to 𝑖 or 𝑗 . From (24),

𝑌𝑖 𝑗 =

𝐹∑
𝛼=1

𝐹∑
𝛽=𝛼

𝒑𝑖, 𝑗
𝛼,𝛽

𝑇
𝒒𝑖, 𝑗
𝛽,𝛼
. (46)

Similar to (42) for 𝒒𝑖, 𝑗
𝛽,𝛼

, we also have that 𝒑𝑖, 𝑗
𝛼,𝛽

only depends on either 𝑖 or 𝑗 .

𝒑𝑖, 𝑗
𝛼,𝛽
→


𝒑𝑖
𝛼,𝛽

=𝑊
𝛽
𝛼

𝑇
𝒖𝑖𝛼 𝛼 ≤ 𝐹𝑢,

𝒑 𝑗
𝛼,𝛽

=𝑊
𝛽
𝛼

𝑇
𝒗 𝑗𝛼 𝛼 > 𝐹𝑢 .

(47)

Then we can split the summation in (46) to three parts according to (43).

𝐹∑
𝛼=1

𝐹∑
𝛽=𝛼

𝒑𝑖, 𝑗
𝛼,𝛽

𝑇
𝒒𝑖, 𝑗
𝛽,𝛼

= 𝑎𝑖 + 𝑏 𝑗 +
𝐹𝑢∑
𝛼=1

𝐹∑
𝛽=𝐹𝑢+1

𝒑𝑖
𝛼,𝛽

𝑇
𝒒 𝑗
𝛽,𝛼
, (48)

where

𝑎𝑖 =

𝐹𝑢∑
𝛼=1

𝐹𝑢∑
𝛽=𝛼

𝒑𝑖
𝛼,𝛽

𝑇
𝒒𝑖
𝛽,𝛼

and 𝑏 𝑗 =

𝐹∑
𝛼=𝐹𝑢+1

𝐹∑
𝛽=𝛼

𝒑 𝑗
𝛼,𝛽

𝑇
𝒒 𝑗
𝛽,𝛼
. (49)

Then

𝑛∑
𝑗=1

𝑌𝑖 𝑗 = 𝑛𝑎𝑖 +
𝑛∑
𝑗=1

𝑏 𝑗 + 𝑑𝑖 , (50)

where

𝑑𝑖 =

𝐹𝑢∑
𝛼=1

𝐹∑
𝛽=𝐹𝑢+1

𝒑𝑖
𝛼,𝛽

𝑇 (
𝑛∑
𝑗=1

𝒒 𝑗
𝛽,𝛼
). (51)

A crucial observation is that

𝑛∑
𝑗=1

𝑏 𝑗 and

𝑛∑
𝑗=1

𝒒 𝑗
𝛽,𝛼

are now independent of 𝑖 . Thus if they are pre-calculated, then

∑𝑛
𝑗=1
𝑌𝑖 𝑗 can be obtained in O(1)

cost and therefore the O(𝑚𝑛) number of summations in (44) no longer occurs. Of course how to

obtain and maintain values like 𝑎𝑖 , 𝑏 𝑗 , and 𝒅 is an important issue. See the discussion below and

details in supplementary materials. We now put (50) back to (45). By defining

𝑈𝑓1 =

[
𝒖1

𝑓1
, · · · , 𝒖𝑚

𝑓1

]𝑇
, 𝑄

𝑓1

𝑓2
=

[
𝒒1

𝑓2,𝑓1
, · · · , 𝒒𝑚

𝑓2,𝑓1

]𝑇
, (52)

we can calculate (44) by the following matrix product.

𝑈𝑇
𝑓1

diag(𝒛)𝑄 𝑓1

𝑓2
, (53)

where

𝑧𝑖 =
∑
𝑗 ∈Ω+

𝑖

((1 − 𝜔)𝑌𝑖 𝑗 − 1 + 𝜔𝑟) + 𝜔
(
𝑛𝑎𝑖 +

𝑛∑
𝑗=1

𝑏 𝑗 + 𝑑𝑖 − 𝑛𝑟
)
. (54)

For the matrix-vector products in (36), details are shown in Section B of supplementary materials.

Here we give only the results of the first case (1 ≤ 𝑓1, 𝑓2 ≤ 𝐹𝑢).

𝑋̃𝑇𝐶𝑋̃ vec(𝑉) = vec(𝑈𝑇
𝑓1

diag(𝒛)𝑄 𝑓1

𝑓2
), (55)

13

where

𝒛 = 𝐷

(
(𝑈𝑓1𝑉) ⊙𝑄

𝑓1

𝑓2

)
1𝑘×1, (56)

and 𝐷 ∈ R𝑚×𝑚 is a diagonal matrix with 𝐷𝑖𝑖 = (1 −𝜔) |Ω+𝑖 | +𝜔𝑛. Similar to (53), the calculation no

longer depends on O(𝑚𝑛) summations.

With (53) and (55), we extend the CG procedure in Algorithm 2 for the one-class scenario in

Algorithm 3.

To have a complete block CD procedure, we must address the following implementation issues.

(1) Under the same 𝑓1 and 𝑓2, two sub-problems on variable blocks𝑊
𝑓2

𝑓1
and 𝐻

𝑓1

𝑓2
are solved. The

two sub-problems are in the same form, so Algorithm 3 can be applied on both. So far we have

discussed details when 1 ≤ 𝑓1, 𝑓2 ≤ 𝐹𝑢 . The situation is similar if 𝑓1, 𝑓2 > 𝐹𝑢 , though suitable

input information for each call of Algorithm 3 must be carefully specified.

For the situation of 𝑓1 ≤ 𝐹𝑢, 𝑓2 > 𝐹𝑢 , many details are different, so an algorithm other than

Algorithm 3 must be developed.

(2) We mentioned that in calculating (54), values such as 𝒂, 𝒃 , and 𝒅 are needed. How to efficiently

maintain them is an import issue.

We give details in Section B of supplementary materials and show that the cost to go through all

blocks of parameters is

O
(
(nnz(𝑈𝑓 or 𝑉𝑓) + |Ω+ |)𝑘 + (𝐷 𝑓 +𝑚 + 𝑛)𝑘2

)
× avg. # CG steps per sub-problem × 𝐹 (𝐹 + 1),

(57)

where 𝐷 𝑓 is the average number of context/item features of a field, and nnz(𝑈𝑓) or nnz(𝑉𝑓) is
the average number of non-zeros in the feature matrix corresponding to a field 𝑓 . Note that𝑈𝑓 is

defined in (52), while 𝑉𝑓 is defined in supplementary Section B. As a comparison, for SG, from (18)

and the set of𝑚𝑛 instances, the cost of one epoch is O(nnz(𝒙)2𝑚𝑛𝑘), where nnz(𝒙) is the average
number of non-zeros in all 𝒙𝑖, 𝑗 . While one SG epoch and one cycle of the block CD method are not

exactly comparable, we see the𝑚𝑛 term of SG is prohibitive.

5 A DISCUSSION ON MODELS FOR RECOMMENDER SYSTEMSWITH IMPLICIT
FEEDBACK

In this section, after a brief review on related works, we discuss models that will be included in our

experiments.

As we summarized in Section 1, by differing on whether all unobserved pairs are considered

for the model update, existing works of recommender systems with implicit feedback can be

broadly categorized into two groups respectively considering the subsampled setting (e.g., negatvie

sampling and BPR approaches) and the non-subsampled setting.

For works considering the subsampled setting, many of them have focused on developing different

subsampled schemes. For example, the uniform sampling [24, 30], the static sampling [24, 25],

the adaptive sampling [2, 37] and the dynamic sampling [36]. A recent work [20] improves some

schemes by the importance subsampling technique. Another line of works focuses on distinguishing

non-negative pairs from unobserved ones through auxiliary feedback [27], and collaborative and

social information [22, 37, 39]. While most works only consider MF, some ones propose to leverage

the side information. For example, Cai et al. [4] improve MF by additionally considering each user’s

neighborhood information.

On the other hand, for works considering the non-subsampled setting, the main line is to

incorporate more models into the non-subsampled framework, which can range from simple MF

[6, 12, 23, 32] to context-aware models (e.g., MFSI and FM [1, 5, 33]). In addition to the point-wise

14

Algorithm 3 Conjugate gradient procedure for approximately solving the sub-problem of𝑊
𝑓2

𝑓1
,

where 𝑓1, 𝑓2 ≤ 𝐹𝑢 . The complexity of each major operation is shown at the end of the line.

1: Given input𝑈𝑓1 ,𝑊
𝑓2

𝑓1
, 𝑄

𝑓1

𝑓2
, 𝒅, 𝒂, ¯𝑏 =

∑𝑛
𝑗=1
𝑏 𝑗 , and 𝑌𝑖 𝑗 ,∀(𝑖, 𝑗) ∈ Ω+

2: // Calculate the right-hand side of the linear system

3: for 𝑖 ← {1, · · · ,𝑚} do · · · O(𝑚 + |Ω+ |)
4: 𝑧𝑖 ← 𝜔 (𝑛𝑎𝑖 + ¯𝑏 + 𝑑𝑖 − 𝑛𝑟)
5: 𝑧𝑖 ← 𝑧𝑖 +

∑
𝑗 ∈Ω+

𝑖
((1 − 𝜔)𝑌𝑖 𝑗 − 1 + 𝜔𝑟)

6: end for
7: 𝐺 ← 𝑈𝑇

𝑓1
diag(𝒛)𝑄 𝑓1

𝑓2
+ 𝜆𝑊 · · · O(nnz(𝑈𝑓1)𝑘 + 𝐷 𝑓1𝑘)

8: Let 𝑅 ← −𝐺 , 𝑉 ← 𝑅 and 𝛾 ← ∥𝑅∥2
F

9: while True do
10: if ∥𝑅∥F ≤ 𝜉 ∥𝐺 ∥F then
11: break
12: end if
13: //Compute and store the matrix-vector product to 𝑍

14: 𝒛 =
(
(𝑈𝑓1𝑉) ⊙𝑄

𝑓1

𝑓2

)
1𝑘×1 · · · O(𝑚𝑘 + nnz(𝑈𝑓1)𝑘)

15: for 𝑖 ← {1, · · · ,𝑚} do · · · O(𝑚)
16: 𝑧𝑖 ← 𝑧𝑖 ((1 − 𝜔) |Ω+𝑖 | + 𝜔𝑛)
17: end for
18: 𝑍 ← 𝑈𝑇

𝑓1
diag(𝒛)𝑄 𝑓1

𝑓2
+ 𝜆𝑉 · · · O(nnz(𝑈𝑓1)𝑘)

19: Step 10-16 in Algorithm 2

20: end while

loss applied in most works, a recent work [7] considers a pair-wise ranking loss between observed

pairs and unobserved pairs. For optimization methods for the non-subsampled setting, besides

the alternating-based algorithms applied in this work, some works consider the gradient-based

algorithms (e.g., [5, 6, 18]). However, a study given in [8] shows that for (25) such multi-block

convex problems, cyclically solving each sub-problem by a second-order method can be much more

efficient than the gradient-based algorithms.

For our experiments, we first consider the following models obtained by the non-subsampled

approach. Specifically, to check the effectiveness of the field information, we consider a setting

without such information by using 𝐹𝑢 = 𝐹𝑣 = 1 in OCFFM. From (24), the output function becomes

𝑦 (𝒙) =(𝑊 𝑓𝐶

𝑓𝐶

𝑇𝒙 𝑓𝐶)𝑇 (𝐻
𝑓𝐶

𝑓𝐶

𝑇𝒙 𝑓𝐶) + (𝑊
𝑓𝐼

𝑓𝐶

𝑇𝒙 𝑓𝐶)𝑇 (𝐻
𝑓𝐶

𝑓𝐼

𝑇𝒙 𝑓𝐼)

+ (𝑊 𝑓𝐼

𝑓𝐼

𝑇𝒙 𝑓𝐼)𝑇 (𝐻
𝑓𝐼

𝑓𝐼

𝑇𝒙 𝑓𝐼), (58)

where 𝑓𝐶 and 𝑓𝐼 indicate that all features are split to two fields corresponding to contexts and items.

It is close to but slightly different from the multi-block convex formulation of FM in (22) by [3, 8]:

𝑦FM (𝒙) = 𝒙𝑇𝑊𝐻𝑇𝒙 = [𝒙𝑇
𝑓𝐶
𝒙𝑇
𝑓𝐼
]
[
𝑊𝑓𝐶

𝑊𝑓𝐼

]
[𝐻𝑇

𝑓𝐶
𝐻𝑇
𝑓𝐼
]
[
𝒙 𝑓𝐶
𝒙 𝑓𝐼

]
. (59)

In (59),𝑊𝑓𝐶 is used in both the interaction between 𝒙 𝑓𝐶 and 𝒙 𝑓𝐶 , and the interaction between

𝒙 𝑓𝐶 and 𝒙 𝑓𝐼 . In contrast, in (58),𝑊
𝑓𝐶

𝑓𝐶
and𝑊

𝑓𝐼

𝑓𝐶
are separately considered. In our comparisons, we

consider (58) and denote it as the OCFM model.

15

We mentioned in Section 1 that models like OCMFSI do not include self-conjunction information.

It is important to check the effectiveness of including such information. To begin, a comparison

between (6) and (58) shows that OCFMdiffers fromOCMFSI in that OCFM includes self-conjunctions

of contexts and items. Thus a comparison between them can reveal how useful self-conjunctions

are. Next, because OCFFM has included self-conjunction terms, we remove them from 𝑌𝑖 𝑗 in (46) to

have

𝑌𝑖 𝑗 =

𝐹𝑢∑
𝑓1=1

𝐹∑
𝑓2=𝐹𝑢+1

𝒑𝑖, 𝑗
𝑓1,𝑓2

𝑇 𝒒𝑖, 𝑗
𝑓2,𝑓1

=

𝐹𝑢∑
𝑓1=1

𝐹∑
𝑓2=𝐹𝑢+1

𝒑𝑖
𝑓1,𝑓2

𝑇 𝒒 𝑗
𝑓2,𝑓1

, (60)

where we take the properties (42) and (47) into account. Another interpretation of (60) is that

we add field information to OCMFSI. Therefore, in our experiments we refer to this setting as

OCMFSI+F.

In addition to the above models learnt by the non-subsampled approach, we include several

BPR-based models in our experiments. All of them are obtained through solving problems modified

from (5). First, by respectively considering 𝑦FM (𝒙𝑖, 𝑗) in (59) and 𝑦 (𝒙𝑖, 𝑗) in (24) for computing 𝑌𝑖 𝑗 , we

develop BPR-FM and BPR-FFM. Moreover, as we mentioned in Section 1, besides FFM considering

the field information, some recent works improve FM by introducing techniques from deep learning.

A typical example is DeepFM [11]. Its output function is

𝑦DeepFM (𝒙) = 𝑦FM (𝒙) + 𝑦NN (𝒙), (61)

where 𝑦NN (𝒙) is a neural network which learns non-linear embeddings of features. By considering

𝑦DeepFM (𝒙𝑖, 𝑗) for computing 𝑌𝑖 𝑗 , we develop BPR-DeepFM for the comparison in our experiments.

The connections of these models compared in this work has been summarized in Table 1.

6 EXPERIMENTS
In this section, we first provide the details of the experimental settings. Then, we compare the

OCFFM model with some existing one-class models discussed in Section 5.

6.1 Data Sets
We conduct experiments on the following three large-scale data sets.

• Outbrain2: This set is a binary (clicked or not) classification problem from the “Outbrain Click

Prediction” competition held at Kaggle. We convert it to a one-class set by only extracting the

contexts with positive labels. To save the evaluation time, we select the advertisements which

have been clicked greater than 200 times as the positive entries.

• KDD-20123: This is another advertisement data set from KDD-Cup 2012. To have a one-class set,

we select the advertisements with more than 50 clicks as the positive entries. Because context

information is not pre-defined, we group (User.id, Query.id, Query.depth) as the context of

positive instances.

• KKBOX4
: This is a recommendation set from the “KKBox’s Music Recommendation Challenge.”

The goal is to predict whether a user will like a new song or not. We only take the positive

samples and select the songs with repetitive listening events more than 5 times. Note that we

add a history feature, which contains the recent 50 unique songs repetitivly listened by the user,

as part of the context information.

2
Outbrain Data Set: https://www.kaggle.com/c/outbrain-click-prediction

3
KDD-2012 Data Set: https://www.kaggle.com/c/kddcup2012-track2

4
KKBOX Data Set: https://www.kaggle.com/c/kkbox-music-recommendation-challenge

16

https://www.kaggle.com/c/outbrain-click-prediction
https://www.kaggle.com/c/kddcup2012-track2
https://www.kaggle.com/c/kkbox-music-recommendation-challenge

Table 3. Context and item features considered for each data set. The features used as the identities in OCMF
are bold-faced. All features are categorical and processed with one-hot encoding. The superscript is the field
information assigned to each feature.

Data set Context Item

Outbrain User.id1
, User.platform

1
, User.location

1
, Ad.id3

, Ad.campaign
3
,

Page.id
2
, Page.source

2
, Page.publisher

2
Ad.advertiser

3
, Ad.source

4
,

Ad.publisher
4
, Ad.page

4

KDD-2012 User.id1
, Query.id

1
, Context.depth

1 Ad.id2
, Ad.advertiser

2
,

Ad.page
2
, Ad.keywords

3
,

Ad.title
4
, Ad.description

5

KKBOX User.id1
, User.location

1
, User.gender

1
, Song.id4

, Song.composer
4
,

User.history
2
, Source.screen

3
, Song.artist

4
, Song.lyricist

4
,

Source.tab
3
, Source.type

3
Song.genre

5
, Song.language

6

The feature sets and the corresponding field information of each data set are listed in Table 3.

Because we focus on comparing models, the detailed feature engineering and field assignment are

out of the scope for this paper.

To select proper parameters, we split the whole data set into three independent parts, the training

set (Tr), the validation set (Va) and the test set (Te). We choose the best parameters by training Tr
and validating Va. We then train a new model with the selected parameters on the data set TrVa,
which combines Tr and Va, and report the final score of evaluating Te. For the Outbrain and the

KKBOX data sets, we sort all contexts by time to select Tr, Va, and Te in ratios of 80%, 10%, and

10%, respectively. For KDD-2012, as the time information is implicit, we randomly split contexts by

the same ratios.

6.2 Evaluation Criteria
We consider Precision and nDCG on top-𝐾 ranked items (P@K and nDCG@K) as evaluation criteria.

For an item list 𝒛𝑖 sorted according to predicted values of context 𝑖 , P@K is defined as

P@K ≡ 1

𝐾

∑
𝑗 ∈top𝐾 (𝒛𝑖)

I(𝑗 ∈ (Ω+Te)𝑖) × 100%,

and nDCG@K is defined as

DCG@K ≡
∑

𝑗 ∈top𝐾 (𝒛𝑖)

I(𝑗 ∈ (Ω+Te)𝑖)
log(𝑗 + 1) ,

nDCG@K ≡ DCG@K∑min(𝐾, | (Ω+Te)𝑖 |)
𝑗=1

1

log(𝑗+1)

× 100%,

where (Ω+Te)𝑖 is the observed positive entries of context 𝑖 in Te and I is the indicator function.
For our experiments, we conduct grid searches by training multiple models on Tr with all the

combinations of parameters in Table 5, and choose the combination achieving the best P@5 score

evaluated on Va. We then train a new model with the selected parameters on the data set TrVa,
which combines Tr and Va, and report the final score of evaluating Te. The parameters obtained by

the selection procedure are shown in supplementary Table I.

17

Table 4. Data statistics:𝑚 and 𝑚̂ are the number of contexts in the TrVa and Te, respectively. 𝑛 is the number
of items. 𝐷 is the total number of features in all fields. |Ω+TrVa | and |Ω

+
Te | indicate numbers of observed entries

in training and test sets among𝑚 × 𝑛 (and 𝑚̂ × 𝑛) pairs, respectively. The column 𝜌 is the ratio of cold-start
users in Te.

Data Set 𝑚 𝑚̂ 𝑛 𝐷 |Ω+TrVa | |Ω+Te | 𝜌

Outbrain 13M 1.4M 10,947 24,916 13M 1.4M 90.4%

KDD-2012 3.6M 0.40M 13,151 1.5M 3.8M 0.43M 64.3%

KKBOX 3.1M 0.34M 48,443 133,226 3.1M 0.34M 7.9%

Table 5. Range of parameters used in a grid search procedure: 𝜔 is the cost weight for the negatives, 𝜆 is
the regularization coefficient, 𝜆BPR is the regularization coefficient in the SG’s weight decay fashion for
BPR-based models, 𝑘 is the specified latent dimension, and 𝑇 is the number of iterations to stop the training
procedure.

Parameter Range

𝜆 {1, 4, 16, 64, 256}
𝜆BPR {10

−3, 10
−5, 10

−7}
𝜔 {2−1, 2−2, · · · , 2−11}
𝑘 {16, 32, 64}
𝑇 {1, 2, · · · , 100}

6.3 Considered Models
We consider the following models in our experiments:

• Popular: The most popular items in the training set are recommended to every user without

personalization.

• OCMF: This is the basic model discussed in Sections 1 and 5, where only two identity features

are considered. This model fails to make recommendations on cold-started users, so for these

users top popular items are recommended.

• OCMFSI: The model proposed by [1, 33]. See the discussion in Section 1.

• OCFM: see Section 5.

• BPR-FM: The one-class extension of FM by the BPR approach. see Section 5.

• BPR-FFM: The one-class extension of FFM by the BPR approach. see Section 5.

• BPR-DeepFM: The one-class extension of DeepFM by the BPR approach; see Section 5.

• OCMFSI+F: see Section 5.

• OCFFM: the model proposed in Section 3.

6.4 Comparison on Test Performance
The results evaluated on the test set are shown in Table 6 and Figure 1.

From Table 6, we first observe that Popular is worse than others. The personalized model OCMF,

though not considering context or item features, is generally better than Popular. Note that for

Outbrain and KDD-2012 data sets, from Table 4, the test set includes many new users not seen in

training. OCMF recommends only popular items rather than personalized recommendations for

such cold-start situations. Therefore, if we consider only users that have appeared in the training

set, the performance gap is even bigger. However, KKBOX is an exception because OCMF performs

only similar to Popular. We plan to investigate this set in detail to know why such results occur.

18

Table 6. P@K (%) and nDCG@K (%) by different models. The best model is bold-faced.

Models P@5 P@10 P@20 P@40 n@5 n@10 n@20 n@40

Popular 0.24 0.22 0.20 0.17 0.79 1.09 1.53 2.13

OCMF 0.31 0.27 0.24 0.20 0.98 1.36 1.87 2.53

OCMFSI 3.34 2.44 1.70 1.11 11.2 13.7 16.1 18.2

OCFM 3.39 2.46 1.71 1.11 11.3 13.8 16.2 18.3

BPR-FM 3.25 2.44 1.76 1.19 10.9 13.6 16.3 18.9

BPR-FFM 3.51 2.64 1.86 1.25 11.8 14.6 17.4 20.0

BPR-DeepFM 3.31 2.50 1.78 1.19 11.0 13.7 16.4 18.8

OCMFSI+F 3.84 2.75 1.87 1.20 13.0 15.7 18.2 20.4
OCFFM 3.83 2.75 1.87 1.20 13.0 15.7 18.2 20.4

(a) Outbrain

Models P@5 P@10 P@20 P@40 n@5 n@10 n@20 n@40

Popular 1.48 1.10 0.78 0.54 4.91 6.03 7.14 8.28

OCMF 2.99 2.00 1.29 0.81 10.2 11.7 13.1 14.3

OCMFSI 10.2 5.88 3.24 1.74 37.8 40.1 41.5 42.5

OCFM 10.8 6.06 3.30 1.77 41.3 43.3 44.6 45.5

BPR-FM 4.77 3.67 2.44 1.52 15.1 19.0 21.9 24.2

BPR-FFM 7.17 4.66 2.89 1.72 24.0 27.2 29.9 32.0

BPR-DeepFM 8.22 5.29 3.16 1.79 27.4 31.0 33.5 35.1

OCMFSI+F 12.7 7.01 3.72 1.95 49.3 51.2 52.3 53.0

OCFFM 13.3 7.32 3.88 2.02 50.4 52.4 53.4 54.0
(b) KDD-2012

Models P@5 P@10 P@20 P@40 n@5 n@10 n@20 n@40

Popular 0.15 0.13 0.13 0.12 0.44 0.64 0.94 1.38

OCMF 0.15 0.14 0.13 0.12 0.44 0.64 0.93 1.38

OCMFSI 0.31 0.31 0.31 0.29 0.89 1.40 2.17 3.23

OCFM 0.38 0.38 0.37 0.32 1.10 1.71 2.59 3.68

BPR-FM 0.35 0.35 0.33 0.28 1.03 1.59 2.35 3.29

BPR-FFM 0.34 0.32 0.29 0.26 1.06 1.53 2.20 3.12

BPR-DeepFM 0.41 0.40 0.36 0.30 1.12 1.81 2.61 3.60

OCMFSI+F 0.72 0.62 0.51 0.39 2.26 3.10 4.12 5.21

OCFFM 0.78 0.63 0.52 0.39 2.57 3.34 4.35 5.42
(c) KKBOX

For factorization-based one-class models, we observed that OCMF is inferior to others. An impor-

tant reason is that for new users in the test set, OCMF reduces to be the same as Popular. Further,

for users already appeared in the training set, the side information improves the predictability. An

example is KKBOX, where few users are new.

For models with side information, by comparing OCFMwith BPR-FM, and OCFFMwith BPR-FFM,

we observe that models learnt with the non-subsampled setting can have better performance than

those learnt with the subsampled setting. This finding is similar to [32] where OCMF performs better

than other approaches involving negative subsampling. By comparing OCMFSI with OCMFSI+F,

19

P@5 nDCG@5

Outbrain

-5

0

5

10

15

20

25

30

im
p
ro

v
e
m

e
n
t
(%

)

OCFM

OCMFSI+F

OCFFM

BPR-FM

BPR-FFM

BPR-DeepFM

P@5 nDCG@5

KDD-2012

-60

-40

-20

0

20

40

60

80

100

im
p
ro

v
e
m

e
n
t
(%

)

OCFM

OCMFSI+F

OCFFM

BPR-FM

BPR-FFM

BPR-DeepFM

P@5 nDCG@5

KKBOX

0

50

100

150

200

250

300

im
p
ro

v
e
m

e
n
t
(%

)

OCFM

OCMFSI+F

OCFFM

BPR-FM

BPR-FFM

BPR-DeepFM

Fig. 1. Comparison on different one-class models with side information. Y-axis is the improvement over the
OCMFSI model in percentage.

OCFM with OCFFM, and BPR-FM with BPR-FFM we can find that for most cases, the models

considering the field information are superior. By comparing BPR-DeepFM with BPR-FM, the better

performance of BPR-DeepFM confirms the better modeling ability of DeepFM over FM can be

extended into the one-class scenarios. We observe that OCFFM (or OCMFSI+F) is significantly

better for almost all data sets. This result confirms our conjecture that with the non-subsampled

setting and the field information, OCFFM can be a competitive approach for recommender systems

with implicit feedback. Finally, OCFM and OCFFM are respectively slightly better than OCMFSI

and OCMFSI+F, where the differences come from whether we add self-conjunctions of context (or

item) features. The results show that adding these conjunctions may be helpful to learn the biases

of contexts and items.

6.5 Impact of Parameters
We conduct experiments to investigate the impact of the latent dimension 𝑘 , the regularization

coefficient 𝜆, the cost weight for the negatives 𝜔 , and the number of the stopping iteration 𝑇 on

OCFFM. Based on the selected parameters from a validation procedure discussed in Section 6.1 (see

supplementary Table I), we orderly change each parameter’s value and leave the others unchanged.

The resulting P@5 scores are given in Figure 2.

Regarding the parameter 𝑘 , results in Figure 2a show that with the increasing of 𝑘 , the P@5

scores gradually improves due to the stronger modeling capability. However, from (13) and (57),

because the model size and the complexity of the block CD algorithm linearly and quadratically

depend on 𝑘 , respectively, a tradeoff between performance and the cost on memory and training

time is required in the practice use of OCFFM.

In figure 2b, we present the relationship between 𝜆 and P@5 scores. If 𝜆 is too large, OCFFM is

not able to achieve a good performance. On the contrary, with a small 𝜆, OCFFM gets better results,

but it may lead to a slight overfitting effect on some data sets.

For the parameter 𝜔 , Figure 2c shows that results are the most sensitive to this parameter.

Specifically, we have the similar observation to [32] that 𝜔 should not be too small nor too large.

A too small 𝜔 causes models to wrongly underfit negative unobserved pairs, while a too large

𝜔 causes model to wrongly fit positive unobserved pairs. The theoretical results in [14] suggest

that under the setting of 𝜔 =
𝛾

2−𝛾 an error bound can be proved, where 𝛾 is the percentage of

positive observed pairs. When 𝛾 is close to one, because most positive pairs have been observed,

the unobserved pairs are most negative, so 𝜔 should be larger. In contrast, a small 𝛾 indicates

20

2
4

2
5

2
6

1.5

2

2.5

3

3.5

4

P
@

5

Outbrain

2
4

2
5

2
6

6

8

10

12

14

P
@

5

KDD-2012

2
4

2
5

2
6

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
@

5

KKBOX

(a) The impact of 𝑘

2
0

2
2

2
4

2
6

2
8

2

2.5

3

3.5

4

P
@

5

Outbrain

2
0

2
2

2
4

2
6

2
8

5

10

15

P
@

5

KDD-2012

2
0

2
2

2
4

2
6

2
8

0.4

0.5

0.6

0.7

0.8

P
@

5

KKBOX

(b) The impact of 𝜆

2
-11

2
-9

2
-7

2
-5

2
-3

2
-1

1.5

2

2.5

3

3.5

4

P
@

5

Outbrain

2
-11

2
-9

2
-7

2
-5

2
-3

2
-1

4

6

8

10

12

14

P
@

5

KDD-2012

2
-11

2
-9

2
-7

2
-5

2
-3

2
-1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
@

5
KKBOX

(c) The impact of 𝜔

6 12

2

2.5

3

3.5

4

P
@

5

Outbrain

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96

5

10

15

P
@

5

KDD-2012

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
@

5

KKBOX

(d) The impact of 𝑇

Fig. 2. The impact of the latent dimension 𝑘 , the regularization coefficient 𝜆, the cost weight for the negatives
𝜔 , and the number of the stopping iteration 𝑇 on OCFFM

many unobserved pairs are indeed positive, so 𝜔 should be smaller in this case. This result can be

used for explaining why KKBOX requires a larger 𝜔 . Specifically, different from the situation of

Outbrain and KDD-2012 where ads are recommended items, the task of KKBOX is to recommend

songs. Because compared to ads, songs have more chances to be known by users in other ways

(e.g., recommendations from friends), most positive pairs of KKBOX may have been included in

21

Ω+, while unobserved pairs are more likely to be known but disliked by users. Thus a larger 𝜔 is

more suitable for KKBOX.
From the relationship between 𝑇 and P@5 scores shown in Figure 2d, we observe that P@5

gradually increases along iterations 𝑇 . After some iterations the results are close toe the optimal

one. Therefore, we can easily find a suitable iteration 𝑇 to stop the training procedure.

7 CONCLUSION AND FUTUREWORKS
From Section 1, the motivation to propose OCFFM can be summarized in the following table.

General Recommendation

regression (implicit feedbacks)

FM OCMFSI/OCFM

↓ ↓
FFM OCFFM

We saw the potential of OCFFM because of

(1) the superiority of FFM over FM on some classification/regression problems, and

(2) the strong connection on the output functions of FM and OCMFSI/OCFM.

However, to have a practically viable OCFFM model is not easy. In particular, to avoid the O(𝑚𝑛)
complexity, we develop an efficient implementation of block coordinate descent algorithms. The

experiments conducted on real-world data sets show that our proposed OCFFM outperforms

existing one-class models.

For future works, the algorithm in Section 3 may be extended to more general loss such as that

in [33]:

ℓ𝑖 𝑗 (𝑦,𝑦) =
{
any differentiable function convex in 𝑦 (𝑖, 𝑗) ∈ Ω+,
(16) (𝑖, 𝑗) ∉ Ω+.

For the OCFFM implementation, some further investigation is needed. For example, the order of

blocks in the block CD algorithm may affect the convergence speed. Finally, we have deployed

OCFFM to our online production.

REFERENCES
[1] Immanuel Bayer, Xiangnan He, Bhargav Kanagal, and Steffen Rendle. 2017. A generic coordinate descent framework

for learning from implicit feedback. In Proceedings of the 26th International Conference on World Wide Web. 1341–1350.
[2] Guy Blanc and Steffen Rendle. 2018. Adaptive sampled softmax with kernel based sampling. In International Conference

on Machine Learning. 590–599.
[3] Mathieu Blondel, Masakazu Ishihata, Akinori Fujino, and Naonori Ueda. 2016. Polynomial Networks and Factorization

Machines: new Insights and Efficient Training Algorithms. In Proceedings of the 33rd International Conference on
Machine Learning (ICML).

[4] Wanling Cai, Jiongbin Zheng, Weike Pan, Jing Lin, Lin Li, Li Chen, Xiaogang Peng, and Zhong Ming. 2019.

Neighborhood-enhanced transfer learning for one-class collaborative filtering. Neurocomputing 341 (2019), 80–87.

[5] Chong Chen, Min Zhang, Weizhi Ma, Yiqun Liu, and Shaoping Ma. 2020. Efficient Non-Sampling Factorization

Machines for Optimal Context-Aware Recommendation. In Proceedings of The Web Conference. 2400–2410.
[6] Chong Chen, Min Zhang, Yongfeng Zhang, Yiqun Liu, and Shaoping Ma. 2020. Efficient Neural Matrix Factorization

without Sampling for Recommendation. ACM Transactions on Information Systems 38, 2 (2020), 1–28.
[7] Jin Chen, Defu Lian, and Kai Zheng. 2019. Improving One-Class Collaborative Filtering via Ranking-Based Implicit

Regularizer. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33. 37–44.
[8] Wei-Sheng Chin, Bo-Wen Yuan, Meng-Yuan Yang, and Chih-Jen Lin. 2018. An Efficient Alternating Newton Method

for Learning Factorization Machines. ACM Transactions on Intelligent Systems and Technology 9, 6 (2018), 72:1–72:31.

https://www.csie.ntu.edu.tw/~cjlin/papers/fm/scalefm.pdf

[9] Zeno Gantner, Lucas Drumond, Christoph Freudenthaler, Steffen Rendle, and Lars Schmidt-Thieme. 2010. Learning

attribute-to-feature mappings for cold-start recommendations. In Proceedings of the IEEE International Conference on
Data Mining (ICDM). 176–185.

22

https://www.csie.ntu.edu.tw/~cjlin/papers/fm/scalefm.pdf

[10] Gene H. Golub and Charles. F. Van Loan. 2012. Matrix Computations (fourth ed.). The Johns Hopkins University Press.

[11] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. 2017. DeepFM: a factorization-machine based

neural network for CTR prediction. In Proceedings of the 26th International Joint Conference on Artificial Intelligence
(IJCAI). 1725–1731.

[12] Xiangnan He, Hanwang Zhang, Min-Yen Kan, and Tat-Seng Chua. 2016. Fast matrix factorization for online rec-

ommendation with implicit feedback. In Proceedings of the 39th International ACM SIGIR conference on Research and
Development in Information Retrieval. 549–558.

[13] Magnus Rudolph Hestenes and Eduard Stiefel. 1952. Methods of Conjugate Gradients for Solving Linear Systems. J.
Res. Nat. Bur. Standards 49, 1 (1952), 409–436.

[14] Cho-Jui Hsieh, Nagarajan Natarajan, and Inderjit Dhillon. 2015. PU Learning for Matrix Completion. In Proceedings of
the 32nd International Conference on Machine Learning (ICML). 2445–2453.

[15] Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative filtering for implicit feedback datasets. In Proceedings
of the IEEE International Conference on Data Mining (ICDM). 263–272.

[16] Yuchin Juan, Yong Zhuang, Wei-Sheng Chin, and Chih-Jen Lin. 2016. Field-aware factorization machines for CTR

Prediction. In Proceedings of the ACM Recommender Systems Conference (RecSys). http://www.csie.ntu.edu.tw/~cjlin/

papers/ffm.pdf

[17] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization. In Proceedings of International
Conference on Learning Representations (ICLR).

[18] Walid Krichene, Nicolas Mayoraz, Steffen Rendle, Li Zhang, Xinyang Yi, Lichan Hong, Ed Chi, and John Anderson.

2018. Efficient Training on Very Large Corpora via Gramian Estimation. In International Conference on Learning
Representations.

[19] Mu-Chu Lee, Wei-Lin Chiang, and Chih-Jen Lin. 2015. Fast Matrix-vector Multiplications for Large-scale Logistic

Regression on Shared-memory Systems. In Proceedings of the IEEE International Conference on Data Mining (ICDM).
http://www.csie.ntu.edu.tw/~cjlin/papers/multicore_liblinear_icdm.pdf

[20] Defu Lian, Qi Liu, and Enhong Chen. 2020. Personalized Ranking with Importance Sampling. In Proceedings of The
Web Conference. 1093–1103.

[21] Chih-Jen Lin, Ruby C. Weng, and S. Sathiya Keerthi. 2007. Trust region Newton method for large-scale logistic

regression. In Proceedings of the 24th International Conference on Machine Learning (ICML). Software available at

http://www.csie.ntu.edu.tw/~cjlin/liblinear.

[22] Hongzhi Liu, Zhonghai Wu, and Xing Zhang. 2018. CPLR: collaborative pairwise learning to rank for personalized

recommendation. Knowledge-Based Systems 148 (2018), 31–40.
[23] Rong Pan and Martin Scholz. 2009. Mind the Gaps: Weighting the Unknown in Large-scale One-class Collaborative

Filtering. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD). 667–676.

[24] Rong Pan, Yunhong Zhou, Bin Cao, Nathan N Liu, Rajan Lukose, Martin Scholz, and Qiang Yang. 2008. One-class

collaborative filtering. In IEEE International Conference on Data Mining (ICDM). 502–511.
[25] Ulrich Paquet and Noam Koenigstein. 2013. One-class collaborative filtering with random graphs. In Proceedings of the

22nd international conference on World Wide Web. 999–1008.
[26] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming

Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,

Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch: An

Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems 32,
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.). 8024–8035.

[27] Huihuai Qiu, Yun Liu, Guibing Guo, Zhu Sun, Jie Zhang, and Hai Thanh Nguyen. 2018. BPRH: Bayesian personalized

ranking for heterogeneous implicit feedback. Information Sciences 453 (2018), 80–98.
[28] Steffen Rendle. 2010. Factorization machines. In Proceedings of IEEE International Conference on Data Mining (ICDM).

995–1000.

[29] Steffen Rendle. 2012. Factorization machines with libFM. ACM Transactions on Intelligent Systems and Technology
(TIST) 3, 3 (2012), 57.

[30] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. 2009. BPR: Bayesian personalized

ranking from implicit feedback. In Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence
(UAI). 452–461.

[31] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. 2014. Dropout: a simple

way to prevent neural networks from overfitting. The journal of machine learning research 15, 1 (2014), 1929–1958.

[32] Hsiang-Fu Yu,Mikhail Bilenko, and Chih-Jen Lin. 2017. Selection of Negative Samples for One-classMatrix Factorization.

In Proceedings of SIAM International Conference on Data Mining (SDM). http://www.csie.ntu.edu.tw/~cjlin/papers/one-

class-mf/biased-mf-sdm-with-supp.pdf

23

http://www.csie.ntu.edu.tw/~cjlin/papers/ffm.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/ffm.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/multicore_liblinear_icdm.pdf
http://www.csie.ntu.edu.tw/~cjlin/liblinear
http://www.csie.ntu.edu.tw/~cjlin/papers/one-class-mf/biased-mf-sdm-with-supp.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/one-class-mf/biased-mf-sdm-with-supp.pdf

[33] Hsiang-Fu Yu, Hsin-Yuan Huang, Inderjit S. Dihillon, and Chih-Jen Lin. 2017. A Unified Algorithm for One-class

Structured Matrix Factorization with Side Information. In Proceedings of the Thirty-First AAAI Conference on Artificial
Intelligence (AAAI). http://www.csie.ntu.edu.tw/~cjlin/papers/ocmf-side/biased-leml-aaai-with-supp.pdf

[34] Fajie Yuan, Xin Xin, Xiangnan He, Guibing Guo, Weinan Zhang, Chua Tat-Seng, and Joemon M. Jose. 2018. fBGD:

Learning embeddings from positive unlabeled data with BGD. In Proceedings of the Thirty-Fourth Conference on
Uncertainty in Artificial Intelligence (UAI).

[35] Guo-Xun Yuan, Chia-Hua Ho, and Chih-Jen Lin. 2012. An Improved GLMNET for L1-regularized Logistic Regression.

Journal of Machine Learning Research 13 (2012), 1999–2030. http://www.csie.ntu.edu.tw/~cjlin/papers/l1_glmnet/long-

glmnet.pdf

[36] Weinan Zhang, Tianqi Chen, Jun Wang, and Yong Yu. 2013. Optimizing top-n collaborative filtering via dynamic

negative item sampling. In Proceedings of the 36th international ACM SIGIR conference on Research and development in
information retrieval. 785–788.

[37] Tong Zhao, Julian McAuley, and Irwin King. 2014. Leveraging social connections to improve personalized ranking

for collaborative filtering. In Proceedings of the 23rd ACM International Conference on Information and Knowledge
Management. 261–270.

[38] Guorui Zhou, Xiaoqiang Zhu, Chenru Song, Ying Fan, Han Zhu, Xiao Ma, Yanghui Yan, Junqi Jin, Han Li, and Kun Gai.

2018. Deep interest network for click-through rate prediction. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD). 1059–1068.

[39] Wang Zhou, Jianping Li, Yongluan Zhou, and Muhammad Hammad Memon. 2019. Bayesian pairwise learning to rank

via one-class collaborative filtering. Neurocomputing 367 (2019), 176–187.

24

http://www.csie.ntu.edu.tw/~cjlin/papers/ocmf-side/biased-leml-aaai-with-supp.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/l1_glmnet/long-glmnet.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/l1_glmnet/long-glmnet.pdf

A PROOF OF THEOREM 3.1
Proof. From the definition of 𝒙̃ , we have

𝑋̃ =
[
𝒒1 ⊗ 𝒙1, · · · , 𝒒𝐿 ⊗ 𝒙𝐿

]𝑇 ∈ R𝐿×𝐷𝑘
and therefore

𝑋̃𝑇𝐶𝒚̃ =

𝐿∑
𝑙=1

(𝐶𝑙𝑦𝑙) (𝒒𝑙 ⊗ 𝒙𝑙) =
𝐿∑
𝑙=1

(𝐶𝑙𝑦𝑙) vec(𝒙𝑙𝒒𝑙𝑇) = vec

(
𝐿∑
𝑙=1

𝒙𝑙𝐶𝑙𝑦𝑙𝒒
𝑙𝑇

)
= vec(𝑋𝑇 diag(𝐶𝒚̃)𝑄).

(A.1)

For 𝑋̃𝑇𝐶𝑋̃ vec(𝑉), we let
𝒛 = 𝑋̃ vec(𝑉). (A.2)

Then (A.1) implies that

𝑋̃𝐶𝑋̃ vec(𝑉) = vec(𝑋𝑇 diag(𝐶𝒛)𝑄).
For 𝒛, the definition in (A.2) indicates that

𝑧𝑙 = (𝒒𝑙 ⊗ 𝒙𝑙)𝑇 vec(𝑉) = 𝒙𝑙
𝑇
𝑉 𝒒𝑙 ,

which is equivalent to

𝒛 = ((𝑋𝑉) ⊙ 𝑄)1𝑘×1.

□

B DETAILS OF BLOCK CD METHOD FOR OCFFM
B.1 The Computation of the Right-hand Side of the Linear System
Among the three situations in (43), in Section 4 we have discussed the first one of 1 ≤ 𝑓1, 𝑓2 ≤ 𝐹𝑢 .
Thus we check the remaining two cases here.

To begin, from the definition of 𝑌𝑖 𝑗 and 𝐶𝑖 𝑗 in (3) and (21) respectively,

𝐶𝑖 𝑗 (𝑌𝑖 𝑗 − 𝑌𝑖 𝑗) =
{
𝑌𝑖 𝑗 − 1 if (𝑖, 𝑗) ∈ Ω+,
𝜔 (𝑌𝑖 𝑗 − 𝑟) otherwise.

(B.1)

Then we have

𝑚∑
𝑖=1

𝑛∑
𝑗=1

𝒙𝑖, 𝑗
𝑓1
(𝐶𝑖 𝑗 (𝑌𝑖 𝑗 − 𝑌𝑖 𝑗))𝒒𝑖, 𝑗𝑓2,𝑓1

𝑇
=

∑
(𝑖, 𝑗) ∈Ω+

𝒙𝑖, 𝑗
𝑓1
((1 − 𝜔)𝑌𝑖 𝑗 − 1 + 𝑟𝜔)𝒒𝑖, 𝑗

𝑓2,𝑓1

𝑇

+ 𝜔
𝑚∑
𝑖=1

𝑛∑
𝑗=1

𝒙𝑖, 𝑗
𝑓1
(𝑌𝑖 𝑗 − 𝑟)𝒒𝑖, 𝑗𝑓2,𝑓1

𝑇
.

(B.2)

The first term involves |Ω+ | summations so with |Ω+ | ≪𝑚𝑛 the bottleneck is on the second term,

which can be further written as

𝑚∑
𝑖=1

𝑛∑
𝑗=1

(𝑎𝑖 + 𝑏 𝑗 +
𝐹𝑢∑
𝛼=1

𝐹∑
𝛽=𝐹𝑢+1

𝒑𝑖
𝛼,𝛽

𝑇 𝒒 𝑗
𝛽,𝛼
− 𝑟)𝒙𝑖, 𝑗

𝑓1
𝒒𝑖, 𝑗
𝑓2,𝑓1

𝑇
, (B.3)

by excluding 𝜔 and using (46) and (48).

25

B.1.1 The Situation of 𝑓1, 𝑓2 > 𝐹𝑢 .
From (41), (42) and 𝑓1, 𝑓2 > 𝐹𝑢 , we have

𝒙𝑖, 𝑗
𝑓1

= 𝒗 𝑗
𝑓1
and 𝒒𝑖, 𝑗

𝑓2,𝑓1
= 𝒒 𝑗

𝑓2,𝑓1
. (B.4)

We can compute (B.3) as

𝑚∑
𝑖=1

𝑛∑
𝑗=1

(𝑎𝑖 + 𝑏 𝑗 +
𝐹𝑢∑
𝛼=1

𝐹∑
𝛽=𝐹𝑢+1

𝒑𝑖
𝛼,𝛽

𝑇 𝒒 𝑗
𝛽,𝛼
− 𝑟)𝒗 𝑗

𝑓1
𝒒 𝑗
𝑓2,𝑓1

𝑇

=

𝑛∑
𝑗=1

(𝑚𝑏 𝑗 −𝑚𝑟 +
𝑚∑
𝑖=1

𝑎𝑖 +
𝐹𝑢∑
𝛼=1

𝐹∑
𝛽=𝐹𝑢+1

(
𝑚∑
𝑖=1

𝒑𝑖
𝛼,𝛽

𝑇)𝒒 𝑗
𝛽,𝛼
)𝒗 𝑗
𝑓1
𝒒 𝑗
𝑓2,𝑓1

𝑇

=

𝑛∑
𝑗=1

(𝑚𝑏 𝑗 −𝑚𝑟 +
𝑚∑
𝑖=1

𝑎𝑖 + 𝑒 𝑗)𝒗 𝑗𝑓1𝒒
𝑗

𝑓2,𝑓1

𝑇 ,

(B.5)

where

𝑒 𝑗 =

𝐹𝑢∑
𝛼=1

𝐹∑
𝛽=𝐹𝑢+1

(
𝑚∑
𝑖=1

𝒑𝑖
𝛼,𝛽

𝑇)𝒒 𝑗
𝛽,𝛼
. (B.6)

A crucial observation is that

𝑚∑
𝑖=1

𝑎𝑖 and

𝑚∑
𝑖=1

𝒑𝑖
𝛼,𝛽

are now independent of 𝑗 .

We now put (B.5) back to (B.2). Let

𝑉𝑓1 =

[
𝒗1

𝑓1
, · · · , 𝒗𝑛

𝑓1

]𝑇
. (B.7)

Then (B.2) can be computed by

𝑉𝑇
𝑓1

diag(𝒛)𝑄 𝑓1

𝑓2
, (B.8)

where

𝑧 𝑗 =
∑
𝑖∈Ω̄+

𝑗

((1 − 𝜔)𝑌𝑖 𝑗 − 1 + 𝜔𝑟)) + 𝜔 (𝑚𝑏 𝑗 −𝑚𝑟 +
𝑚∑
𝑖=1

𝑎𝑖 + 𝑒 𝑗), (B.9)

and Ω̄+𝑗 is the set including the observed contexts of the 𝑗th item. Note that 𝑄
𝑓1

𝑓2
now contains

𝑛 columns. Our earlier definition of 𝑄
𝑓1

𝑓2
in (52) is for the situation of 𝑓2 ≤ 𝐹𝑢 only. A complete

definition should be

𝑄
𝑓1

𝑓2
=


[
𝒒1

𝑓2,𝑓1
, · · · , 𝒒𝑚

𝑓2,𝑓1

]𝑇
𝑓2 ≤ 𝐹𝑢,[

𝒒1

𝑓2,𝑓1
, · · · , 𝒒𝑛

𝑓2,𝑓1

]𝑇
𝑓2 > 𝐹𝑢 .

(B.10)

Similarly, we define 𝑃
𝑓1

𝑓2
for the use in subsequent places.

𝑃
𝑓2

𝑓1
=


[
𝒑1

𝑓1,𝑓2
, · · · ,𝒑𝑚

𝑓1,𝑓2

]𝑇
𝑓1 ≤ 𝐹𝑢,[

𝒑1

𝑓1,𝑓2
, · · · ,𝒑𝑛

𝑓1,𝑓2

]𝑇
𝑓1 > 𝐹𝑢 .

(B.11)

26

B.1.2 The Situation of 𝑓1 ≤ 𝐹𝑢, 𝑓2 > 𝐹𝑢 . From (41), (42), and 𝑓1 ≤ 𝐹𝑢 , 𝑓2 > 𝐹𝑢 , we have

𝒙𝑖, 𝑗
𝑓1

= 𝒖𝑖
𝑓1
and 𝒒𝑖, 𝑗

𝑓2,𝑓1
= 𝒒 𝑗

𝑓2,𝑓1
. (B.12)

We can split the computation of (B.3) to several parts. First,

𝑚∑
𝑖=1

𝑛∑
𝑗=1

𝒖𝑖
𝑓1
(𝑎𝑖 − 𝑟)𝒒 𝑗𝑓2,𝑓1

𝑇 =

𝑚∑
𝑖=1

𝒖𝑖
𝑓1
(𝑎𝑖 − 𝑟) (

𝑛∑
𝑗=1

𝒒 𝑗
𝑓2,𝑓1

𝑇)

= 𝑈𝑇
𝑓1
(𝒂 − 𝑟1𝑚×1)𝒒𝑇o ,

(B.13)

where𝑈𝑓1 is defined in (52) and

𝒒
o
= 𝑄

𝑓1

𝑓2

𝑇 1𝑛×1. (B.14)

Next,

𝑚∑
𝑖=1

𝑛∑
𝑗=1

𝒖𝑖
𝑓1
𝑏 𝑗𝒒

𝑗

𝑓2,𝑓1

𝑇 = (
𝑚∑
𝑖=1

𝒖𝑖
𝑓1
) (

𝑛∑
𝑗=1

𝑏 𝑗𝒒
𝑗

𝑓2,𝑓1

𝑇) = (𝑈𝑇
𝑓1
1𝑚×1)𝒒𝑇b , (B.15)

where

𝒒
b
= 𝑄

𝑓1

𝑓2

𝑇𝒃 . (B.16)

Finally,

𝑚∑
𝑖=1

𝑛∑
𝑗=1

𝒖𝑖
𝑓1
(
𝐹𝑢∑
𝛼=1

𝐹∑
𝛽=𝐹𝑢+1

𝒑𝑖
𝛼,𝛽

𝑇 𝒒 𝑗
𝛽,𝛼
)𝒒 𝑗
𝑓2,𝑓1

𝑇

=

𝐹𝑢∑
𝛼=1

𝐹∑
𝛽=𝐹𝑢+1

(
𝑚∑
𝑖=1

𝒖𝑖
𝑓1
𝒑𝑖
𝛼,𝛽

𝑇) (
𝑛∑
𝑗=1

𝒒 𝑗
𝛽,𝛼

𝒒 𝑗
𝑓2,𝑓1

𝑇)

=

𝐹𝑢∑
𝛼=1

𝐹∑
𝛽=𝐹𝑢+1

(𝑈𝑇
𝑓1
𝑃
𝛽
𝛼) (𝑄𝛼𝛽

𝑇𝑄
𝑓1

𝑓2
).

(B.17)

Various ways are possible to calculate (B.17). From (B.10)-(B.11), we give the size of matrices

involved.

𝑈𝑓1 :𝑚 × 𝐷 𝑓1 , 𝑃
𝛽
𝛼 :𝑚 × 𝑘, 𝑄𝛼

𝛽
: 𝑛 × 𝑘, 𝑄

𝑓1

𝑓2
: 𝑛 × 𝑘.

Except 𝑘 , other values 𝐷 𝑓1 ,𝑚 and 𝑛 can possibly be large. Therefore, a setting such as

𝑈𝑇
𝑓1
(
𝐹𝑢∑
𝛼=1

𝐹∑
𝛽=𝐹𝑢+1

(𝑃𝛽𝛼𝑄𝛼𝛽
𝑇))𝑄 𝑓1

𝑓2
, (B.18)

is not feasible because the matrix in the middle requires O(𝑚𝑛) space. Feasible settings with the

corresponding computational complexity are

𝐹𝑢∑
𝛼=1

𝐹∑
𝛽=𝐹𝑢+1

(𝑈𝑇
𝑓1
𝑃
𝛽
𝛼) (𝑄𝛼𝛽

𝑇𝑄
𝑓1

𝑓2
) (B.19)

with

O((nnz(𝑈𝑓1)𝑘 + (𝑛 + 𝐷 𝑓1)𝑘2)𝐹𝑢𝐹𝑣) (B.20)

cost, and

𝑈𝑇
𝑓1
(
𝐹𝑢∑
𝛼=1

𝐹∑
𝛽=𝐹𝑢+1

𝑃
𝛽
𝛼 (𝑄𝛼𝛽

𝑇𝑄
𝑓1

𝑓2
)), (B.21)

with

O(nnz(𝑈𝑓1)𝑘 + 𝐹𝑢𝐹𝑣 (𝑛 +𝑚)𝑘2) (B.22)

27

cost. For the space requirement, the approach in (B.19) needs O(𝐷 𝑓1𝑘) space, because 𝑄𝛼𝛽
𝑇𝑄

𝑓1

𝑓2
is a

small 𝑘 × 𝑘 matrix. For (B.21), we need O((𝐷 𝑓1 +𝑚)𝑘). Both are affordable because storing 𝑈𝑓1 ,𝑃
𝛽
𝛼

and 𝑄𝛼
𝛽
may already take more than that. Note that in this analysis we assume that𝑈𝑓1 is a sparse

matrix and its product with any matrix results in a dense matrix. A comparison between (B.20) and

(B.22) shows that if 𝐹𝑢 and 𝐹𝑣 are not small, then the term

nnz(𝑈𝑓1)𝑘𝐹𝑢𝐹𝑣
tends to cause that the first approach in (B.19) is more expensive. Therefore, in the subsequent

description of our algorithms, we consider (B.21) for the implementation.

Clearly, each of the O(𝑚𝑛) summations is nicely split to the product between one O(𝑚) term
and one O(𝑛) term. Therefore, similar to the first situation, the O(𝑚𝑛) cost is avoided.

Using (B.12) and (B.13-B.17), the following matrix form of (B.2) is what we intend to obtain.

𝑈𝑇
𝑓1


𝒛𝑇

1

...

𝒛𝑇𝑚

 + 𝜔 ((𝑈
𝑇
𝑓1
(𝒂 − 𝑟1𝑚×1))𝒒𝑇o + (𝑈𝑇𝑓11𝑚×1)𝒒𝑇b +𝑈

𝑇
𝑓1
𝑇),

where 𝒒𝑜 and 𝒒𝑏 are defined in (B.14) and (B.16) respectively,

𝒛𝑖 =
∑
𝑗 ∈Ω+

𝑖

((1 − 𝜔)𝑌𝑖 𝑗 − 1 + 𝑟𝜔)𝒒 𝑗
𝑓2,𝑓1

, and 𝑇 =

𝐹𝑢∑
𝛼=1

𝐹∑
𝛽=𝐹𝑢+1

𝑃
𝛽
𝛼 (𝑄𝛼𝛽

𝑇𝑄
𝑓1

𝑓2
).

B.2 The Computation of Matrix-vector Products
From Theorem 3.1 and

𝒙𝑙 → 𝒙𝑖, 𝑗
𝑓1
, 𝒒𝑙 → 𝒒𝑖, 𝑗

𝑓2,𝑓1
,𝐶𝑙 → 𝐶𝑖 𝑗 , 𝑧𝑙 → 𝑧𝑖 𝑗 ,

what we need to calculate is

𝑚∑
𝑖=1

𝑛∑
𝑗=1

𝒙𝑖, 𝑗
𝑓1
(𝐶𝑖 𝑗𝑧𝑖 𝑗)𝒒𝑖, 𝑗𝑓2,𝑓1

𝑇
, (B.23)

where

𝑧𝑖 𝑗 = 𝒙𝑖, 𝑗
𝑓1

𝑇
𝑉 𝒒𝑖, 𝑗

𝑓2,𝑓1
.

From the definition of 𝐶𝑖 𝑗 in (21),

(B.23) =
∑
(𝑖, 𝑗) ∈Ω+

𝒙𝑖, 𝑗
𝑓1
𝑧𝑖 𝑗𝒒

𝑖, 𝑗

𝑓2,𝑓1

𝑇 +
∑
(𝑖, 𝑗)∉Ω+

𝒙𝑖, 𝑗
𝑓1
𝜔𝑧𝑖 𝑗𝒒

𝑖, 𝑗

𝑓2,𝑓1

𝑇

= (1 − 𝜔)
∑
(𝑖, 𝑗) ∈Ω+

𝒙𝑖, 𝑗
𝑓1
𝑧𝑖 𝑗𝒒

𝑖, 𝑗

𝑓2,𝑓1

𝑇 +
𝑚∑
𝑖=1

𝑛∑
𝑗=1

𝒙𝑖, 𝑗
𝑓1
𝑧𝑖 𝑗𝒒

𝑖, 𝑗

𝑓2,𝑓1

𝑇
.

(B.24)

For the first situation, 𝑓1, 𝑓2 ≤ 𝐹𝑢 , (41) and (42) imply

𝒙𝑖, 𝑗
𝑓1
→ 𝒖𝑖

𝑓1
and 𝒒𝑖, 𝑗

𝑓2,𝑓1
→ 𝒒𝑖

𝑓2,𝑓1
.

Thus

𝑧𝑖 𝑗 = 𝒙𝑖, 𝑗
𝑓1

𝑇
𝑉 𝒒𝑖, 𝑗

𝑓2,𝑓1
= 𝒖𝑖

𝑓1

𝑇
𝑉 𝒒𝑖

𝑓2,𝑓1
(B.25)

is independent of 𝑗 . With 𝑧𝑖 𝑗 → 𝑧𝑖 , we have

(B.24) =

𝑚∑
𝑖=1

𝒖𝑖
𝑓1
((1 − 𝜔)

∑
𝑗 ∈Ω+

𝑖

𝑧𝑖 +
𝑛∑
𝑗=1

𝑧𝑖)𝒒𝑖𝑓2,𝑓1 = 𝑈
𝑇
𝑓1

diag(𝒛)𝑄 𝑓1

𝑓2
, (B.26)

28

where

𝑧𝑖 = ((1 − 𝜔) |Ω+𝑖 | + 𝜔𝑛)𝒖𝑖𝑓1
𝑇
𝑉 𝒒𝑖

𝑓2,𝑓1
,

or equivalently, the matrix form of 𝒛 in (56). Clearly, from (B.26), the O(𝑚𝑛) cost is avoided.
For the second situation, it is the same as (B.26) though variables must be changed; see Section

B.3.

Next we consider the third situation when 𝑓1 ≤ 𝐹𝑢 , 𝑓2 > 𝐹𝑢 and have (B.12). Then

𝑧𝑖 𝑗 = 𝒖𝑖
𝑓1

𝑇
𝑉 𝒒 𝑗

𝑓2,𝑓1
.

To get the second term in (B.24) we have

𝑚∑
𝑖=1

𝑛∑
𝑗=1

𝒖𝑖
𝑓1
(𝒖𝑖
𝑓1

𝑇
𝑉 𝒒 𝑗

𝑓2,𝑓1
)𝒒 𝑗
𝑓2,𝑓1

𝑇
= (

𝑚∑
𝑖=1

𝒖𝑖
𝑓1
𝒖𝑖
𝑓1

𝑇)𝑉 (
𝑛∑
𝑗=1

𝒒 𝑗
𝑓2,𝑓1

𝒒 𝑗
𝑓2,𝑓1

𝑇)

= (𝑈𝑇
𝑓1
𝑈𝑓1)𝑉 (𝑄

𝑓1

𝑓2

𝑇
𝑄
𝑓1

𝑓2
).

Finally,

(B.24) = (1 − 𝜔)
𝑚∑
𝑖=1

𝒖𝑖
𝑓1

∑
𝑗 ∈Ω+

𝑖

(𝒖𝑖
𝑓1

𝑇
𝑉 𝒒 𝑗

𝑓2,𝑓1
)𝒒 𝑗
𝑓2,𝑓1

𝑇 + 𝜔 (𝑈𝑇
𝑓1
𝑈𝑓1)𝑉 (𝑄

𝑓1

𝑓2

𝑇
𝑄
𝑓1

𝑓2
). (B.27)

To compute the first term, at each 𝑖 , we obtain

𝒖𝑖
𝑓1

𝑇
𝑉

with a complexity of O(nnz(𝒖 𝑓1)𝑘). Then the cost of computing∑
𝑗 ∈Ω+

𝑖

((𝒖𝑖
𝑓1

𝑇
𝑉)𝒒 𝑗

𝑓2,𝑓1
)𝒒 𝑗
𝑓2,𝑓1

𝑇

is

O((nnz(𝒖𝑖
𝑓1
) + |Ω+𝑖 |)𝑘).

Thus, the first term can be computed in

O((nnz(𝑈𝑓1) + |Ω+ |)𝑘). (B.28)

To calculate the second term, several ways are possible by different orders of matrix-matrix products.

To discuss them, we begin with giving the size of matrices involved.

𝑈𝑓1 :𝑚 × 𝐷 𝑓1 , 𝑉 : 𝐷 𝑓1 × 𝑘, 𝑄
𝑓1

𝑓2
: 𝑛 × 𝑘. (B.29)

Except 𝑘 , all other values 𝐷 𝑓1 ,𝑚 and 𝑛 can possibly be very large. Therefore, a setting such as

(𝑈𝑇
𝑓1
𝑈𝑓1)𝑉 (𝑄

𝑓1

𝑓2

𝑇𝑄
𝑓1

𝑓2
)

is not feasible because (𝑈𝑇
𝑓1
𝑈𝑓1) requires a huge O(𝐷2

𝑓1
) space. Therefore, the three only possible

settings with the corresponding computational complexity are

(𝑈𝑇
𝑓1
(𝑈𝑓1𝑉)) (𝑄

𝑓1

𝑓2

𝑇𝑄
𝑓1

𝑓2
) · · · O(nnz(𝑈𝑓1)𝑘 + 𝐷 𝑓1𝑘2 + 𝑛𝑘2) (B.30)

𝑈𝑇
𝑓1
((𝑈𝑓1𝑉) (𝑄

𝑓1

𝑓2

𝑇𝑄
𝑓1

𝑓2
)) · · · O(nnz(𝑈𝑓1)𝑘 +𝑚𝑘2 + 𝑛𝑘2) (B.31)

𝑈𝑇
𝑓1
(𝑈𝑓1 (𝑉 (𝑄

𝑓1

𝑓2

𝑇𝑄
𝑓1

𝑓2
))) · · · O(nnz(𝑈𝑓1)𝑘 + 𝐷 𝑓1𝑘2 + 𝑛𝑘2) (B.32)

where all need

O((𝐷 𝑓1 +𝑚)𝑘)
space. We consider to apply (B.31) if𝑚 < 𝐷 𝑓1 . Otherwise, either (B.30) or (B.32) can be considered.

29

B.3 Implementation Details
We summarize the overall procedures of block CD for OCFFM in Algorithm 4. At each iteration of

the algorithm, blocks of variables are sequentially updated. The order of blocks in the sequence is

an important and complicated issue in the block CD method. We leave a detailed study as a future

issue, so here we simply consider a setting according to the three situations in (43). That is, three

loops are conducted to go through the following fields.
Steps 18-23 𝑓1, 𝑓2 ≤ 𝐹𝑢 , (B.33a)

Steps 26-31 𝑓1, 𝑓2 > 𝐹𝑢 , (B.33b)

Steps 32-39 𝑓1 ≤ 𝐹𝑢, 𝑓2 > 𝐹𝑢 . (B.33c)

Consider details of the first situation. Under the given 𝑓1 and 𝑓2, two sub-problems to update

variable blocks𝑊
𝑓2

𝑓1
and𝐻

𝑓1

𝑓2
are solved. From (24), (41), (B.10) and (B.11), if we replace the following

information

(𝑈𝑓1 ,𝑊
𝑓2

𝑓1
, 𝑃

𝑓2

𝑓1
, 𝑄

𝑓1

𝑓2
) (B.34)

in the sub-problem of𝑊
𝑓2

𝑓1
with

(𝑈𝑓2 , 𝐻
𝑓1

𝑓2
, 𝑄

𝑓1

𝑓2
, 𝑃

𝑓2

𝑓1
),

then we obtain the sub-problems of𝐻
𝑓1

𝑓2
. Thus the same Algorithm 5 (a detailed version of Algorithm

3 explained below) can be used to solve them with different input variables.

We then consider details of the second situation. By comparing (B.8) with (53), the sub-problems

of𝑊
𝑓2

𝑓1
in (B.33a) and (B.33b) are in the same form if the roles of

(𝑚,𝑈𝑓1 , 𝒅, 𝒂, ¯𝑏, 𝑖, 𝑗, 𝑌𝑖 𝑗) and (𝑛,𝑉𝑓1 , 𝒆, 𝒃, 𝑎, 𝑗, 𝑖, 𝑌𝑗𝑖) (B.35)

are swapped. Therefore, Algorithm 5 can solve all sub-problems in the loop (B.33b) with different

input variables; see how we call Algorithm 5 in line 26-31 of Algorithm 4. We note that the input 𝑌

is changed to 𝑌𝑇 and give the following explanation. Later we will show that among the variables

to be maintained after each sub-problem, 𝑌𝑖 𝑗 , ∀(𝑖, 𝑗) ∈ Ω+ is one of them. With |Ω+ | ≪ 𝑚𝑛, 𝑌 is

stored as a sparse matrix. In a sub-problem of the second case (i.e., 𝑓1, 𝑓2 > 𝐹𝑢), we note that for an

item 𝑗 , contexts 𝑖 ∈ Ω̄+𝑗 are iterated in (B.9). Specifically, in (B.9) we have the following calculation.∑
𝑖∈Ω̄+

𝑗

𝑌𝑖 𝑗 .

In contrast, in (54) for a context 𝑖 a loop over 𝑗 ∈ Ω+𝑖 is implemented. Because 𝑖 and 𝑗 are swapped

according to (B.35), if we input 𝑌𝑇 into Algorithm 5, then the same loop in Algorithm 5 can be used

for sub-problems of either the first or the second situation.

For the third situation, we have shown in Sections B.1 and B.2 that the calculation of the right-

hand side of the linear system and the calculation of matrix-vector products are different from

those for the first/second situations. Thus we have another Algorithm 6 to give details for solving

the sub-problem.

Next we discuss one sub-problem in detail as an example. We consider Algorithm 5 on the

sub-problem of the block𝑊
𝑓2

𝑓1
in the first loop (B.33a). From (53), (54) and (B.26), besides the input

data𝑈𝑓1 , all we need are

𝑄
𝑓1

𝑓2
, 𝒂,

𝑛∑
𝑗=1

𝑏 𝑗 , 𝒅, and 𝑌𝑖 𝑗 ,∀(𝑖, 𝑗) ∈ Ω+ . (B.36)

30

We can calculate all of them, but a careful check shows that these values may be maintained and

passed from one sub-problem to another. For example, the vector 𝒂 defined in (49) is changed after

𝑃
𝑓2

𝑓1
is updated. If

Δ𝑃 = [(Δ𝒑)1, · · · , (Δ𝒑)𝑚]𝑇 (B.37)

is the amount of change on 𝑃
𝑓2

𝑓1
, then easily the vector 𝒂 can be maintained by

𝒂 + Δ𝒂, (B.38)

where from (49)

(Δ𝑎)𝑖 = (Δ𝒑)𝑖
𝑇
𝒒𝑖
𝑓2,𝑓1

, 𝑖 = 1, ...,𝑚,

or equivalently,

Δ𝒂 = (Δ𝑃 ⊙ 𝑄 𝑓1

𝑓2
)1𝑘×1.

Similarly, from (46),𝑌𝑖 𝑗 needed in (B.36) can be maintained by

𝑌𝑖 𝑗 ← 𝑌𝑖 𝑗 + (Δ𝑎)𝑖 ,∀(𝑖, 𝑗) ∈ Ω+.
Next we discuss the vector 𝒃 . In the loop (B.33a) we are considering, because of 1 ≤ 𝑓1, 𝑓2, ≤ 𝐹𝑢 , (49)
implies that 𝒃 is a constant. Therefore, we may calculate it before the loop. However, in Algorithm

4 we see that in the second loop (B.33b), the role of 𝒃 is like 𝒂 in the first loop. Thus in the second

loop 𝒃 has been maintained by a way similar to (B.38). Therefore, 𝒃 is readily available before the

loop (B.33a), so all we need is to calculate the sum of 𝒃 at Step 8 as an input value for solving the

sub-problem. Another value 𝑄
𝑓1

𝑓2
needed in (B.36) is in a situation similar to 𝒃 . It is a constant in

the current loop (B.33a), but can be maintained in the loop (B.33b). Conversely, 𝑃
𝑓2

𝑓1
is not currently

used, but should be updated for the use in the loop (B.33b). To this end, we need

𝑃
𝑓2

𝑓1
← 𝑃

𝑓2

𝑓1
+ Δ𝑃 .

The above discussion explains why in the end of Algorithm 5, 𝑃
𝑓2

𝑓1
, 𝒂 and 𝑌𝑖 𝑗 ,∀(𝑖, 𝑗) ∈ Ω+ are

variables to be updated.

Regarding the vector 𝒅 defined in (51), we note that it is also a constant in the loop (B.33a).

Therefore, we may maintain it by a similar way to those for 𝒂 and 𝒃 . In particular, from (51), 𝒅
involves 𝛼 ∈ {1, · · · , 𝐹𝑢} and 𝛽 ∈ {𝐹𝑢 + 1, · · · , 𝐹 }, so it should be maintained in the third loop

(B.33c). However, unlike the situation in the first and the second loops, where 𝒂 and 𝒃 must be

maintained and used, the third loop does not need 𝒅 at all. Further, even if we maintain 𝒅 there,

because of the for loop, the cost is still proportional to 𝐹𝑢𝐹𝑣 and the complexity is not reduced.

Therefore, we directly calculate it at Step 16 before the loop (B.33a). On the other hand for the loop

(B.33b), a similar vector 𝒆 is considered; see Step 24.

We briefly discuss if the cost of (B.21) can be reduced by maintaining some variables. An issue is

that the value in (B.21) depends on the current 𝑓1 and 𝑓2. Because the setting (B.18) is not feasible

for the space concern, we can only consider (B.19) or (B.21), in which (𝛼, 𝛽) and (𝑓1, 𝑓2) are mingled

together. Thus we do not see an easy setting to further reduce the complexity.

B.4 Computational Complexity
We analyze the overall complexity of Algorithm 4. In solving each sub-problem, from Algorithm 5

and Algorithm 6 we can see that each matrix-vector product costs similarly to that of calculating

the right-hand side of the linear system (33).
5
Further, each matrix-vector product in Algorithm 6

5
Assume that in the calculation of (B.21), 𝐹𝑢 and 𝐹𝑣 are not large.

31

Table I. Parameters used in Table 6. For KDD-2012, due to its large number of features 𝐷 as shown in Table
4, the setting of 𝑘 = 32 and 𝑘 = 64 cause the out of GPU memory issue for BPR-based approaches.

Datasets Outbrain KDD-2012 KKBOX

Models

Parameters {𝜆, 𝜆BPR, 𝜔, 𝑘,𝑇 }

OCMF {16,−, 2−9, 64, 100} {1,−, 2−11, 64, 100} {4,−, 2−2, 32, 30}
OCMFSI {1,−, 2−10, 64, 100} {1,−, 2−11, 64, 100} {16,−, 2−11, 64, 100}
OCFM {1,−, 2−10, 64, 100} {1,−, 2−10, 64, 100} {4,−, 2−9, 64, 100}
BPR-FM {−, 10

−7,−, 64, 40} {−, 10
−7,−, 16, 50} {−, 10

−7,−, 64, 30}
BPR-FFM {−, 10

−7,−, 64, 40} {−, 10
−7,−, 16, 40} {−, 10

−7,−, 64, 30}
BPR-DeepFM {−, 10

−7,−, 64, 20} {−, 10
−7,−, 16, 50} {−, 10

−7,−, 64, 30}
OCMFSI+F {1,−, 2−10, 64, 30} {1,−, 2−10, 64, 100} {4,−, 2−5, 64, 90}
OCFFM {1,−, 2−10, 64, 15} {1,−, 2−11, 64, 100} {1,−, 2−3, 64, 100}

is more expensive than that in Algorithm 5. Assume that in calculating the second term of (B.27),

the setting of (B.32) is taken. Then from (B.28) and (B.32) the overall cost is

O
(
(nnz(𝑈𝑓 or 𝑉𝑓) + |Ω+ |)𝑘 + (𝐷 𝑓 +𝑚 + 𝑛)𝑘2

)
× avg. # CG steps per sub-problem × 𝐹 (𝐹 + 1),

(B.39)

where 𝐷 𝑓 is average the number of context/item features of a field, and nnz(𝑈𝑓) or nnz(𝑉𝑓) is the
average number of non-zeros. Clearly, the sparsity of Ω+ decides if |Ω+ |𝑘 is the dominant term or

not.

C EXPERIMENTAL DETAILS
C.1 Implementation
As discussed in Section 5, all non-subsampled approach based models to be compared are special

cases of OCFFM. Therefore, we only implement OCFFM, and use it to train OCMF, OCMFSI, OCFM,

OCMFSI+F and OCFFM. We tried the best to have efficient implementations for the optimization

algorithm proposed in Section 3. The dense operations (e.g., matrix-matrix and matrix-vector

products) are implemented using Intel® Math Kernel Library (MKL). Besides, we parallelize the

Hession-vector products with an algorithm proposed by [19].

For the BPR-based models including BPR-FFM and BPR-DeepFM, we implement them by PyTorch

[26], where we apply Adam [17] as the optimizer with initial learning rates 0.001 for Outbrain,
KKBOX and 0.0005 for KDD-2012. For the neural network part of BPR-DeepFM, we apply a three-

layer network, where each layer contains 400 hidden units and is equipped with dropout [31] rate

0.5 to prevent overfitting.

For all models we randomly select the initial parameters uniformly from [− 0.1√
𝑘
, 0.1√

𝑘
]. For the

tolerance in the CG stopping condition (39), we set 𝜉 = 0.3.

C.2 Parameters
The parameters used in our experiments are shown in Table I.

32

Algorithm 4 Solving the OCFFM problem via block coordinate descent method.

1: Given an initialW andH
2: for 𝑓1← {1, · · · , 𝐹𝑢} do
3: for 𝑓2← {𝑓1, · · · , 𝐹𝑢} do
4: 𝑃

𝑓2

𝑓1
← 𝑋𝑓1𝑊

𝑓2

𝑓1
, 𝑄

𝑓1

𝑓2
← 𝑋𝑓2𝐻

𝑓1

𝑓2
· · · O((𝑚 + 𝑛)𝑘)

5: end for
6: end for
7: 𝒂 ← ∑𝐹𝑢

𝑓1=1

∑𝐹𝑢
𝑓2=𝑓1

(
𝑃
𝑓2

𝑓1
⊙𝑄 𝑓1

𝑓2

)
1𝑘×1 · · · O(𝐹 2

𝑢𝑚𝑘)

8: 𝒃 ← ∑𝐹
𝑓1=𝐹𝑢+1

∑𝐹
𝑓2=𝑓1

(
𝑃
𝑓2

𝑓1
⊙𝑄 𝑓1

𝑓2

)
1𝑘×1 · · · O(𝐹 2

𝑣𝑛𝑘)
9: 𝑌𝑖 𝑗 = 𝑎𝑖 + 𝑏 𝑗 − 1,∀(𝑖, 𝑗) ∈ Ω+, · · · O(|Ω+ |)
10: for 𝑓1← {1, · · · , 𝐹𝑢} do, · · · O(𝐹𝑢𝐹𝑣 |Ω+ |𝑘)
11: for 𝑓2← {𝐹𝑢 + 1, · · · , 𝐹𝑢} do
12: 𝑌𝑖 𝑗 ← 𝑌𝑖 𝑗 + 𝒑𝑖𝑓1,𝑓2

𝑇
𝒒 𝑗
𝑓2,𝑓1

, ∀(𝑖, 𝑗) ∈ Ω+
13: end for
14: end for
15: while Stopping condition is not satisfied do
16: 𝒅 ← ∑𝐹𝑢

𝛼=1

∑𝐹
𝛽=𝐹𝑢+1 (𝑃

𝛽
𝛼 (𝑄𝛼𝛽

𝑇 1𝑛×1))
· · · O(𝐹𝑢𝐹𝑣 (𝑚 + 𝑛)𝑘)

17:
¯𝑏 =

∑𝑛
𝑗=1
𝑏 𝑗 · · · O(𝑛)

18: for 𝑓1← {1, · · · , 𝐹𝑢} do
19: for 𝑓2← {𝑓1, · · · , 𝐹𝑢} do
20: Alg. 5 (𝑈𝑓1 ,𝑊

𝑓2

𝑓1
, 𝑃

𝑓2

𝑓1
, 𝑄

𝑓1

𝑓2
, 𝒅, 𝒂, ¯𝑏,𝑌)

21: Alg. 5 (𝑈𝑓2 , 𝐻
𝑓1

𝑓2
, 𝑄

𝑓1

𝑓2
, 𝑃

𝑓2

𝑓1
, 𝒅, 𝒂, ¯𝑏,𝑌)

22: end for
23: end for
24: 𝒆 ← ∑𝐹𝑢

𝛼=1

∑𝐹
𝛽=𝐹𝑢+1 (𝑄

𝛽
𝛼 (𝑃𝛼𝛽

𝑇 1𝑚×1))
· · · O(𝐹𝑢𝐹𝑣 (𝑚 + 𝑛)𝑘)

25: 𝑎 =
∑𝑚
𝑖=1
𝑎𝑖 · · · O(𝑚)

26: for 𝑓1← {𝐹𝑢 + 1, · · · , 𝐹 } do
27: for 𝑓2← {𝑓1, · · · , 𝐹 } do
28: Alg. 5 (𝑉𝑓1 ,𝑊

𝑓2

𝑓1
, 𝑃

𝑓2

𝑓1
, 𝑄

𝑓1

𝑓2
, 𝒆, 𝒃, 𝑎, 𝑌𝑇)

29: Alg. 5 (𝑉𝑓2 , 𝐻
𝑓1

𝑓2
, 𝑄

𝑓1

𝑓2
, 𝑃

𝑓2

𝑓1
, 𝒆, 𝒃, 𝑎, 𝑌𝑇)

30: end for
31: end for
32: for 𝑓1← {1, · · · , 𝐹𝑢} do
33: for 𝑓2← {𝐹𝑢 + 1, · · · , 𝐹 } do
34: 𝑇 ← ∑𝐹𝑢

𝛼=1

∑𝐹
𝛽=𝐹𝑢+1 (𝑃

𝛽
𝛼 (𝑄𝛼𝛽

𝑇𝑄
𝑓1

𝑓2
))

· · · O(𝐹𝑢𝐹𝑣 (𝑚 + 𝑛)𝑘2)
35: Alg. 6 (𝑈𝑓1 ,𝑊

𝑓2

𝑓1
, 𝑃

𝑓2

𝑓1
, 𝑄

𝑓1

𝑓2
, 𝒂, 𝒃, 𝑌 ,𝑇)

36: 𝑇 ← ∑𝐹𝑢
𝛼=1

∑𝐹
𝛽=𝐹𝑢+1 (𝑄

𝛼
𝛽
(𝑃𝛽𝛼𝑇𝑃

𝑓2

𝑓1
))

· · · O(𝐹𝑢𝐹𝑣 (𝑚 + 𝑛)𝑘2)
37: Alg. 6 (𝑉𝑓2 , 𝐻

𝑓1

𝑓2
, 𝑄

𝑓1

𝑓2
, 𝑃

𝑓2

𝑓1
, 𝒃, 𝒂, 𝑌𝑇 ,𝑇)

38: end for
39: end for
40: end while 33

Algorithm 5 Conjugate gradient procedure for approximately solving the sub-problems when 𝑓1,

𝑓2 ≤ 𝐹𝑢 or 𝑓1, 𝑓2 > 𝐹𝑢

1: Given input 𝑈𝑓1 ∈ R𝑚×𝐷𝑓1 ,𝑊
𝑓2

𝑓1
∈ R𝐷𝑓1×𝑘 , 𝑃 𝑓2

𝑓1
∈ R𝑚×𝑘 , 𝑄 𝑓1

𝑓2
∈ R𝑛×𝑘 , 𝒅 ∈ R𝑚, 𝒂 ∈ R𝑚, ¯𝑏 =∑𝑛

𝑗=1
𝑏 𝑗 , and 𝑌𝑖 𝑗 , ∀(𝑖, 𝑗) ∈ Ω+

2: Let

𝑈 ← 𝑈𝑓1 ,𝑊 ←𝑊
𝑓2

𝑓1

𝑃 ← 𝑃
𝑓2

𝑓1
, 𝑄 ← 𝑄

𝑓1

𝑓2
, 𝐷 ← 𝐷 𝑓1

3: // Calculate the right-hand side of the linear system

4: for 𝑖 ← {1, · · · ,𝑚} do · · · O(𝑚 + |Ω+ |)
5: 𝑧𝑖 ← 𝜔 (𝑛𝑎𝑖 + ¯𝑏 + 𝑑𝑖 − 𝑛𝑟)
6: 𝑧𝑖 ← 𝑧𝑖 +

∑
𝑗 ∈Ω+

𝑖
((1 − 𝜔)𝑌𝑖 𝑗 − 𝜔 (1 − 𝑟))

7: end for
8: 𝐺 ← 𝑈𝑇 diag(𝒛)𝑄 + 𝜆𝑊 · · · O(nnz(𝑈)𝑘 + 𝐷𝑘)
9: Let 𝑅 ← −𝐺 , 𝑉 ← 𝑅 and 𝛾 ← ∥𝑅∥2

F

10: while True do
11: if ∥𝑅∥F ≤ 𝜉 ∥𝐺 ∥F then
12: break
13: end if
14: //Compute and store the matrix-vector product to 𝑍

15: 𝒛 = ((𝑈𝑉) ⊙𝑄) 1𝑘×1 · · · O(𝑚𝑘 + nnz(𝑈)𝑘)
16: for 𝑖 ← {1, · · · ,𝑚} do · · · O(𝑚)
17: 𝑧𝑖 ← 𝑧𝑖 ((1 − 𝜔) |Ω+𝑖 | + 𝜔𝑛)
18: end for
19: 𝑍 ← 𝑈𝑇 diag(𝒛)𝑄 · · · O(nnz(𝑈)𝑘)
20: Step 10-16 in Algorithm 2

21: end while
22: //Update cached variables

23: 𝑊 ←𝑊 + 𝑆 · · · O(𝐷𝑘)
24: Δ𝑃 ← 𝑈𝑆 · · · O(nnz(𝑈)𝑘)
25: 𝑃 ← 𝑃 + Δ𝑃 · · · O(𝑚𝑘)
26: Δ𝒂 ← (Δ𝑃 ⊙ 𝑄)1𝑘×1 · · · O(𝑚𝑘)
27: 𝒂 ← 𝒂 + Δ𝒂 · · · O(𝑚)
28: 𝑌𝑖 𝑗 ← 𝑌𝑖 𝑗 + (Δ𝑎)𝑖 , ∀(𝑖, 𝑗) ∈ Ω+ · · · O(|Ω+ |)

34

Algorithm 6 Conjugate gradient procedure for approximately solving the sub-problems when

𝑓1 ≤ 𝐹𝑢 , 𝑓2 > 𝐹𝑢

1: Given input 𝑈𝑓1 ∈ R𝑚×𝐷𝑓1 ,𝑊
𝑓2

𝑓1
∈ R𝐷𝑓1×𝑘 , 𝑃 𝑓2

𝑓1
∈ R𝑚×𝑘 , 𝑄 𝑓1

𝑓2
∈ R𝑛×𝑘 ,𝒅 ∈ R𝑚, 𝒂 ∈ R𝑚, 𝒃 ∈ R𝑛 ,

𝑌𝑖 𝑗 , ∀(𝑖, 𝑗) ∈ Ω+, and 𝑇 ∈ R𝑚×𝑘
2: Let

𝑈 = [𝒖1, · · · , 𝒖𝑚]𝑇 ← 𝑈𝑓1 ,𝑊 ←𝑊
𝑓2

𝑓1

𝑃 ← 𝑃
𝑓2

𝑓1
, 𝑄 = [𝒒1, · · · , 𝒒𝑛]𝑇 ← 𝑄

𝑓1

𝑓2
, 𝐷 ← 𝐷 𝑓1

3: // Calculate the right-hand side of the linear system

4: 𝒒
o
← 𝑄𝑇 1𝑛×1 · · · O(𝑛𝑘)

5: 𝒒
b
← 𝑄𝑇𝒃 · · · O(𝑛𝑘)

6: 𝒛 ← 𝒂 − 𝑟1𝑚×1 · · · O(𝑚)
7: for 𝑖 ← {1, · · · ,𝑚} do · · · O((|Ω+ | + nnz(𝑈))𝑘)
8: 𝒛 ← ∑

𝑗 ∈Ω+
𝑖
((1 − 𝜔)𝑌𝑖 𝑗 − 𝜔 (1 − 𝑟))𝒒 𝑗

9: 𝐺 ← 𝐺 + 𝒖𝑖𝒛𝑇
10: end for
11: 𝐺 ← 𝐺 + 𝜔 ((𝑈𝑇 𝒛)𝒒𝑇

o
+ (𝑈𝑇 1𝑚×1)𝒒𝑇

b
+𝑈𝑇𝑇) + 𝜆𝑊

· · · O((nnz(𝑈) + 𝐷)𝑘)
12: 𝐵 ← 𝑄𝑇𝑄 · · · O(𝑛𝑘2)
13: Let 𝑅 ← −𝐺 , 𝑉 ← 𝑅 and 𝛾 ← ∥𝑅∥2

F

14: while True do
15: if ∥𝑅∥F ≤ 𝜉 ∥𝐺 ∥F then
16: break
17: end if
18: //Compute and store the matrix-vector product to 𝑍

19: 𝑍 ← 𝜆𝑉 + 𝜔𝑈𝑇 (𝑈 (𝑉𝐵)) · · · O(nnz(𝑈)𝑘 + 𝐷𝑘2)
20: for 𝑖 ← {1, · · · ,𝑚} do · · · O((|Ω+ | + nnz(𝑈))𝑘)
21: 𝝉 ← 0𝑘×1,𝜸 ← 𝒖𝑖

𝑇
𝑉

22: for 𝑗 ∈ Ω+𝑖 do
23: 𝑣 ← 𝜸𝒒 𝑗

24: 𝝉 ← 𝝉 + 𝑣𝒒 𝑗
25: end for
26: 𝑍 ← 𝑍 + (1 − 𝜔)𝒖𝑖𝝉𝑇
27: end for
28: Step 10-16 in Algorithm 2

29: end while
30: //Update cached variables

31: 𝑊 ←𝑊 + 𝑆 · · · O(𝐷𝑘)
32: Δ𝑃 ← 𝑈𝑆 , where Δ𝑃 is defined in (B.37)

· · · O(nnz(𝑈)𝑘)
33: 𝑃 ← 𝑃 + Δ𝑃 · · · O(𝑚𝑘)
34: 𝑌𝑖 𝑗 ← 𝑌𝑖 𝑗 + (Δ𝒑)𝑖𝑇 𝒒 𝑗 , ∀(𝑖, 𝑗) ∈ Ω+

· · · O(|Ω+ |𝑘)

35

	Abstract
	1 Introduction
	1.1 Selection of Negative Pairs: Subsampled versus Non-subsampled
	1.2 One-class Models Incorporating Side Information
	1.3 Motivation and Goal of This Work

	2 Field-aware Factorization Machines and their Optimization
	2.1 A Review of FFM
	2.2 Issues for One-class Extension of FFM
	2.3 Existing Optimization Methods for Training FM

	3 Block CD Algorithms for Learning FFM
	3.1 Multi-block Convex Reformulation of FFM
	3.2 Block CD Method for FFM with the Squared Loss
	3.3 Solving the Linear System (33) by Matrix Operations

	4 Block CD Method for OCFFM
	5 A discussion on Models for Recommender Systems with Implicit Feedback
	6 Experiments
	6.1 Data Sets
	6.2 Evaluation Criteria
	6.3 Considered Models
	6.4 Comparison on Test Performance
	6.5 Impact of Parameters

	7 Conclusion and Future Works
	References
	A Proof of Theorem 3.1
	B Details of Block CD Method for OCFFM
	B.1 The Computation of the Right-hand Side of the Linear System
	B.2 The Computation of Matrix-vector Products
	B.3 Implementation Details
	B.4 Computational Complexity

	C Experimental Details
	C.1 Implementation
	C.2 Parameters

