
JMLR: Workshop and Conference Proceedings 1–16

A Study on Trust Region Update Rules in Newton Methods
for Large-scale Linear Classification

Abstract

The main task in training a linear classifier is to solve an unconstrained minimization
problem. To apply an optimization method typically we iteratively find a good direction
and then decide a suitable step size. Past developments of extending optimization methods
for large-scale linear classification focus on finding the direction, but little attention has
been paid on adjusting the step size. In this work, we explain that inappropriate step-
size adjustment may lead to serious slow convergence. Among the two major methods
for step-size selection, line search and trust region, we focus on investigating the trust
region methods. After presenting some detailed analysis, we develop novel and effective
techniques to adjust the trust-region size. Experiments indicate that our new settings
significantly outperform existing implementations for large-scale linear classification.

Keywords: large-scale linear classification, Newton method, trust region, line search

1. Introduction

In linear classification, logistic regression and linear SVM are two commonly used models.
We can estimate the model parameter w by solving an unconstrained optimization problem

minw f(w). (1)

Existing unconstrained minimization methods can be conveniently applied to solve (1)
though some tweaks are needed to handle large-scale data. In general, these methods
generate a sequence {wk}∞k=0 converging to the optimal solution. At the kth iteration, from
the current iterate wk, a descent direction sk is obtained. Then we decide the step size
αk > 0 to get the next iterate wk+1:

wk+1 = wk + αks
k. (2)

The two important components of unconstrained minimization, finding a descent direction
sk and deciding the step size αk, have been well studied in literature. For example, gradient
descent, quasi-Newton and Newton are common techniques to find sk. For deciding αk, line
search and trust region are two most used methods.

When the training data set is huge, minimizing f(w) becomes a hard optimization
problem. Fortunately, it is known that f(w) of linear classification possesses some special
structures, so some modifications of standard optimization methods can make large-scale
training possible. Existing works (e.g., Mangasarian, 2002; Keerthi and DeCoste, 2005; Lin
et al., 2008) mainly focus on getting the direction sk, but little attention has been paid for
finding a suitable step size αk.

c© .



Recently, we observed that occasionally a Newton method (Lin et al., 2008) implemented
in the popular package LIBLINEAR (Fan et al., 2008) for linear classification has slow
convergence. We suspect that the main reason is because of inappropriate step-size selection.
This implementation uses a trust region setting, so in contrast to the update in (2), the step
size is indirectly decided by a trust-region constraint. Specifically, sk is obtained within a
trust region with size ∆k:

‖s‖ ≤ ∆k.

We accept or reject wk+sk depending on whether f(wk+sk) leads to a sufficient reduction
from f(wk). Then ∆k is adjusted according to the function-value reduction. Because this
Newton method in LIBLINEAR is widely used, it is important to investigate and fix the
slow-convergence issues.

In this work, we explain why in some situations the adjustment of ∆k in LIBLINEAR is
inappropriate. Based on our findings, we propose new rules to update ∆k. In particular, we
incorporate the information of whether the search direction s has reached the trust region
boundary or not. While the change of the update rule is very simple, the slow-convergence
issues are effectively solved.

This paper is organized as follows. In Section 2, we introduce Newton methods for large-
scale linear classification, and detailedly discuss two strategies (line search and trust region)
for deciding the step size. Some experiments are presented to illustrate the importance
of finding a suitable step size. In Section 3, we investigate why slow convergence may
occur and propose novel techniques for adjusting the trust-region size. Section 4 conducts
extensive experiments to demonstrate the effectiveness of the proposed methods. Finally,
Section 5 concludes this work. The proposed method has been available for public use and
supplementary materials are at https://goo.gl/MUxNgd.

2. Truncated Newton Methods and the Selection of Step Size

Given training data (yi,xi), i = 1, ..., l, where yi = ±1 is the label and xi ∈ Rn is a feature
vector, a linear classifier finds a model w ∈ Rn by solving the following problem:

minw f(w) ≡ 1

2
wTw + C

∑l

i=1
ξ(yiw

Txi), (3)

where wTw/2 is the regularization term, ξ(yiw
Txi) is the loss function, and C > 0 is a

regularization parameter. We consider logistic and L2 losses:

ξLR(ywTx) = log(1 + exp(−ywTx)), ξL2(yw
Tx) = (max(0, 1− ywTx))2. (4)

From the current iterate wk, Newton Methods obtain a direction sk by minimizing the
quadratic approximation of

f(wk + s)− f(wk) ≈ qk(s) ≡ ∇f(wk)Ts +
1

2
sT∇2f(wk)s, (5)

where the gradient and the Hessian of f(w) are respectively

∇f(w) = w + C
∑l

i=1
ξ′(yiw

Txi)yixi, ∇2f(w) = I + CXTDX. (6)

2

https://goo.gl/MUxNgd


Trust Region Update Rules in Newton Methods for Linear Classification

In (6), I is the identity matrix, D is a diagonal matrix with

Dii = ξ′′(yiw
Txi), and X = [x1, ...,xl]

T is the data matrix. (7)

Note that L2 loss is not twice differentiable, but we can consider the generalized Hessian
(Mangasarian, 2002). From (6), ∇2f(wk) is positive definite, so we can obtain sk by solving
the following linear system.

∇2f(wk)s = −∇f(wk). (8)

Exactly solving (8) is often expensive, so truncated Newton methods that approxi-
mately solve (8) have been commonly used. Typically an inner iterative procedure such as
the conjugate gradient (CG) method (Hestenes and Stiefel, 1952) is applied. The CG pro-
cedure involves a sequence of Hessian-vector products, but for a large number of features,
∇2f(wk) ∈ Rn×n is too large to be stored. Past developments (e.g., Keerthi and DeCoste,
2005; Lin et al., 2008) have shown that the special structure in (6) allows us to conduct
Hessian-vector products without explicitly forming the Hessian:

∇2f(w)s = (I + CXTDX)s = s + CXT (D(Xs)). (9)

The CG procedure returns a direction after an approximate solution of (8) is obtained. For
example, LIBLINEAR considers the following condition to terminate the CG procedure.

‖ − ∇2f(wk)s−∇f(wk)‖ ≤ 0.1‖∇f(wk)‖. (10)

For most optimization approaches including Newton methods, after finding a direction
we must decide a suitable step size in order to ensure the convergence. Before describing
two main strategies to choose the step size, we briefly discuss the complexity of a truncated
Newton method. The cost per iteration is roughly

O(ln)× (# CG iterations + 2) + cost of deciding the step size, (11)

where the O(ln) term comes from the cost of each function, gradient evaluation, or Hessian-
vector product. If X is a sparse matrix, then the O(ln) term is replaced by O(#nnz), where
#nnz is the number of non-zero entries in X. For simplicity in the rest of the discussion
we use O(ln) all the time. We will show that the cost of deciding the step size is relatively
small, but it can strongly affect the number of iterations and hence the total running time.

2.1. Line Search Methods

Line search methods aim to find a step size αk along the ray {wk+αsk | α > 0} to minimize
f(wk + αsk). Ideally we may find

αk = arg minα>0 f(wk + αsk), (12)

but the exact minimization of f(wk+αsk) may not be easy. A cheaper setting is to inexactly
find an αk that can produce a substantial reduction of f(w).

3



Among the inexact line search methods, backtrack line search is a popular one because of
its simplicity and efficiency. This approach finds the largest α ∈ {1, β, β2, ...} with 0 < β < 1
so that the new function value is sufficiently decreased:

f(wk + αsk) ≤ f(wk) + τα∇f(wk)Tsk, where 0 < τ < 1. (13)

Note that∇f(wk)Tsk < 0 because the CG procedure obtians a descent direction. A concern
is that many function evaluations f(wk + αsk) under various α values are conducted. For
linear classification, a trick to save the cost (e.g., Wang et al., 2016) is by considering

X(wk + αsk) = Xwk + αXsk. (14)

Note that X(wk+αsk) is the main operation in calculating the function value f(wk+αsk);
see (3)-(4). Each matrix-vector product in (14) expensively costs O(ln), but if Xwk and
Xsk are available, at each α, (14) takes only O(l). To get Xwk and Xsk, we first maintain
Xwk throughout iterations: after (13) is satisfied, the current X(wk + αsk) can be passed
as Xwk+1 to the next Newton iteration. Therefore, Xsk is the only O(ln) operation to
be taken. Because it can be considered as the major cost for getting Xwk+1 for the next
function evaluation, by excluding it the cost of backtrack line search is merely

O(l)× (#line-search steps). (15)

From (15) and (11), the cost of deciding the size is generally a small portion of the algorithm.

2.2. Trust Region Methods

A trust region method indirectly adjusts the step size by finding a direction sk within a
trust region. The direction is taken if it results in a sufficient function-value reduction. The
size of the trust region is then adjusted.

Given a trust region with size ∆k at the kth iteration, trust region methods compute
the approximate Newton direction sk by solving the following trust-region sub-problem:

mins qk(s) subject to ‖s‖ ≤ ∆k, (16)

where qk(s) is defined in (5). Then, we update wk by checking the ratio between the real
and the predicted reduction of f(w):

ρk =
f(wk + sk)− f(wk)

qk(sk)
. (17)

Only if the ratio is large enough, will we update w:

wk+1 =

{
wk + sk, if ρ > η0,

wk, if ρ ≤ η0,
(18)

where η0 > 0 is a pre-defined constant. Then, we adjust ∆k by comparing the actual and
the predicted function-value reduction. A common framework (Lin and Moré, 1999) is:

∆k+1 ∈





[γ1 min{‖sk‖,∆k}, γ2∆k], if ρ ≤ η1,
[γ1∆k, γ3∆k], if ρ ∈ (η1, η2),

[∆k, γ3∆k], if ρ ≥ η2,
(19)

4



Trust Region Update Rules in Newton Methods for Linear Classification

Algorithm 1: A framework of CG-based trust region Newton methods

Given w0.
For k = 0, 1, 2, ...

1. If ∇f(wk) = 0, stop.
2. Approximately solve trust-region sub-problem (16) by the CG method to obtain a

direction sk.
3. Compute ρk via (17).
4. Update wk to wk+1 according to (18).
5. Update ∆k+1 according to (19).

where 0 < η1 < η2 ≤ 1 and 0 < γ1 < γ2 < 1 < γ3. If ρ ≥ η2, then we consider the
current Newton step is successful and enlarge the region for the next iteration. In contrast,
if ρ ≤ η1, then we shrink the trust region by considering the current step as an unsuccessful
one. We summarize a trust region Newton method in Algorithm 1.

To approximately solve the sub-problem (16), a classic approach (Steihaug, 1983) has
been used in Lin et al. (2008) for LIBLINEAR. The CG procedure starts with s = 0 and
satisfies that ‖s‖ is monotonically increasing. The CG procedure stops after either (10) is
satisfied or an s on the boundary is obtained after CG iterates exceed the trust region.

For more details and the asymptotic convergence of the trust-region framework consid-
ered here, see Section 2 in Lin et al. (2008).

Various ways can be considered for implementing the update rule in (19). The one
implemented in LIBLINEAR is

∆k+1 =





min((max(α∗k, γ1))‖sk‖, γ2∆k), if ρ < η0,

max(γ1∆k,min(α∗k‖sk‖, γ2∆k)), if ρ ∈ [η0, η1],

max(γ1∆k,min(α∗k‖sk‖, γ3∆k)), if ρ ∈ (η1, η2),

max(∆k,min(α∗k‖sk‖, γ3∆k)), if ρ ≥ η2.

(20a)

(20b)

(20c)

(20d)

We see that the first condition in (19) is separated to two conditions here using the parameter
η0 in (18). Then clearly (20) falls into the framework of (19). In (20), α∗k‖sk‖ is introduced
as an estimate of ∆k (Lin and Moré, 1999), where

α∗k =
−∇f(wk)Tsk

2(f(wk + sk)− f(wk)−∇f(wk)Tsk)
(21)

is the minimum of φ(α), a quadratic interpolation of f(wk + αsk) such that

φ(0) = f(wk), φ′(0) = ∇f(wk)Tsk, φ(1) = f(wk + sk). (22)

Because f(w) is strictly convex, the denominator in (21) is always positive and thus α∗k is
well defined. Then in (20), we choose α∗k‖sk‖ or the closest endpoint in the corresponding
interval as ∆k+1. Other existing works that have incorporated α‖sk‖ in the update rule
include, for example, (Conn et al., 2000, Section 17.1).

5



2.3. Demonstration of Slow-convergence Situations

As mentioned in Section 1, this study is motivated from the occasional slow convergence of
the trust region Newton method in LIBLINEAR. Here we demonstrate some real cases.

2.3.1. Settings of Evaluation

We carefully design our evaluation of optimization methods for linear classification. From
(11), the major computation of the truncated Newton procedure is in the CG iterations.
Thus for each method we check the cumulative number of CG iterations versus the relative
reduction of the function value defined as

f(wk)− f(w∗)

f(w∗)
, (23)

where w∗ is the optimal solution approximately obtained by running Newton methods with
many iterations. Regarding the regularization parameter C, many past works simply pick
a fixed value such as C = 1 or 1, 000 (e.g., Hsieh et al., 2008). However, such a setting
may be different from the practical use of linear classification, where a suitable C value is
selected from cross validation on a sequence of candidate values. Therefore, our strategy
is to first identify the Cbest value, which leads to the highest CV accuracy. Then training
speed under values around Cbest such as

{0.01, 0.1, 1, 10, 100} × Cbest

is checked because these C values are used in practice.
Our another setting to ensure a suitable evaluation is by taking the stopping condition

into consideration. It is not useful to check (23) when w is very close to w∗ because the
test accuracy may have long been stabilized. That is, we do not care the behavior of
an optimization algorithm if it should have been stopped earlier. Therefore, we consider
LIBLINEAR’s stopping condition

‖∇f(wk)‖ ≤ ε · min(#pos,#neg)

l
· ‖∇f(w0)‖, (24)

where #pos, #neg are the numbers of positive- and negative-labeled instances respectively,
and l is the total number of instances. When the default condition with ε = 10−2 is reached,
roughly an accurate solution has been obtained. That is, in testing a new instance, the
prediction by the obtained model is generally the same as that by the optimal solution.
In every figure we draw horizontal lines indicating that (24) has been satisfied with ε =
{10−1, 10−2, 10−3, 10−4}.1 The behavior of an optimization algorithm before ε = 10−1 or
ε = 10−4 is less important because the training process either stops too early or too late.
More details about the data sets and our experimental setting are in Section 4.1.

1. This setting depends on the optimization methods, because each method generates a sequence {wk}.
Here we always consider the sequence obtained by the Newton implementation in LIBLINEAR 2.1.

6



Trust Region Update Rules in Newton Methods for Linear Classification

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

CG iterations 1e3

10-6

10-5

10-4

10-3

10-2

10-1

100
(f
−f

∗ )
/f

∗
LineSearch

TR

(a) yahookr, Cbest

0.0 0.5 1.0 1.5 2.0 2.5 3.0

CG iterations 1e3

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

(f
−f

∗ )
/f

∗

LineSearch

TR

(b) kdda, Cbest

0 1 2 3 4 5 6 7 8 9

CG iterations 1e3

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

(f
−f

∗ )
/f

∗

LineSearch

TR

(c) kddb, Cbest

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

CG iterations 1e4

10-4

10-3

10-2

10-1

100

101

(f
−f

∗ )
/f

∗

LineSearch

TR

(d) yahookr, 100Cbest

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

CG iterations 1e4

10-6

10-5

10-4

10-3

10-2

10-1

100

(f
−f

∗ )
/f

∗

LineSearch

TR

(e) kdda, 100Cbest

0 1 2 3 4 5 6 7 8 9

CG iterations 1e4

10-6

10-5

10-4

10-3

10-2

10-1

100

101

(f
−f

∗ )
/f

∗

LineSearch

TR

(f ) kddb, 100Cbest

Figure 1: Convergence of truncated Newton methods for logistic regression using line search
and trust region to decide the step size. The y-axis is the relative reduction of function
value in log-scale; see (23). The x-axis is the cumulative number of CG iterations. We
give a mark in each curve for every five Newton iterations. Cbest for each data is listed in
supplementary materials. The horizontal lines indicate that the stopping condition (24) has
been satisfied with ε = {10−1, 10−2, 10−3, 10−4}.

2.3.2. Situations of Slow Convergence

We show in Figure 1 that for some problems the trust region Newton method in LIBLINEAR
that applies (20) to update ∆k may converge slowly. Besides we make a comparison between
line search and trust region methods. We make the following observations.
• Under the same truncated Newton framework, the convergence speed can be very different

only because of different strategies (line search or trust region) in deciding the step sizes.
• When C = Cbest, line search leads to much faster convergence than trust region, but the

opposite result is observed for C = 100Cbest.
The above experiment shows the importance of perfecting the step-size selection in

truncated Newton methods for linear classification.

3. Analysis and New Update Rules

In this section, after investigating the scenario of slow convergences, we propose novel and
effective rules to update the trust region.

3.1. Investigation of Why Inappropriate Step Sizes are Obtained

We begin with analyzing the update rule (20) by considering some scenarios in Figure 1
for which it does not perform well. In Figure 2, we present the relationship between ∆k

7



0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

CG iterations ×103

10−1

100

101

102

103

∆
k

or
α
k

∥ ∥ s
k
∥ ∥

LineSearch
TR

10−710−610−510−410−310−210−1100

(f − f∗)/f∗
10−1

100

101

102

103

∆
k

or
α
k

∥ ∥ s
k
∥ ∥

LineSearch
TR

(a) yahookr, LR loss, C = Cbest

0 1 2 3 4 5 6 7 8

CG iterations ×103

10−1

100

101

102

103

∆
k

or
α
k

∥ ∥ s
k
∥ ∥

LineSearch
TR

10−610−510−410−310−210−1100

(f − f∗)/f∗
10−1

100

101

102

103

∆
k

or
α
k

∥ ∥ s
k
∥ ∥

LineSearch
TR

(b) kddb, LR loss, C = Cbest

Figure 2: An investigation on the changes of ∆k (for trust region methods) and αk‖sk‖ (for
line search methods). The left column shows ∆k or αk‖sk‖ versus the cumulative number
of CG iterations, while the right column shows ∆k or αk‖sk‖ versus the relative difference
to the optimal function value.

and the cumulative number of CG iterations, and between ∆k and the relative difference
to the optimal function value. For line search, we replace ∆k with αk‖sk‖. The purpose is
to check how the step size changes in the optimization process. We are mainly interested
in ∆k and αk‖sk‖ in early iterations because values in final iterations are not comparable:
for line search methods, αk‖sk‖ → 0 as k → ∞, but ∆k in trust region methods does not
possess such a property.

Results in Figure 2 indicate that in early iterations, ∆k of the trust region method is
much smaller than αk‖sk‖ of line search. The small ∆k causes that the CG procedure
terminates because of hitting the trust-region boundary rather than satisfying the stopping
condition (10) of solving the Newton linear system. To illustrate this point, in Table 1 we
present details of early iterations in training the data set yahookr (logistic loss, C = Cbest).
Clearly, for the trust region setting, ∆k does not increase much in early iterations and the
CG procedure often hits the trust-region boundary. The decrease of the function value
in early iterations is worse than that of using line search. The analysis seems to indicate
that the update rule in (20) is too conservative to enlarge ∆k. However, if we aggressively
increase ∆k, some CG steps may be wasted because of the following situations:
1. Because ∆k is large, the CG procedure takes many steps without hitting the boundary.
2. However, the resulting direction sk does not lead to the sufficient decrease of the function

value. That is, ρk ≤ η0 in (18), so we reduce ∆k to be ∆k+1 and repeat the same CG
procedure in a smaller region.

8



Trust Region Update Rules in Newton Methods for Linear Classification

Table 1: Details of training the data set yahookr (logistic loss, C = Cbest). The value αmin

is defined in (25). The column of ‖sk‖ = ∆k indicates if the CG procedure stops because
of hitting the trust-region boundary or not. The last row shows the function value of each
approach after the listed iterations.

iter
Line Search Trust Region

#CG αk‖sk‖ αk #CG ∆k ‖sk‖ = ∆k α∗k αmin

1 4 26 1 4 29 Y 1.121 1.445

2 28 266 1 4 37 Y 1.273 1.518

3 31 364 1 5 48 Y 1.279 1.465

4 53 759 1 6 55 Y 1.153 1.245

5 16 37 1 7 55 Y 0.965 0.940

6 136 609 1 9 63 Y 1.141 1.204

7 35 21 1 9 72 Y 1.139 1.214

8 141 41 1 12 72 Y 0.978 0.972

9 136 4 1 5 72 N 1.053 1.091

10 157 6e-01 1 9 79 Y 1.098 1.178

11 126 3e-02 1 13 79 Y 0.824 0.868

12 150 6e-03 1 14 55 Y 0.699 0.618

13 138 3e-04 1 9 38 Y 0.694 0.641

14 159 5e-05 1 11 27 Y 0.696 0.645

f 4.727e+06 7.218e+06

Similar situations may occur for the line search setting. In Table 1, many CG steps are
taken in each of the early iterations. The efforts pay off because the resulting directions
lead to the sufficient decrease of function values with αk close to 1. However, when C is
enlarged to 100Cbest, in Figure 1d, slow convergence occurs in the middle of the optimization
procedure. Each iteration requires many CG steps but the step size obtained by backtrack
line search is much smaller than one. Thus wk is slowly updated. This situation is where
trust region is superior to line search because if we anticipate a small step size, the number
of CG iterations can be restricted by the trust region constraint.

To gain more understanding about the update rule (20), we investigate its use of α∗k‖sk‖
to estimate ∆k. In Table 1, we present α∗k and

αmin ≡ arg minα f(wk + αsk). (25)

Results show that α∗k is smaller than αmin in early iterations. If αmin is used instead of α∗k,
∆k is increased more quickly and a faster reduction of the function value may be obtained.
Therefore, α∗k obtained by a quadratic interpolation in (22) may not be accurate enough
to approximate αmin in (25). Based on the observation here, later we will propose more
accurate estimates of αmin as our α∗k.

3.2. Our New Update Rules

Based on the investigation in Section 3.1, we propose and investigate the following changes
for the trust-region update rule.

9



1. We will more quickly enlarge ∆k in early iterations.
2. We will devise effective methods to accurately solve minα f(wk + αsk).
We explain the first change here while leave details of the second in Section 3.3.

In the framework (19), we have

∆k+1 ∈ [∆k, γ3∆k], if ρ ≥ η2.

That is, if the predicted reduction is close enough to the actual reduction, we may enlarge
∆. The realization in (20) has

∆k+1 = max(∆k,min(α∗k‖sk‖, γ3∆k)), if ρ ≥ η2. (26)

We mentioned in Section 3.1 that in early iterations, ‖sk‖ = ∆k often occurs. If α∗k is not
large (say ≈ 1), then the setting in (26) does not increase ∆k much for ∆k+1. However,

ρ ≥ η2 and ‖sk‖ = ∆k (27)

suggest that the quadratic approximation (5) is reasonably good and the solution of the
linear system (8) is outside the region ‖s‖ ≤ ∆k. Therefore, it is suitable to enlarge ∆ if
(27) holds. To this end, we split (27) to two cases and have the following update rule:

∆k+1 =





same rules in (20a)-(20c), if ρ < η0, ρ ∈ [η0, η1], or ρ ∈ (η1, η2),

max(∆k,min(α∗k‖sk‖, γ3∆k)), if ρ ≥ η2 and ‖sk‖ < ∆k,

γ3∆k, if ρ ≥ η2 and ‖sk‖ = ∆k.

(28)

Some optimization works on trust region methods (e.g., Nocedal and Wright, 2006, Chap-
ter 4) have specifically handled the case of (27), though the importance is seldom studied.
We will show that for some problems, the convergence speed can be dramatically improved.

3.3. Accurate Minimization of f(wk + αsk)

The analysis in Section 3.1 indicates that an accurate estimate of arg minα f(wk + αsk)
may serve as a better α∗k in the update rule. Whereas, for general optimization problems an
accurate estimate is often expensive. This situation has caused that for line search methods,
backtrack rather than exact search is used in practice. However, an important finding in
this work is that this one-variable minimization is cheap for linear classification. Define

g(α) = f(wk + αsk). (29)

We can see that

g(α) =
1

2
(wk)Twk + α(wk)Tsk +

1

2
α2(sk)Tsk + C

∑l

i=1
ξ
(
yi(w

k + αsk)Txi

)
,

g′(α) = (wk)Tsk + α(sk)Tsk + C
∑l

i=1
ξ′
(
yi(w

k + αsk)Txi

)
yix

T
i s

k,

g′′(α) = (sk)Tsk + C
∑l

i=1
ξ′′
(
yi(w

k + αsk)Txi

)
(yix

T
i s

k)2.

(30)

(31)

(32)

10



Trust Region Update Rules in Newton Methods for Linear Classification

Algorithm 2: A bisection method to minimize g(α) = f(wk + αsk)

Initialize αl = 0, αr = 2, max steps = 10 and εb = 10−3.
While g′(αr) < 0 do αl = αr;αr = αl + 2 end
For i = 1, . . . , max steps
αm = (αl + αr)/2
If g′(αm) < 0 then αl = αm else αr = αm
If |g′(αm)| < εb|g′(0)| then break

return αl

A direct calculation of (30)-(32) expensively costs O(ln). However, if

(wk)Twk, (wk)Tsk, (sk)Tsk, Xwk, Xsk (33)

are available, then the cost is significantly reduced to O(l). The idea is similar to how
we reduce the cost for line search in Section 2.1. That is, by O(ln) cost to calculate all
values in (33), for any given α, (30)-(32) can be cheaply calculated in O(l) time. Then
many unconstrained optimization methods can be applied to minimize (29) if they do not
evaluate (30)-(32) too many times. The cost of minimizing (29) becomes much smaller than

O(ln)×#CG iterations

for finding the Newton direction; see the discussion on the complexity of truncated Newton
methods in (11). In Section 2 of supplementary materials we investigate various methods
to minimize (29). Our conclusion is that instead of using general optimization technique a
simple bisection method is effective. We discuss the bisection implementation in detail in
Section 3.3.1, while leave others in supplementary materials.

3.3.1. Bisection Method

The bisection method is a well known approach to find a root of a one-variable function. It
starts with two points having positive and negative function values and continues to shrink
the interval by half. The following theorem shows that the bisection method can be used
to solve g′(α) = 0 for minimizing (29). The proof is in supplementary materials.

Theorem 1 Consider logistic or L2 loss. The function g(α) defined in (30) satisfies
1. g′(α) = 0 has a unique root at an α∗ > 0. This root is also the unique minimum of (29).
2. g′(α), α ≥ 0 is a strictly increasing function. Further, g′(0) < 0.

An implementation of the bisection method is in Algorithm 2. To find left and right
initial points, we take the properties g′(0) < 0 and g′(α) > 0, ∀α ≥ α∗. We start with
αl = 0 and αr = 2, and check if g′(αr) > 0. If g′(αr) < 0, we continually increase αl
and αr by 2 until g′(αr) > 0. Note that the initial αr = 2 is reasonable because for the
backtrack line search the start point is one, which is the middle point of the interval [0, 2].
After obtaining initial left and right points, we shrink the interval by half at each iteration
and maintain g′(αl) < 0 and g′(αr) > 0. At each iteration the cost is O(l) for calculating

11



g′(αm), where αm = (αl + αr)/2. With a given tolerance εb, the algorithm stops after
|g′(αm)| < εb|g′(0)| or reaching a specified maximal number of steps. We then return αl
rather than αr because g′(αl) < 0 ensures the decrease of the function value. That is, if
αl > 0, there exists ᾱ ∈ [0, αl] such that

f(wk + αls
k) = g(αl) = g(0) + g′(ᾱ)αl < g(0) = f(wk),

where we use the increasing property of g′(α), ∀α ≥ 0 to have g′(ᾱ) ≤ g′(αl) < 0.
Because the interval is cut to half each time, the number of steps is small in practice.

In supplementary materials, we experimentally confirm that the cost of using the bisection
method to solve (25) is much cheaper than that of CG iterations for finding the direction.

3.3.2. Discussion

The earlier work (Keerthi and DeCoste, 2005) devises an O(l log l) algorithm to exactly
minimize (29) when the L2 loss is used. They take the special structure of the L2 loss into
account. In contrast, by techniques in (30)-(33), under a comparable cost of

O(l)× (# of g(α), g′(α), or g′′(α) evaluations),

our method can handle any convex and differentiable loss function in the form of ξ(ywTx).

4. Experiments

In this section, we begin with investigating the effectiveness of techniques proposed in
Section 3. Then we demonstrate that for logistic regression the new update rule outperforms
the rule (20) used in LIBLINEAR and the line search method. Because of space limit, only
part of experimental results are presented. More experiments as well as results for L2-loss
SVM are given in supplementary materials.

4.1. Data Sets and Experimental Settings

We consider binary classification data sets shown in Table 1 of the supplementary materials.
Except yahoojp and yahookr, all other sets are available from https://www.csie.ntu.

edu.tw/~cjlin/libsvmtools/datasets. We modify LIBLINEAR to implement methods
discussed in this paper. We let w0 = 0 as the initial solution. For the line search methods,
at each Newton iteration, the CG procedure stops if the direction s satisfies (10). If trust
region methods are used, the CG procedure stops if either (10) holds or ‖s‖ ≥ ∆k.

For the condition (13) in backtrack line search, we set τ = 0.01, β = 1/2. For trust
region methods, we consider the same parameter values in LIBLINEAR:

η0 = 0, η1 = 0.25, η2 = 0.75, γ1 = 0.25, γ2 = 0.5, γ3 = 4.

4.2. Effectiveness of the Proposed Techniques in Section 3

We compare the following trust-region settings proposed in Section 3.
• OldTR: the setting in LIBLINEAR 2.1. The rule (20) is used, and α∗k is obtained by (21).
• +boundary check: the rule (20) is modified to (28).

12

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets


Trust Region Update Rules in Newton Methods for Linear Classification

0 1 2 3 4 5 6 7

CG iterations 1e3

10-4

10-3

10-2

10-1

100

101
(f
−f

∗ )
/f

∗
OldTR

+boundary check

+better alpha

+both

(a) yahookr, 100Cbest

0.0 0.2 0.4 0.6 0.8 1.0 1.2

CG iterations 1e4

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

(f
−f

∗ )
/f

∗

OldTR

+boundary check

+better alpha

+both

(b) kddb, Cbest

0 1 2 3 4 5 6 7 8

CG iterations 1e4

10-6

10-5

10-4

10-3

10-2

10-1

100

101

(f
−f

∗ )
/f

∗

OldTR

+boundary check

+better alpha

+both

(c) kddb, 100Cbest

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Training time (sec) 1e4

10-4

10-3

10-2

10-1

100

101

(f
−f

∗ )
/f

∗

OldTR

+boundary check

+better alpha

+both

(d) yahookr, 100Cbest

0 1 2 3 4 5 6 7 8

Training time (sec) 1e4

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

(f
−f

∗ )
/f

∗

OldTR

+boundary check

+better alpha

+both

(e) kddb, Cbest

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Training time (sec) 1e5

10-6

10-5

10-4

10-3

10-2

10-1

100

101

(f
−f

∗ )
/f

∗

OldTR

+boundary check

+better alpha

+both

(f ) kddb, 100Cbest

Figure 3: Convergence of using different trust region update rules. Upper: x-axis is the
cumulative number of CG iterations. Lower: x-axis is the training time. See Figure 1 for
explanation of information in each sub-figure.

• +better alpha: α∗k is by the bisection method in Section 3.3.1 rather than by (21).
• +both: the above two changes are both applied.
We present two comparisons in Figure 3:
1. function-value reduction versus the cumulative number of CG iterations.
2. function-value reduction versus the running time.
The use of both the cumulative number of CG iterations and the running time helps to
check if they are strongly correlated. From Figures 3, we make the following observations.
1. Figures of showing the cumulative numbers of CG iterations are almost the same as those

of showing the running time. Therefore, experiments confirm our analysis in Section 3
that even if we accurately minimize f(wk +αsk) by the bisection method, CG steps are
still the dominate operations. Subsequently we will only present figures of function-value
reduction versus CG iterations.

2. The approach “+boundary check” of enlarging ∆k when (27) holds is very effective. It
is very remarkable that a small change leads to huge improvements.

3. By comparing “OldTR” and “+better alpha” we see that an accurate minimization of
f(wk + αsk) may not always improve the convergence speed.

Our results are surprising because the accurate minimization of f(wk + αsk) seems to
be less useful than the simple change in (28) by specially handling the situation when
‖sk‖ = ∆k. We can see that “+boundary check” is as competitive as “+both.” To examine
if incorporating α∗k‖sk‖ in the trust-region update rule is really needed, in Section 4.3 we
conduct some further investigation on the step size α.

13



0 1 2 3 4 5 6 7 8

CG iterations 1e2

10-6

10-5

10-4

10-3

10-2

10-1

100
(f
−f

∗ )
/f

∗
Backtrack

Exact

(a) yahookr, Cbest

0.0 0.5 1.0 1.5 2.0

CG iterations 1e3

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

(f
−f

∗ )
/f

∗

Backtrack

Exact

(b) kdda, Cbest

0 1 2 3 4 5

CG iterations 1e3

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

(f
−f

∗ )
/f

∗

Backtrack

Exact

(c) kddb, Cbest

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

CG iterations 1e4

10-4

10-3

10-2

10-1

100

101

(f
−f

∗ )
/f

∗

Backtrack

Exact

(d) yahookr, 100Cbest

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

CG iterations 1e4

10-6

10-5

10-4

10-3

10-2

10-1

100

(f
−f

∗ )
/f

∗

Backtrack

Exact

(e) kdda, 100Cbest

0 1 2 3 4 5 6 7 8 9

CG iterations 1e4

10-6

10-5

10-4

10-3

10-2

10-1

100

101

(f
−f

∗ )
/f

∗

Backtrack

Exact

(f ) kddb, 100Cbest

Figure 4: Comparison of two line search methods on logistic regression with C = {1, 100}×
Cbest. See Figure 1 for explanation of information in each sub-figure.

Overall we can see that the proposed techniques in Section 3 effectively improve upon
the current setting in LIBLINEAR.

4.3. More Investigation on the Step Size α

We mentioned in Section 4.2 that in Figure 3, in some situations a more accurate mini-
mization of f(wk +αsk) leads to slower convergence than the crude estimate by (22). This
result motivates us to further study the role of α in the optimization process. We begin
with comparing the following two settings to decide the step size in the line search method.
• Backtrack: the backtrack line search procedure discussed in Section 2.1.
• Exact: exact line search, where f(wk + αsk) is minimized by a bisection method.

We show results of using C = {1, 100}×Cbest in Figures 4 for logistic regression. When
C = Cbest, backtrack is slightly better than exact line search. However, when C = 100Cbest,
the opposite result is observed and the difference is significant.

From more results in supplementary materials, we conclude that an accurate minimiza-
tion of f(wk+αsk) may not be always beneficial. Our experiment is very interesting because
most past works were unable to afford the exact line search and make a comparison. An
explanation of the result is that we choose α under a fixed direction sk, but in the whole
optimization process αk and sk do affect each other. Therefore, a more sophisticated scheme
on the direction/step size selection seems to be useful. For example, trust region methods
are designed to take the direction generation into account by the constraint ‖s‖ ≤ ∆k.

In Section 4.2, we conclude that the change to enlarge ∆k when ‖sk‖ = ∆k is more
helpful than accurately minimizing f(wk + αsk). Thus it is important to investigate if the
use of α∗k‖sk‖ in trust-region update rules is really needed. To this end, we consider a rule

14



Trust Region Update Rules in Newton Methods for Linear Classification

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

CG iterations 1e3

10-6

10-5

10-4

10-3

10-2

10-1

100
(f
−f

∗ )
/f

∗
LineSearch

OldTR

NewTR

SimpleTR

(a) yahookr, Cbest

0.0 0.5 1.0 1.5 2.0 2.5 3.0

CG iterations 1e3

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

(f
−f

∗ )
/f

∗

LineSearch

OldTR

NewTR

SimpleTR

(b) kdda, Cbest

0 1 2 3 4 5 6 7 8 9

CG iterations 1e3

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

(f
−f

∗ )
/f

∗

LineSearch

OldTR

NewTR

SimpleTR

(c) kddb, Cbest

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

CG iterations 1e4

10-4

10-3

10-2

10-1

100

101

(f
−f

∗ )
/f

∗

LineSearch

OldTR

NewTR

SimpleTR

(d) yahookr, 100Cbest

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

CG iterations 1e4

10-6

10-5

10-4

10-3

10-2

10-1

100

(f
−f

∗ )
/f

∗

LineSearch

OldTR

NewTR

SimpleTR

(e) kdda, 100Cbest

0 1 2 3 4 5 6 7 8 9

CG iterations 1e4

10-6

10-5

10-4

10-3

10-2

10-1

100

101

(f
−f

∗ )
/f

∗

LineSearch

OldTR

NewTR

SimpleTR

(f ) kddb, 100Cbest

Figure 5: Comparison of line search and different trust region methods on logistic regression
with C = {1, 100} × Cbest. See Figure 1 for explanation of information in each sub-figure.

by completely removing α∗k‖sk‖ in (28). However, an issue is that we then have

∆k+1 = γ3∆k, if ρ ≥ η1. (34)

This rule is not suitable because first ∆k is always enlarged even if ρ is relatively small (e.g.,
ρ = η1), and second, we no longer have the setting in (28) to check if ‖sk‖ = ∆k or not for
deciding ∆k+1. Thus, we split (34) to three cases and get the following update rule:

∆k+1 =





γ1∆k, if ρ < η0,

γ2∆k, if ρ ∈ [η0, η1],

∆k, if ρ ∈ (η1, η2),

∆k, if ρ ≥ η2 and ‖sk‖ < ∆k,

γ3∆k, if ρ ≥ η2 and ‖sk‖ = ∆k.

(35)

In Figure 5, for logistic regression we compare several trust region and line search settings.
• OldTR: the setting in LIBLINEAR of using (20).
• NewTR: the new rule (28) is used. It is the same as “+boundary check” in Section 4.2.
• SimpleTR: the rule (35) is used.
• LineSearch: the backtrack line search procedure discussed in Section 2.1.
We present only the relation between the function value and the cumulative number of CG
iterations because Section 4.2 has concluded that the running-time results are very similar.
We set C = {1, 100}×Cbest while leave results of other C values in supplementary materials.

Results show that SimpleTR is generally competitive. For some problems it is as good as
NewTR. We learned from Section 4.2 that specifically handling the situation of ‖sk‖ = ∆k

15



is very helpful. This setting is included in SimpleTR so its good performance is expected.
However, for some problems such as yahookr with C = Cbest, SimpleTR has slow conver-
gence in the middle of the optimization procedure. We find that SimpleTR reduces ∆k in
several iterations without improving the function value. We have explained in Section 3.1
that if at some point ∆k is too large, several iterations may be wasted for reducing ∆k. In
this situation, the use of α∗k‖sk‖ can more quickly shrink ∆k in fewer iterations. Therefore,
incorporating α∗k‖sk‖ in the update rule is still useful although from Section 4.2 a very
accurate estimation of α∗k may not be needed.

For the comparison between trust region and line search, although in Section 2.3 we
observed that line search is sometimes better than OldTR, from Figures 5(a)-(c) the im-
provements made in NewTR have caused that trust region methods reach the same conver-
gence speed as line search’s when C = Cbest. Line search becomes slower when C is large
as we mentioned in Section 2.3. We can see from Figures 5(d)-(f) that the new trust region
update rule leads to much faster convergence than line search when C = 100Cbest.

Based on our extensive experiments, we conclude that NewTR is a suitable setting in
trust-region Newton methods for linear classification.

5. Discussion and Conclusions

We discuss some related works in Section 7 of supplementary materials. In summary, we
point out some slow convergence issues of existing trust region update rules in Newton
methods for linear classification. Through some deep analysis, we propose new update
rules that dramatically improve the convergence speed of the optimization procedure.

References

A. R. Conn, N. I. M. Gould, and P. L. Toint. Trust-region Methods. SIAM, 2000.
R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. LIBLINEAR: a library

for large linear classification. JMLR, 9:1871–1874, 2008.
M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems.

JRNBS, 49:409–436, 1952.
C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. S. Keerthi, and S. Sundararajan. A dual coordinate

descent method for large-scale linear SVM. In ICML, 2008.
S. S. Keerthi and D. DeCoste. A modified finite Newton method for fast solution of large

scale linear SVMs. JMLR, 6:341–361, 2005.
C.-J. Lin and J. J. Moré. Newton’s method for large-scale bound constrained problems.

SIAM J. Optim., 9:1100–1127, 1999.
C.-J. Lin, R. C. Weng, and S. S. Keerthi. Trust region Newton method for large-scale

logistic regression. JMLR, 9:627–650, 2008.
O. L. Mangasarian. A finite Newton method for classification. Optim. Methods Softw., 17

(5):913–929, 2002.
J. Nocedal and S. Wright. Numerical Optimization. Springer, second edition, 2006.
T. Steihaug. The conjugate gradient method and trust regions in large scale optimization.

SIAM J. Numer. Anal., 20:626–637, 1983.
P.-W. Wang, C.-P. Lee, and C.-J. Lin. The common directions method for regularized

empirical loss minimization. Technical report, National Taiwan University, 2016.

16


	Introduction
	Truncated Newton Methods and the Selection of Step Size
	Line Search Methods
	Trust Region Methods
	Demonstration of Slow-convergence Situations
	Settings of Evaluation
	Situations of Slow Convergence


	Analysis and New Update Rules
	Investigation of Why Inappropriate Step Sizes are Obtained
	Our New Update Rules
	Accurate Minimization of f(bold0mu mumu ww2005/06/28 ver: 1.3 subfig packagewwwwk+bold0mu mumu ss2005/06/28 ver: 1.3 subfig packagessssk)
	Bisection Method
	Discussion


	Experiments
	Data Sets and Experimental Settings
	Effectiveness of the Proposed Techniques in Section 3
	More Investigation on the Step Size 

	Discussion and Conclusions

