
Manuscript Number: 2403

Training ν-Support Vector Regression: Theory and

Algorithms

Chih-Chung Chang and Chih-Jen Lin

Department of Computer Science and

Information Engineering

National Taiwan University

Taipei 106, Taiwan (cjlin@csie.ntu.edu.tw)

Abstract

We discuss the relation between ǫ-Support Vector Regression (ǫ-SVR) and ν-

Support Vector Regression (ν-SVR). In particular we focus on properties which are

different from those of C-Support Vector Classification (C-SVC) and ν-Support

Vector Classification (ν-SVC). We then discuss some issues which do not occur in

the case of classification: the possible range of ǫ and the scaling of target values.

A practical decomposition method for ν-SVR is implemented and computational

experiments are conducted. We show some interesting numerical observations

specific to regression.

1 Introduction

The ν-support vector machine (Schölkopf et al. 2000; Schölkopf et al. 1999) is

a new class of support vector machines (SVM). It can handle both classification

and regression. Properties on training ν-support vector classifiers (ν-SVC) have

been discussed in (Chang and Lin 2001b). In this paper we focus on ν-support

vector regression (ν-SVR). Given a set of data points, {(x1, y1), . . . , (xl, yl)}, such

that xi ∈ Rn is an input and yi ∈ R1 is a target output, the primal problem of

ν-SVR is as follows:

(Pν) min
1

2
wTw + C(νǫ +

1

l

l
∑

i=1

(ξi + ξ∗i )) (1.1)

(wT φ(xi) + b) − yi ≤ ǫ + ξi,

yi − (wT φ(xi) + b) ≤ ǫ + ξ∗i ,

ξi, ξ
∗
i ≥ 0, i = 1, . . . , l, ǫ ≥ 0.

1



Here 0 ≤ ν ≤ 1, C is the regularization parameter, and training vectors xi are

mapped into a higher (maybe infinite) dimensional space by the function φ. The

ǫ-insensitive loss function means that if wT φ(x) is in the range of y ± ǫ, no loss is

considered. This formulation is different from the original ǫ-SVR (Vapnik 1998):

(Pǫ) min
1

2
wTw +

C

l

l
∑

i=1

(ξi + ξ∗i )

(wT φ(xi) + b) − yi ≤ ǫ + ξi, (1.2)

yi − (wT φ(xi) + b) ≤ ǫ + ξ∗i ,

ξi, ξ
∗
i ≥ 0, i = 1, . . . , l.

As it is difficult to select an appropriate ǫ, Schölkopf et al. introduced a new

parameter ν which lets one control the number of support vectors and training

errors. To be more precise, they proved that ν is an upper bound on the fraction

of margin errors and a lower bound of the fraction of support vectors. In addition,

with probability 1, asymptotically, ν equals to both fractions.

Then there are two different dual formulations for (Pν) and (Pǫ):

min
1

2
(α − α∗)TQ(α − α∗) + yT (α − α∗)

eT (α − α∗) = 0, eT (α + α∗) ≤ Cν, (1.3)

0 ≤ αi, α
∗
i ≤ C/l, i = 1, . . . , l.

min
1

2
(α − α∗)TQ(α − α∗) + yT (α − α∗) + ǫeT (α + α∗)

eT (α − α∗) = 0, (1.4)

0 ≤ αi, α
∗
i ≤ C/l, i = 1, . . . , l,

where Qij ≡ φ(xi)
T φ(xj) is the kernel and e is the vector of all ones. Then the

approximating function is

f(x) =

l
∑

i=1

(α∗
i − αi)φ(xi)

T φ(x) + b.

For regression, the parameter ν replaces ǫ while in the case of classification, ν

replaces C. In (Chang and Lin 2001b) we have discussed the relation between ν-

SVC and C-SVC as well as how to solve ν-SVC in detail. Here we are interested in

2



different properties for regression. For example, the relation between ν-SVR and

ǫ-SVR is not the same as that between ν-SVC and C-SVC. In addition, similar

to the situation of C-SVC, we make sure that the inequality eT (α + α∗) ≤ Cν

can be replaced by an equality so algorithms for ν-SVC can be applied to ν-SVR.

They will be the main topics of Sections 2 and 3.

In Section 4 we discuss the possible range of ǫ and show that it might be

easier to use ν-SVM. We also demonstrate some situations where the scaling of

the target values y is needed. Note that these issues do not occur for classifi-

cation. Finally Section 5 presents computational experiments. We discuss some

interesting numerical observations which are specific to support vector regression.

2 The Relation Between ν-SVR and ǫ-SVR

In this section we will derive a relationship between the solution set of ǫ-SVR and

ν-SVR which allows us to conclude that the inequality constraint (1.3) can be

replaced by an equality.

In the dual formulations mentioned earlier, eT (α+α∗) is related to Cν. Similar

to (Chang and Lin 2001b), we scale them to the following formulations so eT (α+

α∗) is related to ν:

(Dν) min
1

2
(α − α∗)TQ(α − α∗) + (y/C)T (α − α∗)

eT (α − α∗) = 0, eT (α + α∗) ≤ ν,

0 ≤ αi, α
∗
i ≤ 1/l, i = 1, . . . , l. (2.1)

(Dǫ) min
1

2
(α − α∗)TQ(α − α∗) + (y/C)T (α − α∗) + (ǫ/C)eT (α + α∗)

eT (α − α∗) = 0,

0 ≤ αi, α
∗
i ≤ 1/l, i = 1, . . . , l.

For convenience, following (Schölkopf et al. 2000), we represent

[

α

α∗

]

as α(∗).

Remember that for ν-SVC, not all 0 ≤ ν ≤ 1 lead to meaningful problems of

(Dν). Here the situation is similar so in the following we define a ν∗ which will

be the upper bound of the interesting interval of ν.

3



Definition 1 Define ν∗ ≡ minα(∗) eT (α+α∗), where α(∗) is any optimal solution

of (Dǫ), ǫ = 0.

Note that 0 ≤ αi, α
∗
i ≤ 1/l implies that the optimal solution set of (Dǫ) or

(Dν) is bounded. As their objective and constraint functions are all continuous,

any limit point of a sequence in the optimal solution set is in it as well. Hence

we have that the optimal solution set of (Dǫ) or (Dν) is close and bounded (i.e.

compact). Using this property, if ǫ = 0, there is at least one optimal solution

which satisfies eT (α + α∗) = ν∗.

The following lemma shows that for (Dǫ), ǫ > 0, at an optimal solution one of

αi and α∗
i must be zero:

Lemma 1 If ǫ > 0, all optimal solutions of (Dǫ) satisfy αiα
∗
i = 0.

Proof. If the result is wrong, then we can reduce values of two nonzero αi and α∗
i

such that α−α∗ is still the same but the term eT (α+α∗) of the objective function

is decreased. Hence α(∗) is not an optimal solution so there is a contradiction. 2

The following lemma is similar to (Chang and Lin 2001b, Lemma 4):

Lemma 2 If α
(∗)
1 is any optimal solution of (Dǫ1), α

(∗)
2 is any optimal solution

of (Dǫ2), and 0 ≤ ǫ1 < ǫ2, then

eT (α1 + α∗
1) ≥ eT (α2 + α∗

2). (2.2)

Therefore, for any optimal solution α
(∗)
ǫ of (Dǫ), ǫ > 0, eT (αǫ + α∗

ǫ ) ≤ ν∗.

Unlike the case of classification where eT αC is a well-defined function of C if

αC is an optimal solution of the C-SVC problem, here for ǫ-SVR, for the same

(Dǫ) there may have different eT (αǫ + α∗
ǫ ). The main reason is that eT α is the

only linear term of the objective function of C-SVC but for (Dǫ), the linear term

becomes (y/C)T (α − α∗) + (ǫ/C)eT (α + α∗). We will elaborate more on this in

Lemma 4 where we prove that eT (αǫ +α∗
ǫ ) can be a function of ǫ if Q is a positive

definite matrix.

The following lemma shows the relation between (Dν) and (Dǫ). In particular,

we show that for 0 ≤ ν < ν∗, any optimal solution of (Dν) satisfies eT (α+α∗) = ν.

4



Lemma 3 For any (Dν), 0 ≤ ν < ν∗, one of the following two situations must

happen:

1. (Dν)’s optimal solution set is part of the solution set of an (Dǫ), ǫ > 0,

2. (Dν)’s optimal solution set is the same as that of (Dǫ), where ǫ > 0 is any

one element in a unique open interval.

In addition, any optimal solution of (Dν) satisfies eT (α + α∗) = ν and αiα
∗
i = 0.

Proof. The Karush-Kuhn-Tucker (KKT) condition of (Dν) shows that there exist

ρ ≥ 0 and b such that

[

Q −Q

−Q Q

] [

α

α∗

]

+

[

y/C
−y/C

]

+
ρ

C

[

e

e

]

− b

[

e

−e

]

=

[

λ − ξ

λ∗ − ξ∗

]

. (2.3)

If ρ = 0, α(∗) is an optimal solution of (Dǫ), ǫ = 0. Then eT (α + α∗) ≥ ν∗ > ν

causes a contradiction.

Therefore ρ > 0 so the KKT condition implies that eT (α + α∗) = ν. Then

there are two possible situations:

Case 1: ρ is unique: By assigning ǫ = ρ, all optimal solutions of (Dν) are KKT

points of (Dǫ). Hence (Dν)’s optimal solution set is part of that of a (Dǫ). This

(Dǫ) is unique as otherwise we can find another ρ which satisfies (2.3).

Case 2: ρ is not unique. That is, there are two ρ1 < ρ2. Suppose ρ1 and ρ2

are the smallest and largest one satisfying the KKT. Again the existence of ρ1

and ρ2 are based on the compactness of the optimal solution set. Then for any

ρ1 < ρ < ρ2, we consider the problem (Dǫ), ǫ = ρ. Define ǫ1 ≡ ρ1 and ǫ2 ≡ ρ2.

From Lemma 2, since ǫ1 < ǫ < ǫ2,

ν = eT (α1 + α∗
1) ≥ eT (α + α∗) ≥ eT (α2 + α∗

2) = ν,

where α(∗) is any optimal solution of (Dǫ), and α
(∗)
1 and α

(∗)
2 are optimal solutions

of (Dǫ1) and (Dǫ2), respectively. Hence all optimal solutions of (Dǫ) satisfy eT (α+

α∗) = ν and all KKT conditions of (Dν) so (Dǫ)’s optimal solution set is in that

of (Dν).

5



Hence (Dν) and (Dǫ) share at least one optimal solution α(∗). For any other

optimal solution ᾱ(∗) of (Dν), it is feasible for (Dǫ). Since

1

2
(ᾱ − ᾱ∗)TQ(ᾱ − ᾱ∗) + (y/C)T (ᾱ − ᾱ∗)

=
1

2
(α − α∗)TQ(α − α∗) + (y/C)T (α − α∗),

and eT (ᾱ + ᾱ∗) ≤ ν, we have

1

2
(ᾱ − ᾱ∗)TQ(ᾱ − ᾱ∗) + (y/C)T (ᾱ − ᾱ∗) + (ǫ/C)eT (ᾱ + ᾱ∗)

≤
1

2
(α − α∗)TQ(α − α∗) + (y/C)T (α − α∗) + (ǫ/C)eT (α + α∗).

Therefore, all optimal solutions of (Dν) are also optimal for (Dǫ). Hence (Dν)’s

optimal solution set is the same as that of (Dǫ), where ǫ > 0 is any one element

in a unique open interval (ρ1, ρ2).

Finally, as (Dν)’s optimal solution set is the same or part of a (Dǫ), from

Lemma 1, we have αiα
∗
i = 0. 2

Using the above results, we now summarize a main theorem:

Theorem 1 We have

1. ν∗ ≤ 1.

2. For any ν ∈ [ν∗, 1], (Dν) has the same optimal objective value as (Dǫ), ǫ = 0.

3. For any ν ∈ [0, ν∗), Lemma 3 holds. That is, one of the following two

situations must happen:

(a) (Dν)’s optimal solution set is part of the solution set of an (Dǫ), ǫ > 0,

(b) (Dν)’s optimal solution set is the same as that of (Dǫ), where ǫ > 0 is

any one element in a unique open interval.

4. For all (Dν), 0 ≤ ν ≤ 1, there are always optimal solutions which happen at

the equality eT (α + α∗) = ν.

Proof.

From the explanation after Definition 1, there exists an optimal solution of

(Dǫ), ǫ = 0 which satisfies eT (α + α∗) = ν∗. Then this α(∗) must satisfy αiα
∗
i =

6



0, i = 1, . . . , l, so ν∗ ≤ 1. In addition, this α(∗) is also feasible to (Dν), ν ≥ ν∗.

Since (Dν) has the same objective function as (Dǫ), ǫ = 0 but has one more

constraint, this solution of (Dǫ), ǫ = 0, is also optimal for (Dν). Hence (Dν) and

(Dν∗) have the same optimal objective value.

For 0 ≤ ν < ν∗, we already know from Theorem 3 that the optimal solution

happens only at the equality. For 1 ≥ ν ≥ ν∗, first we know that (Dǫ), ǫ = 0 has

an optimal solution α(∗) which satisfies eT (α + α∗) = ν∗. Then we can increase

some elements of α and α∗ such that new vectors α̂(∗) satisfy eT (α̂ + α̂∗) = ν

but α̂ − α̂∗ = α − α∗. Hence α̂(∗) is an optimal solution of (Dν) which satisfies

the equality constraint. 2

Therefore, the above results make sure that it is safe to solve the following

problem instead of (Dν):

(D̄ν) min
1

2
(α − α∗)TQ(α − α∗) + (y/C)T (α − α∗)

eT (α − α∗) = 0, eT (α + α∗) = ν,

0 ≤ αi, α
∗
i ≤ 1/l, i = 1, . . . , l.

This is important as for existing SVM algorithms, it is easier to handle equalities

than inequalities.

Note that for ν-SVC, there is also a ν∗ where for ν ∈ (ν∗, 1], (Dν) is infea-

sible. At that time ν∗ = 2 min(#positive data, #negative data)/l can be easily

calculated (Crisp and Burges 2000). Now for ν-SVR, it is difficult to know ν∗ in

priori. However, we do not have to worry about this. If a (D̄ν), ν > ν∗ is solved,

a solution with its objective value equal to that of (Dǫ), ǫ = 0 is obtained. Then

some αi and α∗
i may both be nonzero.

Since there are always optimal solutions of the dual problem which satisfy

eT (α+α∗) = ν, this also implies that the ǫ ≥ 0 constraint of (Pν) is not necessary.

In the following theorem, we derive the same result directly from the primal side:

Theorem 2 Consider a problem which is the same as (Pν) but without the in-

equality constraint ǫ ≥ 0. We have that for any 0 < ν < 1, any optimal solution

of (Pν) must satisfy ǫ ≥ 0.

Proof.

7



Assume (w, b, ξ, ξ∗, ǫ) is an optimal solution with ǫ < 0. Then for each i,

−ǫ − ξ∗i ≤ wT φ(xi) + b − yi ≤ ǫ + ξi (2.4)

implies

ξi + ξ∗i + 2ǫ ≥ 0. (2.5)

With (2.4),

−0 − max(0, ξ∗i + ǫ) ≤ −ǫ − ξ∗i ≤ wT φ(xi) + b − yi

≤ 0 + ǫ + ξi ≤ 0 + max(0, ξi + ǫ).

Hence (w, b, max(0, ξ + ǫe), max(0, ξ∗ + ǫe), 0) is a feasible solution of (Pν). From

(2.5),

max(0, ξi + ǫ) + max(0, ξ∗i + ǫ) ≤ ξi + ξ∗i + ǫ.

Therefore, with ǫ < 0 and 0 < ν < 1,

1

2
wTw + C(νǫ +

1

l

l
∑

i=1

(ξi + ξ∗i ))

>
1

2
wTw +

C

l
(lǫ +

l
∑

i=1

(ξi + ξ∗i ))

≥
1

2
wTw +

C

l

l
∑

i=1

(max(0, ξi + ǫ) + max(0, ξ∗i + ǫ))

implies that (w, b, ξ, ξ∗) is not an optimal solution. Therefore, any optimal solu-

tion of (Pν) must satisfy ǫ ≥ 0. 2

Next we demonstrate an example where one (Dǫ) corresponds to many (Dν).

Given two training points x1 = 0,x2 = 0, and target values y1 = −∆ < 0 and

y2 = ∆ > 0. When ǫ = ∆, if the linear kernel is used and C = 1, (Dǫ) becomes

min 2∆(α∗
1 + α2)

0 ≤ α1, α
∗
1, α2, α

∗
2 ≤ 1/l,

α1 − α∗
1 + α2 − α∗

2 = 0.

Thus α∗
1 = α2 = 0 so any 0 ≤ α1 = α∗

2 ≤ 1/l is an optimal solution. Therefore,

for this ǫ, the possible eT (α + α∗) ranges from 0 to 1. The relation between ν

and ǫ is illustrated in Figure 1.

8



-

6ν

ν∗ = 1

ǫǫ = ∆

Figure 1: An example where one (Dǫ) corresponds to different (Dν)

3 When the Kernel Matrix Q is Positive Definite

In the previous section we have shown that for ǫ-SVR, eT (αǫ + α∗
ǫ ) may not be

a well-defined function of ǫ, where α
(∗)
ǫ is any optimal solution of (Dǫ). Because

of this difficulty, we cannot exactly apply results on the relation between C-SVC

and ν-SVC to ǫ-SVR and ν-SVR. In this section we show that if Q is positive

definite, then eT (αǫ + α∗
ǫ ) is a function of ǫ and all results discussed in (Chang

and Lin 2001b) hold.

Assumption 1 Q is positive definite.

Lemma 4 If ǫ > 0, then (Dǫ) has a unique optimal solution. Therefore, we can

define a function eT (αǫ + α∗
ǫ) on ǫ, where α

(∗)
ǫ is the optimal solution of (Dǫ).

Proof. Since (Dǫ) is a convex problem, if α
(∗)
1 and α

(∗)
2 are both optimal solutions,

for all 0 ≤ λ ≤ 1,

1

2
(λ(α1 − α∗

1) + (1 − λ)(α2 − α∗
2))

TQ(λ(α1 − α∗
1) + (1 − λ)(α2 − α∗

2))

+(y/C)T (λ(α1 − α∗
1) + (1 − λ)(α2 − α∗

2))

+(ǫ/C)eT (λ(α1 + α∗
1) + (1 − λ)(α2 + α∗

2))

= λ

(

1

2
(α1 − α∗

1)
TQ(α1 − α∗

1) + (y/C)T (α1 − α∗
1) + (ǫ/C)eT (α1 + α∗

1)

)

+(1 − λ)

(

1

2
(α2 − α∗

2)
TQ(α2 − α∗

2) + (y/C)T (α2 − α∗
2) + (ǫ/C)eT (α2 + α∗

2)

)

.

This implies

(α1−α∗
1)

TQ(α2−α∗
2) =

1

2
(α1−α∗

1)
TQ(α1−α∗

1)+
1

2
(α2−α∗

2)
TQ(α2−α∗

2). (3.1)

9



Since Q is positive semidefinite, Q = LTL so (3.1) implies ‖L(α1 −α∗
1)−L(α2 −

α∗
2)‖ = 0. Hence L(α1 − α∗

1) = L(α2 − α∗
2). Since Q is positive definite, L is

invertible so α1 − α∗
1 = α2 − α∗

2. Since ǫ > 0, from Lemma 1, (α1)i(α
∗
1)i = 0 and

(α2)i(α
∗
2)i = 0. Thus we have α1 = α2 and α∗

1 = α∗
2. 2

For convex optimization problems, if the Hessian is positive definite, there is

a unique optimal solution. Unfortunately here the Hessian is
[

Q −Q
−Q Q

]

which

is only positive semi-definite. Hence special efforts are needed for proving the

property of the unique optimal solution.

Note that in the above proof, L(α1 − α∗
1) = L(α2 − α∗

2) implies (α1 −

α∗
1)

TQ(α1 −α∗
1) = (α2 −α∗

2)
TQ(α2 −α∗

2). Since α
(∗)
1 and α

(∗)
2 are both optimal

solutions, they have the same objective value so −yT (α1 −α∗
1) + ǫeT (α1 + α∗

1) =

−yT (α2−α∗
2)+ ǫeT (α2 +α∗

2). This is not enough for proving that eT (α1 +α∗
1) =

eT (α2 +α∗
2). On the contrary, for ν-SVC, the objective function is 1

2
αTQα−eT α

so without the positive definite assumption, αT
1 Qα1 = αT

2 Qα2 already implies

eT α1 = eT α2. Thus eT αC is a function of C.

We then state some parallel results in (Chang and Lin 2001b) without proofs:

Theorem 3 If Q is positive definite, then the relation between (Dν) and (Dǫ) is

summarized as follows:

1. (a) For any 1 ≥ ν ≥ ν∗, (Dν) has the same optimal objective value as

(Dǫ), ǫ = 0.

(b) For any ν ∈ [0, ν∗), (Dν) has a unique solution which is the same as

that of either one (Dǫ), ǫ > 0, or some (Dǫ), where ǫ is any number in an

interval.

2. If α∗
ǫ is the optimal solution of (Dǫ), ǫ > 0, the relation between ν and ǫ is

as follows:

There are 0 < ǫ1 < · · · < ǫs and Ai, Bi, i = 1, . . . , s such that

eT (αǫ + α∗
ǫ) =











ν∗ 0 < ǫ ≤ ǫ1,

Ai + Biǫ ǫi ≤ ǫ ≤ ǫi+1, i = 1, . . . , s − 1,

0 ǫs ≤ ǫ,

10



where α
(∗)
ǫ is the optimal solution of (Dǫ). We also have

Ai + Biǫi+1 = Ai+1 + Bi+1ǫi+1, i = 1, . . . , s − 2, (3.2)

and

As−1 + Bs−1ǫs = 0.

In addition, Bi ≤ 0, i = 1, . . . , s − 1.

The second result of Theorem 3 shows that ν is a piece-wise linear function of

ǫ. In addition, it is always decreasing.

4 Some Issues Specific to Regression

The motivation of ν-SVR is that it may not be easy to decide the parameter ǫ.

Hence here we are interested in the possible range of ǫ. As expected, results show

that ǫ is related to the target values y.

Theorem 4 The zero vector is an optimal solution of (Dǫ) if and only if

ǫ ≥
maxi=1,...,l yi − mini=1,...,l yi

2
. (4.1)

Proof. If the zero vector is an optimal solution of (Dǫ), the KKT condition implies

that there is a b such that
[

y

−y

]

+ ǫ

[

e

e

]

− b

[

e

−e

]

≥ 0.

Hence ǫ − b ≥ −yi and ǫ + b ≥ yi, for all i. Therefore,

ǫ − b ≥ − min
i=1,...,l

yi and ǫ + b ≥ max
i=1,...,l

yi

so

ǫ ≥
maxi=1,...,l yi − mini=1,...,l yi

2
.

On the other hand, if (4.1) is true, we can easily check that α = α∗ = 0 satisfy

the KKT condition so the zero vector is an optimal solution of (Dǫ). 2

Therefore, when using ǫ-SVR, the largest value of ǫ to try is (maxi=1,...,l yi −

mini=1,...,l yi)/2.

11



On the other hand, ǫ should not be too small as if ǫ → 0, most data are

support vectors and overfitting tends to happen. Unfortunately we have not been

able to find an effective lower bound on ǫ. However, intuitively we would think

that it is also related to the target values y.

As the effective range of ǫ is affected by the target values y, a way to solve

this difficulty for ǫ-SVM is by scaling the target valves before training the data.

For example, if all target values are scaled to [−1, +1], then the effective range of

ǫ will be [0, 1], the same as that of ν. Then it may be easier to choose ǫ.

There are other reasons to scale the target values. For example, we encountered

some situations where if the target values y are not properly scaled, it is difficult

to adjust the value of C. In particular, if yi, i = 1, . . . , l are large numbers and C

is chosen to be a small number, the approximating function is nearly a constant.

5 Algorithms

The algorithm will be considered here for ν-SVR is similar to the decomposition

method in (Chang and Lin 2001b) for ν-SVC. The implementation is part of the

software LIBSVM (Chang and Lin 2001a). Another SVM software which has also

implemented ν-SVR is mySVM (Rüping 2000).

The basic idea of the decomposition method is that in each iteration, the

indices {1, . . . , l} of the training set are separated to two sets B and N , where

B is the working set and N = {1, . . . , l}\B. The vector αN is fixed and then a

sub-problem with the variable αB is solved.

The decomposition method was first proposed for SVM classification (Osuna

et al. 1997; Joachims 1998; Platt 1998). Extensions to ǫ-SVR are in, for example,

(Keerthi et al. 2000; Laskov 2002). The main difference on these methods is their

working set selections which may significantly affect the number of iterations. Due

to the additional equality (1.3) in the ν-SVM, more considerations on the working

set selection are needed. Discussions for classification are in (Keerthi and Gilbert

2002; Chang and Lin 2001b).

For the consistency with other SVM formulations in LIBSVM, we consider (Dν)

12



as the following scaled form:

min
ᾱ

1

2
ᾱT Q̄ᾱ + p̄T ᾱ

ȳT ᾱ = ∆1, (5.1)

ēT ᾱ = ∆2,

0 ≤ ᾱt ≤ C, t = 1, . . . , 2l,

where

Q̄ =

[

Q −Q

−Q Q

]

, ᾱ =

[

α

α∗

]

, p̄ =

[

y

y

]

, ȳ =

[

e

−e

]

, ē =

[

e

e

]

, ∆1 = 0, ∆2 = Clν.

That is, we replace C/l by C. Note that because of the result in Theorem 1, we

are safe to use an equality constraint here in (5.1).

Then the sub-problem is as follows:

min
ᾱB

1

2
ᾱT

BQ̄BBᾱB + (p̄B + Q̄BN ᾱk
N)T ᾱB

ȳT
BᾱB = ∆1 − ȳT

N ᾱN , (5.2)

ēT
BᾱB = ∆2 − ēT

NᾱN ,

0 ≤ (ᾱB)t ≤ C, t = 1, . . . , q,

where q is the size of the working set.

Following the idea of Sequential Minimal Optimization (SMO) by Platt (1998),

we use only two elements as the working set in each iteration. The main advantage

is that an analytic solution of (5.2) can be obtained so there is no need to use an

optimization software.

Our working set selection follows from (Chang and Lin 2001b) which is a

modification of the selection in the software SV M light (Joachims 1998). Since

they dealt with the case of more general selections where the size is not restricted

to two, here we have a simpler derivation directly using the KKT condition. It is

similar to that in (Keerthi and Gilbert 2002, Section 5).

Now if only two elements i and j are selected but ȳi 6= ȳj, then ȳT
BᾱB =

∆1− ȳT
NᾱN and ēT

BᾱB = ∆2− ēT
N ᾱN imply that there are two equations with two

variables so in general (5.2) has only one feasible point. Therefore, from ᾱk, the

solution of the kth iteration, it cannot be moved any more. On the other hand, if

13



ȳi = ȳj, ȳT
BᾱB = ∆1 − ȳT

NᾱN and ēT
BᾱB = ∆2 − ēT

NᾱN become the same equality

so there are multiple feasible solutions. Therefore, we have to keep ȳi = ȳj while

selecting the working set.

The KKT condition of (5.1) shows that there are ρ and b such that

∇f(ᾱ)i − ρ + bȳi = 0 if 0 < ᾱi < C,

≥ 0 if ᾱi = 0,

≤ 0 if ᾱi = C.

Define

r1 ≡ ρ − b, r2 ≡ ρ + b.

If ȳi = 1, the KKT condition becomes

∇f(ᾱ)i − r1 ≥ 0 if ᾱi < C, (5.3)

≤ 0 if ᾱi > 0.

On the other hand, if ȳi = −1, it is

∇f(ᾱ)i − r2 ≥ 0 if ᾱi < C, (5.4)

≤ 0 if ᾱi > 0.

Hence, indices i and j are selected from either

i = argmint{∇f(ᾱ)t|ȳt = 1, ᾱt < C},
j = argmaxt{∇f(ᾱ)t|ȳt = 1, ᾱt > 0},

(5.5)

or
i = argmint{∇f(ᾱ)t|ȳt = −1, ᾱt < C},
j = argmaxt{∇f(ᾱ)t|ȳt = −1, ᾱt > 0},

(5.6)

depending on which one gives a larger ∇f(ᾱ)j − ∇f(ᾱ)i (i.e. larger KKT vio-

lations). If the selected ∇f(ᾱ)j −∇f(ᾱ)i is smaller than a given ǫ (10−3 in our

experiments), the algorithm stops.

Similar to the case of ν-SVC, here the zero vector cannot be the initial solution.

This is due to the additional equality constraint ēT ᾱ = ∆2 of (5.1). Here we

assign both initial ᾱ and ᾱ∗ with the same values. The first ⌈νl/2⌉ elements are

[C, . . . , C, C(νl/2 − ⌊νl/2⌋)]T while others are zero.

14



Table 1: Solving ν-SVR and ǫ-SVR: C = 1 (time in seconds)

Problem l ν ǫ ν Iter. ǫ Iter. ν Time ǫ Time ν
∗

pyrimidines 74 0.2 0.135131 181 145 0.03 0.02 0.817868
0.4 0.064666 175 156 0.03 0.04
0.6 0.028517 365 331 0.04 0.03
0.8 0.002164 695 460 0.05 0.05

mpg 392 0.2 0.152014 988 862 0.19 0.16 0.961858
0.4 0.090124 1753 1444 0.32 0.27
0.6 0.048543 2115 1847 0.40 0.34
0.8 0.020783 3046 2595 0.56 0.51

bodyfat 252 0.2 0.012700 1112 1047 0.14 0.13 0.899957
0.4 0.006332 2318 2117 0.25 0.23
0.6 0.002898 3553 2857 0.37 0.31
0.8 0.001088 4966 3819 0.48 0.42

housing 506 0.2 0.161529 799 1231 0.30 0.34 0.946593
0.4 0.089703 1693 1650 0.53 0.45
0.6 0.046269 1759 2002 0.63 0.60
0.8 0.018860 2700 2082 0.85 0.65

triazines 186 0.2 0.380308 175 116 0.13 0.10 0.900243
0.4 0.194967 483 325 0.18 0.15
0.6 0.096720 422 427 0.20 0.18
0.8 0.033753 532 513 0.23 0.23

mg 1385 0.2 0.366606 1928 1542 1.58 1.18 0.992017
0.4 0.216329 3268 3294 2.75 2.35
0.6 0.124792 3400 3300 3.36 2.76
0.8 0.059115 4516 4296 4.24 3.65

abalone 4177 0.2 0.168812 4189 3713 15.68 11.69 0.994775
0.4 0.094959 8257 7113 30.38 22.88
0.6 0.055966 12483 12984 42.74 37.41
0.8 0.026165 18302 18277 65.98 54.04

space ga 3107 0.2 0.087070 5020 4403 10.47 7.56 0.990468
0.4 0.053287 8969 7731 18.70 14.44
0.6 0.032080 12261 10704 26.27 20.72
0.8 0.014410 16311 13852 32.71 27.19

cpusmall 8192 0.2 0.086285 8028 7422 82.66 59.14 0.990877
0.4 0.054095 16585 15240 203.20 120.48
0.6 0.031285 22376 19126 283.71 163.96
0.8 0.013842 28262 24840 355.59 213.25

cadata 20640 0.2 0.294803 12153 10961 575.11 294.53 0.997099
0.4 0.168370 24614 20968 1096.87 574.77
0.6 0.097434 35161 30477 1530.01 851.91
0.8 0.044636 42709 40652 1883.35 1142.27

15



Table 2: Solving ν-SVR and ǫ-SVR: C = 100 (time in seconds)

Problem l ν ǫ ν Iter. ǫ Iter. ν Time ǫ Time ν
∗

pyrimidines 74 0.2∗ 0.000554 29758 11978 0.63 0.27 0.191361
0.4∗ 0.000317 30772 11724 0.65 0.27
0.6∗ 0.000240 27270 11802 0.58 0.27
0.8∗ 0.000146 20251 12014 0.44 0.28

mpg 392 0.2 0.121366 85120 74878 9.53 8.26 0.876646
0.4 0.069775 210710 167719 24.50 19.32
0.6 0.032716 347777 292426 42.08 34.82
0.8 0.007953 383164 332725 47.61 40.86

bodyfat 252 0.2 0.001848 238927 164218 16.80 11.58 0.368736
0.4∗ 0.000486 711157 323016 50.77 23.24
0.6∗ 0.000291 644602 339569 46.23 24.33
0.8∗ 0.000131 517370 356316 37.28 25.55

housing 506 0.2 0.092998 154565 108220 24.21 16.87 0.815085
0.4 0.051726 186136 182889 30.49 29.51
0.6 0.026340 285354 271278 48.62 45.64
0.8 0.002161 397115 284253 69.16 49.12

triazines 186 0.2 0.193718 16607 22651 0.94 1.20 0.582147
0.4 0.074474 34034 47205 1.89 2.52
0.6∗ 0.000381 106621 51175 5.69 2.84
0.8∗ 0.000139 68553 50786 3.73 2.81

mg 1385 0.2 0.325659 190065 195519 87.99 89.20 0.966793
0.4 0.189377 291315 299541 139.10 141.73
0.6 0.107324 397449 407159 194.81 196.14
0.8 0.043439 486656 543520 241.20 265.27

abalone 4177 0.2 0.162593 465922 343594 797.48 588.92 0.988298
0.4 0.091815 901275 829951 1577.83 1449.37
0.6 0.053244 1212669 1356556 2193.97 2506.52
0.8 0.024670 1680704 1632597 2970.98 2987.30

space ga 3107 0.2 0.078294 510035 444455 595.42 508.41 0.984568
0.4 0.048643 846873 738805 1011.82 867.32
0.6 0.028933 1097732 1054464 1362.67 1268.40
0.8 0.013855 1374987 1393044 1778.38 1751.39

cpusmall 8192 0.2 0.070568 977374 863579 4304.42 3606.35 0.978351
0.4 0.041640 1783725 1652396 8291.12 7014.32
0.6 0.022280 2553150 2363251 11673.62 10691.95
0.8 0.009616 3085005 2912838 14784.05 12737.35

cadata 20640 0.2 0.263428 1085719 1081038 16003.55 15475.36 0.995602
0.4 0.151341 2135097 2167643 31936.05 31474.21
0.6 0.087921 2813070 2614179 42983.89 38580.61
0.8 0.039595 3599953 3379580 54917.10 49754.27

∗: experiments where ν ≥ ν
∗

16



It has been proved that if the decomposition method of LIBSVM is used for

solving (Dǫ), ǫ > 0, during iterations αiα
∗
i = 0 always holds (Lin 2001, Theorem

4.1). Now for ν-SVR we do not have this property as αi and α∗
i may both be

nonzero during iterations.

Next we discuss how to find ν∗. We claim that if Q is positive definite and

(α, α∗) is any optimal solution of (Dǫ), ǫ = 0, then

ν∗ =
l

∑

i=1

|αi − α∗
i |.

Note that by defining β ≡ α − α∗, (Dǫ), ǫ = 0 is equivalent to

min
1

2
βTQβ + (y/C)Tβ

eT β = 0,

−1/l ≤ βi ≤ 1/l, i = 1, . . . , l.

When Q is positive definite, it becomes a strictly convex programming problem so

there is a unique optimal solution β. That is, we have a unique α − α∗ but may

have multiple optimal (α, α∗). With conditions 0 ≤ αi, α
∗
i ≤ 1/l, the calculation

of |αi − α∗
i | is like to equally reduce αi and α∗

i until one becomes zero. Then

|αi − α∗
i | is the smallest possible αi + α∗

i with a fixed αi − α∗
i . In the next section

we will use the RBF kernel so if no data points are the same, Q is positive definite.

6 Experiments

In this section we demonstrate some numerical comparisons between ν-SVR and

ǫ-SVR. We test the RBF kernel with Qij = e−‖xi−xj‖
2/n, where n is the number

of attributes of a training data.

The computational experiments for this section were done on a Pentium III-

500 with 256MB RAM using the gcc compiler. Our implementation is part of the

software LIBSVM which includes both ν-SVR and ǫ-SVR using the decomposition

method. We used 100MB as the cache size of LIBSVM for storing recently used

Qij . The shrinking heuristics in LIBSVM is turned off for an easier comparison.

We test problems from various collections. Problems housing, abalone, mpg,

pyrimidines, and triazines are from the Statlog collection (Michie et al. 1994). From

17



StatLib (http://lib.stat.cmu.edu/datasets) we select bodyfat, space ga, and

cadata. Problem cpusmall is from the Delve archive which collects data for evaluat-

ing learning in valid experiments (http://www.cs.toronto.edu/~delve). Prob-

lem mg is a Mackey-Glass time series where we use the same settings as the

experiments in (Flake and Lawrence 2002). Thus we predict 85 times steps in

the future with six inputs. For these problems, some data entries have missing

attributes so we remove them before conducting experiments. Both the target

and attribute values of these problems are scaled to [−1, +1]. Hence the effective

range of ǫ is [0, 1].

For each problem, we solve its (Dν) form using ν = 0.2, 0.4, 0.6, and 0.8 first.

Then we solve (Dǫ) with ǫ = ρ for comparison. Tables 1 and 2 present the number

of training data (“l”), the number of iterations (“ν Iter.” and “ǫ Iter.”), and the

training time (“ν Time” and “ǫ Time”) by using C = 1 and C = 100, respectively.

In the last column we also list the number ν∗ of each problem.

From both tables we have the following observations:

1. Following theoretical results, we really see that as ν increases, its corre-

sponding ǫ decreases.

2. If ν ≤ ν∗, as ν increases, the number of iterations of ν-SVR and its corre-

sponding ǫ-SVR is increasing. Note that the case of ν ≤ ν∗ covers all results

in Table 1 and most of Table 2. Our explanation is as follows: When ν is

larger, there are more support vectors so during iterations the number of

non-zero variables is also larger. In (Hsu and Lin 2002) it has been pointed

out that if during iterations there are more non-zero variables than those at

the optimum, the decomposition method will take many iterations to reach

the final face. Here a face means the sub-space by considering only free vari-

ables. An example is in Figure 2 where we plot the number of free variables

during iterations against the number of iterations. To be more precise, the

y-axis is the number of 0 < αi < C and 0 < α∗
i < C where (α, α∗) is the

solution at one iteration. We can see that no matter for solving ǫ-SVR or

ν-SVR, it takes a lot of iteration to identify the optimal face.

From the aspect of ǫ-SVR we can consider ǫeT (α + α∗) as a penalty term

18



0 1 2 3 4
x 10

5

0

50

100

150

Iteration

#F
SV

mpg, C=100

nu=0.4
nu=0.6

(a) ν-SVR

0 1 2 3
x 10

5

0

50

100

150
mpg, C=100

Iteration

#F
SV

eps=0.4
eps=0.6

(b) ǫ-SVR

Figure 2: Iterations and Number of free variables (ν ≤ ν∗)

0 50000 100000 150000
0

50

100

150

200

Iteration

#F
S

V

triazines, C=100

nu=0.6
nu=0.8
eps=0.000139

Figure 3: Iterations and Number of free variables (ν ≥ ν∗)

19



in the objective function of (Dǫ). Hence when ǫ is larger, fewer αi, α
∗
i are

non-zero. That is, the number of support vectors is less.

3. There are few problems (e.g. pyrimidines, bodyfat, and triazines) where ν ≥

ν∗ is encountered. When this happens, their ǫ should be zero but due to

numerical inaccuracy, the output ǫ are only small positive numbers. Then

for different ν ≥ ν∗, when solving their corresponding (Dǫ), the number of

iterations is about the same as essentially we solve the same problem: (Dǫ)

with ǫ = 0.

On the other hand, surprisingly we see that at this time as ν increases, it

is easier to solve (Dν) with fewer iterations. Now its solution is optimal for

(Dǫ), ǫ = 0 but the larger ν is, the more (αi, α
∗
i ) are both non-zeros. There-

fore, contrary to the general case ν ≤ ν∗ where it is difficult to identify

and move free variables during iterations back to bounds at the optimum,

now there are no strong needs to do so. To be more precise, in the begin-

ning of the decomposition method, many variables become nonzero as we

try to modify them for minimizing the objective function. If finally most

of these variables are still nonzero, we do not need the efforts to put them

back to bounds. In Figure 3 again we plot the number of free variables

against the number of iterations using problem triazines with ν = 0.6, 0.8,

and ǫ = 0.000139 ≈ 0. It can be clearly seen that for large ν, the decompo-

sition method identifies the optimal face more quickly so the total number

of iterations is less.

4. When ν ≤ ν∗, we observe that there are minor differences on the number of

iterations for ǫ-SVR and ν-SVR. In Table 1, for nearly all problems ν-SVR

takes a little more iterations than ǫ-SVR. However, in Table 2, for prob-

lems triazines and mg, ν-SVR is slightly faster. Note that there are several

dissimilarities between algorithms for ν-SVR and ǫ-SVR. For example, ǫ-

SVR generally starts from the zero vector but ν-SVR has to use a nonzero

initial solution. For the working set selection, the two indices selected for

ǫ-SVR can be any αi or α∗
i but the two equality constraints lead to the se-

lection (5.5) and (5.6) for ν-SVR where the set is either from {α1, . . . , αl}

20



or {α∗
1, . . . , α

∗
l }. Furthermore, as the stopping tolerance 10−3 might be too

loose in some cases, the ǫ obtained after solving (Dν) may be a little differ-

ent from the theoretical value. Hence we actually solve two problems with

slightly different optimal solution sets. All these factors may contribute to

the distinction on iterations.

5. We also see that it is much harder to solve problems using C = 100 than

using C = 1. The difference is even more dramatic than the case of classifi-

cation. We do not have a good explanation of this observation.

7 Conclusions and Discussions

In this paper we have shown that the inequality in the ν-SVR formulation can be

treated as an equality. Hence algorithms similar to those for ν-SVC can be applied

for ν-SVR. In addition, in Section 6 we have shown similarities and dissimilarities

on numerical properties of ǫ-SVR and ν-SVR. We think that in the future, the

relation between C and ν (or C and ǫ) should be investigated in more detail. The

model selection on these parameters is also an important issue.

References

Chang, C.-C. and C.-J. Lin (2001a). LIBSVM: a library for support vector

machines. Software available at http://www.csie.ntu.edu.tw/~cjlin/

libsvm.

Chang, C.-C. and C.-J. Lin (2001b). Training ν-support vector classifiers: The-

ory and algorithms. Neural Computation 13 (9), 2119–2147.

Crisp, D. J. and C. J. C. Burges (2000). A geometric interpretation of ν-SVM

classifiers. In S. Solla, T. Leen, and K.-R. Müller (Eds.), Advances in Neural

Information Processing Systems, Volume 12, Cambridge, MA. MIT Press.

Flake, G. W. and S. Lawrence (2002). Efficient SVM regression training with

SMO. Machine Learning 46, 271–290.

Hsu, C.-W. and C.-J. Lin (2002). A simple decomposition method for support

vector machines. Machine Learning 46, 291–314.

21



Joachims, T. (1998). Making large-scale SVM learning practical. In

B. Schölkopf, C. J. C. Burges, and A. J. Smola (Eds.), Advances in Kernel

Methods - Support Vector Learning, Cambridge, MA. MIT Press.

Keerthi, S. S. and E. G. Gilbert (2002). Convergence of a generalized SMO

algorithm for SVM classifier design. Machine Learning 46, 351–360.

Keerthi, S. S., S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy (2000).

Improvements to SMO algorithm for SVM regression. IEEE Transactions

on Neural Networks 11 (5), 1188–1193.

Laskov, P. (2002). An improved decomposition algorithm for regression support

vector machines. Machine Learning 46, 315–350.

Lin, C.-J. (2001). On the convergence of the decomposition method for support

vector machines. IEEE Transactions on Neural Networks 12 (6), 1288–1298.

Michie, D., D. J. Spiegelhalter, C. C. Taylor, and J. Campbell (Eds.) (1994).

Machine learning, neural and statistical classification. Upper Saddle River,

NJ, USA: Ellis Horwood. Data available at http://archive.ics.uci.edu/

ml/machine-learning-databases/statlog/.

Osuna, E., R. Freund, and F. Girosi (1997). Training support vector machines:

An application to face detection. In Proceedings of CVPR’97, New York,

NY, pp. 130–136. IEEE.

Platt, J. C. (1998). Fast training of support vector machines using sequential

minimal optimization. In B. Schölkopf, C. J. C. Burges, and A. J. Smola

(Eds.), Advances in Kernel Methods - Support Vector Learning, Cambridge,

MA. MIT Press.

Rüping, S. (2000). mySVM - another one of those

support vector machines. Software available at

http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/.

Schölkopf, B., A. Smola, R. C. Williamson, and P. L. Bartlett (2000). New

support vector algorithms. Neural Computation 12, 1207–1245.

Schölkopf, B., A. J. Smola, and R. Williamson (1999). Shrinking the tube: A

new support vector regression algorithm. In M. S. Kearns, S. A. Solla, and

22



D. A. Cohn (Eds.), Advances in Neural Information Processing Systems,

Volume 11, Cambridge, MA. MIT Press.

Vapnik, V. (1998). Statistical Learning Theory. New York, NY: Wiley.

23



-

6ν

ν∗ = 1

ǫǫ = ∆

Figure 1: An example where one (Dǫ) corresponds to different (Dν)

Author: Chang, Manuscript Number: 2403



0 1 2 3 4
x 10

5

0

50

100

150

Iteration

#F
SV

mpg, C=100

nu=0.4
nu=0.6

(a) ν-SVR

0 1 2 3
x 10

5

0

50

100

150
mpg, C=100

Iteration

#F
SV

eps=0.4
eps=0.6

(b) ǫ-SVR

Figure 2: Iterations and Number of free variables (ν ≤ ν∗)

Author: Chang, Manuscript Number: 2403



0 50000 100000 150000
0

50

100

150

200

Iteration

#F
S

V

triazines, C=100

nu=0.6
nu=0.8
eps=0.000139

Figure 3: Iterations and Number of free variables (ν ≥ ν∗)

Author: Chang, Manuscript Number: 2403


