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ABSTRACT
Dual coordinate descent method is one of the most effec-
tive approaches for large-scale linear classification. However,
its sequential design makes the parallelization difficult. In
this work, we target at the parallelization in a multi-core
environment. After pointing out difficulties faced in some
existing approaches, we propose a new framework to paral-
lelize the dual coordinate descent method. The key idea is
to make the majority of all operations (gradient calculation
here) parallelizable. The proposed framework is shown to
be theoretically sound. Further, we demonstrate through
experiments that the new framework is robust and efficient
in a multi-core environment.

Keywords
dual coordinate descent, linear classification, multi-core com-
puting

1. INTRODUCTION
Linear classification such as linear SVM and logistic re-

gression is one of the most used machine learning methods.
However, training large-scale data may be time-consuming,
so the parallelization has been an important research issue.
In this work, we consider multi-core environments and study
parallel dual coordinate descent methods, which are an im-
portant class of optimization methods to train large-scale
linear classifiers.

Existing optimization methods for linear classification can
be roughly categorized to the following two types:
1. Low-order optimization methods such as stochastic gra-

dient or coordinate descent (CD) methods. By using only
the gradient information, this type of methods runs many
cheap iterations.

2. High-order optimization methods such as quasi Newton
or Newton methods. By using, for example, second-order
information, each iteration is expensive but fewer itera-
tions are needed to approach the final solution.
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These methods, useful in different circumstances, have been
parallelized in some past works. To be focused here, we re-
strict our discussion to those that are suitable for multi-core
environments. Therefore, some that are mainly applicable
in distributed environments are out of our interests.

For Newton methods, recently we have shown that with
careful implementations, excellent speedup can be achieved
in a multi-core environment [11]. Its success relies on par-
allelizable operations that involve all data together. In con-
trast, stochastic gradient or CD methods are inherently se-
quential because each time only one instance is used to up-
date the model. Among approaches of using low-order infor-
mation, we are particularly interested in the CD method to
solve the dual optimization problem. Although such tech-
niques can be traced back to works such as [4], after the
recent introduction to linear classification [5], dual CD has
become one of the most efficient methods. Further, in con-
trast to primal-based methods (e.g., Newton or primal CD)
that often require the differentiability of the loss function, a
dual-based method can easily handle some non-differentiable
losses such as the l1 hinge loss (i.e., linear SVM).

Several works have proposed parallel extensions of dual
CD methods (e.g., [6, 10, 13, 14, 15]), in which [6, 13, 14]
focus more on multi-core environments. We can further cat-
egorize them to two types:
1. Mini-batch CD [13]. Each time a batch of instances are

selected and CD updates are parallelly applied to them.
2. Asynchronous CD [6][14]. Threads independently update

different coordinates in parallel. The convergence is often
faster than synchronous algorithms, but sometimes the
algorithm fails to converge.

In Section 2, we detailedly discuss the above approaches for
parallel dual CD, and explain why they may be either in-
efficient or not robust. Indeed, except the experiment code
in [6], so far no publicly available packages have supported
parallel dual CD in multi-core environments. In Section 3,
we propose a new and simple framework that can effectively
take the advantage of multi-core computation. Theoretical
properties such as asymptotic convergence and finite ter-
mination under given stopping tolerances are provided in
Section 4. In Section 5, we conduct thorough experiments
and comparisons. Results show that our proposed method
is robust and efficient.

Based on this work, parallel dual CD is now publicly avail-
able in the multi-core extension of our LIBLINEAR package:
https://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/multicore-liblinear/.
Because of space limitation, proofs and some additional ex-
perimental results are left in supplementary materials at the
same address. Code for experiments is also available there.

http://dx.doi.org/10.1145/2939672.2939826
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/multicore-liblinear/


2. DUAL COORDINATE DESCENT AND DIF-
FICULTIES OF ITS PARALLELIZATION

In this section, we begin with introducing optimization
problems for linear classification and the basic concepts of
dual CD methods. Then we discuss difficulties of the paral-
lelization in multi-core environments.

2.1 Linear Classification and Dual CD Meth-
ods

Assume the classification task involves a training set of
instance-label pairs (xi, yi), i = 1, . . . , l, xi ∈ Rn, yi ∈
{−1,+1}, a linear classifier obtains its model vector w by
solving the following optimization problem.

min
w

1

2
wTw + C

∑l

i=1
ξ(w;xi, yi), (1)

where ξ(w;xi, yi) is a loss function, and C > 0 is a penalty
parameter. Commonly used loss functions include

ξ(w;x, y) ≡


max(0, 1− ywTx) l1 loss,

max(0, 1− ywTx)2 l2 loss,

log(1 + e−ywTx) logistic (LR) loss.

In this work, we focus on l1 and l2 losses (i.e., linear SVM),
though results can be easily applied to logistic regression.
Following the notation in [5], if (1) is referred to as the
primal problem, then a dual CD method solves the following
dual problem:

min
α

f(α) =
1

2
αT Q̄α− eTα

subject to 0 ≤ αi ≤ U,∀i, (2)

where Q̄ = Q + D, D is a diagonal matrix, and Qij =
yiyjx

T
i xj . For the l1 loss, U = C and Dii = 0, ∀i, while

for the l2 loss, U = ∞ and Dii = 1/(2C), ∀i. Notice that
l1 loss is not differentiable, so solving the dual problem is
generally easier than the primal.

We briefly review dual CD methods by following the de-
scription in [5]. Each time a variable αi is updated while
others are fixed. Specifically, if the current α is feasible for
(2), we solve the following one-variable sub-problem:

min
d
f(α+ dei) subject to 0 ≤ αi + d ≤ U, (3)

where ei = [0, . . . , 0︸ ︷︷ ︸
i−1

, 1, 0, . . . , 0]T . Clearly,

f(α+ dei) =
1

2
Q̄iid

2 +∇if(α)d+ constant, (4)

where

∇if(α) = (Q̄α)i − 1 =
∑l

j=1
Q̄ijαj − 1.

If Q̄ii > 0,1 the solution of (3) can be easily seen as

d = min

(
max

(
αi −

∇if(α)

Q̄ii
, 0

)
, U

)
− αi. (5)

1It has been pointed out in [5] that Q̄ii = 0 occurs only when
xi = 0 and the l1 loss is used. Then Q̄ij = 0, ∀j and the
optimal αi = C. This variable can thus be easily removed
before running CD.

Algorithm 1 A dual CD method for linear SVM

1: Specify a feasible α and calculate w =
∑

j yjαjxj

2: while α is not optimal do
3: for i = 1, . . . , l do
4: G← yiw

Txi − 1 +Diiαi

5: d← min(max(αi −G/Q̄ii, 0), U)− αi

6: αi ← αi + d
7: w ← w + dyixi

Algorithm 2 Mini-batch dual CD in [13]

1: Specify α = 0, batch size b, and a value βb > 1.
2: while α is not optimal do
3: Get a set B with |B| = b under uniform distribution
4: w =

∑
j yjαjxj

5: for all i ∈ B do in parallel
6: G = yiw

Txi − 1 +Diiαi

7: αi ← min(max(αi −G/(βb × Q̄ii), 0), U)

The main computation in (5) is on calculating ∇if(α).
One crucial observation in [5] is that∑l

j=1
Q̄ijαj − 1 = yi(

∑l

j=1
yjαjxj)

Txi − 1 +Diiαi.

If

w ≡
∑l

j=1
yjαjxj (6)

is maintained, then ∇if(α) can be easily calculated by

∇if(α) = yiw
Txi − 1 +Diiαi. (7)

Note that we slightly abuse the notation by using the same
symbol w of the primal variable in (1). The reason is that
w in (6) will become the primal optimum if α converges to a
dual optimal solution. We can then update α and maintain
the weighted sum in (6) by

αi ← αi + d and w ← w + dyixi. (8)

This is much cheaper than calculating the sum of l vectors in
(6). The simple CD procedure of cyclically updating αi, i =
1, . . . , l is presented in Algorithm 1. We call each iteration
of the while loop as an outer iteration. Thus each outer
iteration contains l inner iterations to sequentially update
all α’s components. Further, the main computation at each
inner iteration includes two O(n) operations in (7) and (8).

The above O(n) operations are by assuming that the data
set is dense. For sparse data, any O(n) term in the com-
plexity discussion in this paper should be replaced by O(n̄),
where n̄ is the average number of non-zero feature values
per instance.

2.2 Difficulties in Parallelizing Dual CD
We point out difficulties to parallelize dual CD methods

by discussing two types of existing approaches.

2.2.1 Mini-batch Dual CD
Algorithm 1 is inherently sequential. Further, it contains

many cheap inner iterations, each of which cost O(n) oper-
ations. Some [13] thus propose applying CD updates on a
batch of data simultaneously. Their procedure is summa-
rized in Algorithm 2

Algorithms 1 and 2 differ in several places. First, in Algo-
rithm 2 we must select a set B. In [13], this set is randomly



selected under a distribution, so the algorithm is a stochastic
dual CD. If we would like a cyclic setting similar to that in
Algorithm 1, a simple way is to split all data {x1, . . . ,xl} to
blocks and then update variables associated with each block
in parallel. The second and also the main difference from
Algorithm 1 is that (5) cannot be used to update αi,∀i ∈ B.
The reason is that we no longer have the property that all
but one variable are fixed. To update all αi, i ∈ B in par-
allel but maintain the convergence, the change on each co-
ordinate must be conservative. Therefore, they consider an
approximation of the one-variable problem (3) by replacing
Q̄ii in (4) with a larger value βb × Q̄ii; see line 7 of Algo-
rithm 2. By choosing a suitable βb that is data dependent,
[13] proved the expected convergence. One disadvantage of
using conservative steps is the slower convergence. There-
fore, asynchronous CD methods that will be discussed later
aim to address this problem by still using the sub-problem
(3).

An important practical issue not discussed in [13] is the
calculation of w. In Algorithm 2, we can see that they re-
calculate w at every iteration. This operation becomes the
bottleneck because it is much more time-consuming than the
update of αi,∀i ∈ B. Following the setting in Algorithm 1,
what we should do is to maintain w according to the change
of α. Therefore, lines 5-7 in Algorithm 2 can be changed
to

1: for all i ∈ B do in parallel
2: G← yiw

Txi − 1 +Diiαi

3: di ← min(max(αi −G/(βb × Q̄ii), 0), U)− αi

4: αi ← αi + di
5: w ← w +

∑
j:j∈B yjdjxj

We notice that both the for loop (line 1) and the update
of w (line 5) take O(|B|n) operations. Thus parallelizing
the for loop can at best half the running time. Updating
w in parallel is possible, but we explain that it is much
more difficult than the parallel calculation of di, ∀i ∈ B.
The main issue is that two threads may want to update
the same component of w simultaneously. The following
example shows that one thread for xi and another thread
for xj both would like to update ws:

ws ← ws + yidi(xi)s and ws ← ws + yjdj(xj)s.

The recent work [11] has detailedly studied this issue. One
way to avoid the race condition is by atomic operations, so
each ws is updated by only one thread at a time:

1: for all i ∈ B do in parallel
2: Calculate G, obtain di and update αi

3: for (xi)s 6= 0 do
4: atomic: ws ← ws + yidi(xi)s

Unfortunately, in some situations (e.g., number of features
is small) atomic operations cause significant waiting time so
that no speedup is observed [11]. Instead, for calculating
the sum of some vectors

u1x1 + · · ·+ ulxl,

the study in [11] shows better speedup by storing temporary
results of each thread in the following vector

ûp =
∑
{uixi | xi handled by thread p} (9)

and parallelly summing these vectors in the end. This ap-
proach essentially implements a reduce operation in parallel

computation. However, it is only effective when enough vec-
tors are summed because otherwise the overhead of main-
taining all ûp vectors leads to no speedup. Unfortunately,
B is now a small set, so this approach of implementing a
reduce operation may not be useful.

In summary, through the discussion we point out that the
update of w may be a bottleneck in parallelzing dual CD.

2.2.2 Asynchronous Dual CD
To address the conservative updates in parallel mini-batch

CD, a recent direction is by asynchronous updates [6], [14].
Under a stochastic setting to choose variables, each thread
independently updates an αi by the rule in (5):

1: while α is not optimal do
2: Select a set B
3: for all i ∈ B do in parallel
4: G← yiw

Txi − 1 +Diiαi

5: di ← min(max(αi −G/Q̄ii, 0), U)− αi

6: αi ← αi + di
7: for (xi)s 6= 0 do
8: atomic: ws ← ws + diyi(xi)s

To avoid the conflicts in updating w, they consider atomic
operations. From the discussion in Section 2.2.1, one may
worry that such operations cause serious waiting time, but
[6], [14] report good speedup. A detailed analysis on the use
of atomic operations here was in [11, supplement], where we
point out that practically each thread updates w (line 8 of
the above algorithm) by the following setting:

1: if di 6= 0 then
2: for (xi)s 6= 0 do
3: atomic: ws ← ws + diyi(xi)s

For linear SVM, some α elements may quickly reach bounds
(0 or C for l1 loss and 0 for l2 loss) and remain the same. The
corresponding di = 0 so the atomic operation is not needed
after calculating G = ∇if(α). Therefore, the atomic op-
erations that may cause troubles occupy a relatively small
portion of the total computation. However, for dense prob-
lems because most xi’s elements are non-zero, the race situa-
tion more frequently occurs. Hence experiments in Section 5
show worse scalability.

The major issue of using an asynchronous setting is that
the convergence may not hold. Both works [6], [14] assume
that the lag between the start (i.e., reading xi) and the end
(i.e., updating w) of one CD step is bounded. Specifically, if
we denote the update by a thread as an iteration and order
these iterations according to their finished time, then the
resulting sequence {αk} should satisfy that

k ≤ k̄ + τ,

where k̄ is the iteration index when iteration k starts, and
τ is a positive constant.

Both works require τ to satisfy some conditions for the
convergence analysis. Unfortunately, as indicated in Fig-
ure 2 of [14], these conditions may not always hold, so the
asynchronous dual CD method may not converge. In our
experiment, this situation easily occurs for dense data (i.e.,
most feature values are non-zeros) if more cores are used. To
avoid the divergence situation, [14] further proposes a semi-
asynchronous dual CD method by having a separate thread
to calculate (6) once after a fixed number of CD updates.
However, they do not prove the convergence under such a
semi-asynchronous setting.



Algorithm 3 A practical implementation of Algorithm 1
considered by LIBLINEAR, where new statements are marked
by “/ new”

1: Specify a feasible α and calculate w =
∑

j yjαjxj

2: while true do
3: M ← −∞
4: for i = 1, . . . , l do
5: G← yiw

Txi − 1 +Diiαi

6: Calculate PG by (11) / new
7: M ← max(M, |PG|) / new
8: if |PG| ≥ 10−12 then / new
9: d← min(max(αi −G/Q̄ii, 0), U)− αi

10: αi ← αi + d
11: w ← w + dyixi

12: if M < ε then / new
13: break

3. A FRAMEWORK FOR PARALLEL DUAL
CD

Based on the discussion in Section 2, we set the following
design goals for a new framework.
1. To ensure the convergence in all circumstances, we do not

consider asynchronous updates.

2. Because of the difficulty to parallelly update w (see Sec-
tion 2.2.1), we run this operation only in a serial setting.
Instead, we design the algorithm so that this w update
takes a small portion of the total computation. Further,
we ensure that the most computationally intensive part
is parallelizable.

3.1 Our Idea for Parallelization
To begin, we present Algorithm 3, which is the practical

version of Algorithm 1 implemented in the popular linear
classifier LIBLINEAR [2]. A difference is that a stopping con-
dition is introduced. If we assume that one outer iteration
contains the following inner iterates,

αk,1,αk,2, . . . ,αk,l,

then the stopping condition2 is

max
i
|∇P

i f(αk,i)| < ε, (10)

where ε is a given tolerance and ∇P
i f(α) is the projected

gradient defined as

∇P
i f(α) =


∇if(α) if 0 < αi < U,

min(0,∇if(α)) if αi = 0,

max(0,∇if(α)) if αi = U.

(11)

Notice that for problem (2), α is optimal if and only if

∇P f(α) = 0.

Another important change made in Algorithm 3 is that at
line 8, we check whether ∇if

P (α) ≈ 0 to see if the current
αi is close to the optimum of the single-variable optimization
problem (3). If that is the case, then we update neither αi

nor w. Note that updating αi is cheap, but the check at

2Note that LIBLINEAR actually uses maxi∇f(αk,i) −
mini∇f(αk,i) < ε, though for simplicity in this paper we
consider (10).

line 8 may significantly save the O(n) cost to update w.
Therefore, in practice we may have the following situation

αk,1, . . . ,αk,s−1︸ ︷︷ ︸
unchanged

,αk,s,αk,s+1, . . . ,αk,s′−1︸ ︷︷ ︸
unchanged

,αk,s′ , . . . (12)

Clearly, the calculation of

∇P
1 f(αk,1), . . . ,∇P

s−1f(αk,s−1)

is wasted. However, we know these values are close to zero
only if we have calculated them.

The above discussion shows that between any two updated
α components, several unchanged elements may exist. In
fact we may deliberately have more unchanged elements.
For example, if at line 8 of Algorithm 3 we instead use the
following condition

∇P
i f(αk,i) ≥ δε, where δ ∈ (0, 1) and δε� 10−12,

then many elements may be unchanged between two up-
dated ones. Note that ε is typically larger than 0.001 (0.1
is the default stopping tolerance used in LIBLINEAR) and
δ ∈ (0, 1) can be chosen not too small (e.g., 0.5).3

A crucial observation from (12) is that because

αk,1 = · · · = αk,s−1,

we can calculate their projected gradient values in parallel.
Unfortunately, the number s is not known in advance. One
solution is to conjecture an interval {1, . . . , I} so we parallely
calculate all corresponding gradient values,

∇if(αk), i = 1, . . . , I.

This approach ends up with the following situation

∇1f(αk), . . . ,

selected
↓

∇sf(αk)︸ ︷︷ ︸
checked

,∇s+1f(αk), . . . ,∇If(αk)︸ ︷︷ ︸
unchecked & wasted

(13)

After αk
s is updated, gradient values become different and

hence the calculation for ∇if(αk), i = s+1, . . . , I is wasted.
Because guessing the size of the interval is extremely diffi-
cult, we propose a two-stage approach. We still calculate
gradient values of I elements, but select a subset of candi-
dates rather than one single element for CD updates:
Stage 1: We calculate ∇if(αk), i = 1, . . . , I in parallel and
then select some elements for update. The following exam-
ple shows that after checking all I elements, three of them,
{s1, s2, s3}, are selected; see the difference from (13).

αk
1 , . . . ,

↓

αk
s1 , . . . ,

↓

αk
s2 , . . . ,

↓

αk
s3 , . . . , α

k
I︸ ︷︷ ︸

all checked

Stage 2: We sequentially update selected elements (e.g.,
αs1 , αs2 , and αs3 in the above example) by regular CD up-
dates.
The standard CD greedily uses the latest ∇if(α) to check
if αi should be updated. In contrast, our setting here relies
on the current ∇if(α), i = 1, . . . , I to check if the next I
elements should be updated. When α is close to the opti-
mum and is not changed much, the selection should be as
good as the standard CD. Algorithm 4 shows the details of

3Note that we need δ ∈ (0, 1) to ensure from the stopping
condition (10) that at each outer iteration at least one αi is
updated.



Algorithm 4 A parallel dual CD method

1: Specify a feasible α and calculate w =
∑

j yjαjxj

2: Specify a tolerance ε and a small value 0 < ε̄� ε
3: while true do
4: M ← −∞
5: Split {1, . . . , l} to B̄1, . . . , B̄T

6: t̄← 0
7: for B̄ in B̄1, . . . , B̄T do
8: Calculate ∇fB̄(α) in parallel
9: M ← max(M,maxi∈B̄ |∇P

i f(α)|)
10: B ← {i | i ∈ B̄, |∇P

i f(α)| ≥ δε}
11: for i ∈ B do
12: G← yiw

Txi − 1 +Diiαi

13: d← min(max(αi −G/Q̄ii, 0), U)− αi

14: if |d| ≥ ε̄ then
15: αi ← αi + d
16: w ← w + dyixi

17: t̄← t̄+ 1
18: if M ≤ ε or t̄ = 0 then
19: break

Algorithm 5 A framework of parallel dual CD methods,
where Algorithms 4 and 6 are special cases

1: Specify a feasible α
2: while true do
3: Select a set B̄
4: Calculate ∇B̄f(α) in parallel
5: Select B ⊂ B̄ with |B| � |B̄|
6: Update αi, i ∈ B

our approach. Like the cyclic setting in Algorithm 1, here
we split {1, . . . , l} to several blocks. Each time we parallely
calculate ∇if(α) of elements in a block B̄ and then select a
subset B ⊂ B̄ for sequential CD updates. Note that line 14
is similar to line 8 in Algorithm 3 for checking if the change
of αi is too small and w needs not be updated.

A practical issue in Algorithm 4 is that the selection of
B depends on the given ε. That is, the stopping tolerance
specified by users may affect the behavior of the algorithm.
We resolve this issue in Section 4 for discussing practical
implementations.

3.2 A General Framework for Parallel Dual
CD

The idea in Section 3.1 motivates us to have a general
framework for parallel dual CD in Algorithm 5, where Algo-
rithm 4 is a special case. The key properties of this frame-
work are:
1. We select a set B̄ and calculate the corresponding gradi-

ent values in parallel.
2. We then get a much smaller set B ⊂ B̄ and update αB .
Assume that updating αB costs O(|B|n) operations as in
Algorithm 4. Then the complexity of Algorithm 5 is

O

(
|B̄|n
P

+ |B|n
)
×#iterations,

where P is the number of threads. If |B| � |B̄|, we can
see that parallel computation can significantly reduce the
running time.

One may argue that Algorithm 5 is no more than a typi-
cal block CD method and question why we come a long way

to get it. A common block CD method selects a set B̄ at
a time and solve a sub-problem of the variable αB̄ . If we
consider Algorithm 5 as a block CD method, then it has a
very special setting in solving the sub-problem of αB̄ : Al-
gorithm 5 spends most efforts on further selecting a much
smaller subset B and then (approximately or accurately)
solving a smaller sub-problem of αB . Therefore, we can say
that Algorithm 5 is a specially tweaked block CD that aims
for multi-core environments.

3.3 Relation with Decomposition Methods for
Kernel SVM

In Algorithm 4, while the second stage is to cyclically
update elements in the set B, the first stage is a gradient-
based selection of B from a larger set B̄. Interestingly, cyclic
and gradient-based settings are the two major ways in CD
to select variables for update. The use of gradient motivates
us to link to the popular decomposition methods for kernel
SVM (e.g., [3, 8, 12]), which calculate the gradient and select
a small subset of variables for update. It has been explained
in [5, Section 4] why a gradient-based rather than a cyclic
variable selection is useful for kernel classifiers, so we do not
repeat the discussion here. Instead, we would like to discuss
the BSVM package [7] that has recognized the importance
of maintaining w for the linear kernel;4 see also [9, Section
4]. After calculating ∇f(α), BSVM selects a small set B
(by default |B| = 10) by the following procedure. Let r be
the number of α’s free components (i.e., 0 < αi < C), |B|
be the number of elements to be selected, and

v = −∇P f(α).

The set B includes the following indices.
1. The largest min(|B|/2, r) elements in v that correspond

to α’s free elements.

2. The smallest (|B| −min(|B|/2, r)) elements in v.
BSVM then updates αB by fixing all other elements and
solving the following sub-problem.

min
dB

f([ αB
αN

] +
[
dB
0

]
) (14)

subject to −αi ≤ di ≤ C − αi,∀i ∈ B
di = 0, ∀i /∈ B,

where N = {1, . . . , l} \B and

f([ αB
αN

] +
[
dB
0

]
) =

1

2
dT
BQ̄BBdB +∇Bf(α)TdB + constant.

Note that Q̄BB is a sub-matrix of the matrix Q̄. If |B| = 1,
(14) is reduced to the single-variable sub-problem in (3). We
present a parallel implementation of the BSVM algorithm
in Algorithm 6, which is the same as the current BSVM
implementation except the parallel calculation of ∇f(α) at
line 3. Clearly, Algorithm 6 is a special case of the framework
in Algorithm 5 with B̄ = {1, . . . , l}.

While both Algorithms 4 and 6 are realizations of Algo-
rithm 5, they significantly differ in how to update αB after
selecting the working set B (line 6 of Algorithm 5). In [9],
the sub-problem (14) is accurately solved by an optimization
algorithm that costs

O(|B|2n+ |B|3)

4Maintaining w is not possible in the kernel case because it
is too high dimensional to be stored.



Algorithm 6 A parallel implementation of the BSVM al-
gorithm [7] for linear classification

1: Specify a feasible α and calculate w =
∑

j yjαjxj

2: while true do
3: Calculate ∇if(α), ∀i = 1, . . . , l in parallel
4: if α is close to an optimum then
5: break
6: Select B by the procedure in Section 3.3
7: Find dB by solving (14)
8: for i ∈ B do
9: if |di| ≥ ε̄ then

10: αi ← αi + di
11: w ← w + diyixi

operations, where |B|2n is for constructing the matrix Q̄BB

and |B|3 is for factorizing Q̄BB several times. In contrast,
from line 11 to line 17 in Algorithm 4, we very loosely solve
the sub-problem (3) by conducting |B| number of CD up-
dates. As a result, we can see the following difference on the
two algorithms’ complexity:

Algorithm 4: O( ln
PT

+ |B|n)×#inner iterations,

Algorithm 6: O( ln
P

+ (|B|2n+|B|3)
P

)×#iterations.
(15)

Here an inner iteration in Algorithm 4 means to handle one
block B̄ of B̄1, . . . , B̄T . We let it be compared to an iteration
in Algorithm 6 because they both update elements in a set B
eventually. Note that in (15) we slightly favor Algorithm 6
by assuming that solving the sub-problem (14) can be fully
parallelized.

The complexity comparison in (15) explains why in the
serial setting the cyclic CD [5] is much more widely used than
the BSVM implementation [7]. When a single thread is used,
Algorithm 4 is reduced to Algorithm 1 with P = 1, T = l
and |B| = 1. Then (15) becomes

Algorithm 1: O(n+ n)×#inner iterations,
Algorithm 6 (serial): O(ln+ (|B|2n+ |B|3))×#iterations.

Clearly the ln term causes each iteration of Algorithm 6 to
be extremely expensive. Thus unless the number of itera-
tions is significantly less, the total time of Algorithm 6 is
more than that of Algorithm 1. Now for the multi-core en-
vironment, Algorithm 4 parallelizes the evaluation of |B̄| =
l/T gradient components, and to use the latest gradient in-
formation, |B̄| cannot be too large (we used several hundreds
or thousands in our experiments; see Section 4 for details.).
In contrast, Algorithm 6 parallelizes the evaluation of all
l components. Because the scalability is often better for
the situation of a higher computational demand, we expect
that Algorithm 6 benefits more from multi-core computa-
tion. Therefore, it is interesting to see if Algorithm 6 be-
comes practically viable. Unfortunately, in Section 5.2 we
see that even with better scalability, Algorithm 6 is still
slower than Algorithm 4.

4. THEORETICAL PROPERTIES AND IM-
PLEMENTATION ISSUES

In this section we investigate theoretical properties and
implementation issues of Algorithm 4, which will be used
for subsequent comparisons with existing approaches. First
we show the finite termination.

Theorem 1 Under any given stopping tolerance ε > 0, Al-
gorithm 4 terminates after a finite number of iterations.

Because of the space limitation, we leave the proof in Section
I of supplementary materials.

Besides the finite termination under a tolerance ε, we hope
that as ε → 0, the resulting solution can approach an opti-
mum. Then the asymptotic convergence is established. Note
that Algorithm 4 has another parameter ε̄ � ε, so we also
need ε̄ → 0 as well. Now assume that αε,ε̄ is the solution
after running Algorithm 4 under ε and ε̄, and

wε,ε̄ =
∑

yjα
ε,ε̄
j xj .

The following theorem gives the asymptotic convergence.

Theorem 2 Consider a sequence {εk, ε̄k} with

lim
k→∞

εk, ε̄k = 0, 0. (16)

If w∗ is the optimum of (1), then we have

lim
k→∞

wεk,ε̄k = w∗.

Next we discuss several implementation issues.

4.1 Shrinking
An effective technique demonstrated in [5] to improve the

efficiency of dual CD methods is shrinking. This technique,
originated from training kernel classifiers, aims to remove
some elements that are likely bounded (i.e., αi = 0 or U)
in the end. For the proposed Algorithm 4, the shrinking
technique can be easily adapted. Once ∇B̄f(α) is calcu-
lated, we can apply conditions used in [5] to remove some
elements in B̄. After the stopping condition is satisfied on
the remaining elements, we check if the whole set satisfies
the same condition as well. A detailed pseudo code is given
in Algorithm I of supplementary materials.

4.2 The Size of |B̄|
In Algorithm 4, the set B̄ is important because we paral-

lelize the calculation of ∇B̄f(α) and then select a set B ⊂ B̄
for CD updates. Currently we cyclically get B̄ after splitting
{1, . . . , l} to T blocks, but the size of B̄ needs to be decided.
We list the following considerations.
- |B̄| cannot be too small because first the overhead in par-

allelizing the calculation of ∇B̄f(α) becomes significant,
and second the set B selected from B̄ may be empty.

- |B̄| cannot be too large because the algorithm uses the
current solution to select too many elements at a time for
CD updates. Without using the latest gradient informa-
tion, the convergence may be slower.

Fortunately, we find that the training time is about the same
when |B̄| is set to be a few hundreds or a few thousands.
Therefore, the selection of |B̄| is not too difficult; see exper-
imental results in Section 5.1.2.

To avoid that |B| = 0 happens frequently, we further de-
sign a simple rule to adjust the size of |B̄|:

if |B| = 0 then
|B̄| ← min(|B̄| × 1.5,maxB̄)

else if |B| ≥ initB̄ then
|B̄| ← |B̄|/2

The idea is to check the size of B for deciding if |B̄| needs
to be adjusted: If |B| = 0, to get some elements in B for



Table 1: Data statistics: Density is the average
ratio of non-zero features per instance. Ratio is the
percentage of running time spent on the gradient
calculation (line 8 of Algorithm 4); we consider the
l1 loss by using one core (see also the discussion in
Section 5.1).
Data set #data #features density ratio
rcv1 677,399 47,236 0.15% 89%
yahoo-korea 368,444 3,052,939 0.01% 86%
yahoo-japan 176,203 832,026 0.02% 96%
webspam (trigram) 350,000 16,609,143 0.02% 91%
url combined 2,396,130 3,231,961 0.004% 86%
KDD2010-b 19,264,097 29,890,095 0.0001% 86%
covtype 581,012 54 22.12% 66%
epsilon 400,000 2,000 100% 80%
HIGGS 11,000,000 28 92.11% 85%

CD updates, we should enlarge B̄. In contrast, if too many
elements are included in B, we should reduce the size of
B̄. Here initB̄ is the initial size of B̄, while maxB̄ is the
upper bound. In our experiments, we set initB̄ = 256 and
maxB̄ = 4, 096. Because in general 0 < |B| < initB̄, |B̄| is
seldom changed in practice. Hence our rule mainly serves as
a safeguard.

4.3 Adaptive Condition in Choosing B

Algorithm 4 is ε-dependent because of the condition

|∇P
i f(α)| ≥ δε

to select the set B. This property is undesired because if
users pick a very small ε, then in the beginning of the algo-
rithm almost all elements in B̄ are included in B. To make
Algorithm 4 independent of the stopping tolerance, we have
a separate parameter ε1, that starts with a constant not too
close to zero and gradually decreases to zero. Specifically
we make the following changes:
1. ε1 = 0.1 in the beginning.
2. The set B is selected by

B ← {i | i ∈ B̄, |∇P
i f(α)| ≥ δε1}.

3. The stopping condition is changed to

if M < ε1 or t̄ = 0 then
if ε1 ≤ ε then

break
else
ε1 ← max(ε, ε1/10)

Therefore, the algorithm relies on a fixed sequence of ε1

values rather than a single value ε specified by users.

5. EXPERIMENTS
We consider nine data sets, each of which has a large num-

ber of instances.5 Six of them are sparse sets with many
features, while the others are dense sets with few features.
Details are in Table 1.

In all experiments, the regularization parameter C = 1 is
used. We have also considered the best C value selected by
cross-validation. Results, presented in supplementary mate-
rials, are similar. All implementations, including the one in

5All sets except yahoo-japan and yahoo-korea are available at
http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/.
For covtype, both scaled and original versions are available;
we use the scaled one.

[5], are extended from the package LIBLINEAR version 2.1
[2] by using OpenMP [1], so the comparison is fair. The ini-
tial α = 0 is used in all algorithms. In Algorithm 4, we set
ε̄ = 10−15, δ = 0.1, and the initial |B̄| = 256. Experiments
are conducted on Amazon EC2 m4.4xlarge machines, each
of which is equivalent to 8 cores of an Intel Xeon E5-2676
v3 CPU.

5.1 Analysis of Algorithm 4
We investigate various aspects of Algorithm 4. Some more

results are in supplementary materials.

5.1.1 Percentage of Parallelizable Operations
Our idea in Algorithm 4 is to make the gradient calcula-

tion the most computationally expensive yet parallelizable
step of the procedure. In Table 1, we check the percentage of
total training time spent on this operation by using a single
core and the stopping tolerance ε = 0.1.6 The l1 loss is con-
sidered. Results indicate that in general more than 80% of
time is used for calculating the gradient. Hence the running
time can be effectively reduced in a multi-core environment.

5.1.2 Size of the Set B̄
An important parameter to be decided in Algorithm 4 is

the size of the set B̄; see the discussion in Section 4.2. To
see how the set size |B̄| affects the running time, in Figures I
and II of supplementary materials, we compare the running
time of using |B̄| = 64, 256, 1024. Note that we do not apply
the adaptive rule in Section 4.2 in order to see the effect of
different |B̄| sizes.

Results show that |B̄| = 64 is slightly worse than 256 and
1, 024. For a too small |B̄|, the parallelization of ∇B̄f(α)
is less effective because the overhead to conduct parallel op-
erations becomes significant. On the other hand, results of
using |B̄| = 256 and 1,024 are rather similar, so the selection
of |B̄| is not difficult in practice.

5.2 Comparison of Algorithms 4 and 6
We briefly compare Algorithms 4 and 6 because they are

two different realizations of the framework in Algorithm 5.
We mentioned in Section 3.3 that Algorithm 6 use all gradi-
ent elements to greedily select a subset B, but Algorithm 4
is closer to the cyclic CD.

In Table 2, we compare them by using two sets. The
subset size |B| = 10 is considered in Algorithm 6, while for
Algorithm 4, the initial |B| = 256 is used for the adaptive
rule in Section 4.2. A stopping tolerance ε = 0.001 is used for
both algorithms, although in all cases Algorithm 4 reaches
a smaller final objective value. Clearly, Table 2 indicates
that increasing the number of cores from 1 to 8 leads to
more significant improvement on Algorithm 6. However, the
overall computational time is still much more than that of
Algorithm 4. This result is consistent with our analysis in
Section 3.3. Because Algorithm 4 is superior, subsequently
we use it for other experiments.

5.3 Comparison of Parallel Dual CD Methods
We compare the following approaches.

- Mini-batch CD [13]: See Section 2.2.1 for details.
- Asynchronous CD [6]: We directly use the implementa-

tion in [6]. See details in Section 2.2.2.

6The value 0.1 is the default stopping tolerance used in
LIBLINEAR.

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/


(a) rcv1 (b) yahoo-korea (c) yahoo-japan

(d) webspam (e) url combined (f) KDD2010-b

(g) covtype (h) epsilon (i) HIGGS

Figure 1: A comparison of two multi-core dual CD methods: asynchronous CD and Algorithm 4, and one
single-core implementation: LIBLINEAR. We present the relation between training time in seconds (x-axis)
and the relative difference to the optimal objective value (y-axis, log-scaled). The l1 loss is used.

Table 2: A comparison between Algorithms 4 and 6
on the training time (in seconds). A stopping toler-
ance ε = 0.001 is used.

Algorithm 4 Algorithm 6
Data 1 core 8 cores 1 core 8 cores
covtype 28.6 13.7 3,624.8 1,251.5
rcv1 12.0 4.4 2,114.8 406.8

- Algorithm 4: the proposed multi-core dual CD algorithm
in this study.

- LIBLINEAR [2]: It implements Algorithm 1 with the shrink-
ing technique [5]. This serial code serves as a reference to
compare with the above multi-core algorithms.

To see how the algorithm behaves as training time increases,
we carefully consider non-stop settings for these approaches;
see details in Section VII of supplementary materials.

We check the relation between running time and the rel-
ative difference to the optimal objective value:

|f(α)− f(α∗)|/|f(α∗)|,

where f(α) is the objective function of (2). Because α∗ is
not available, we obtain an approximate optimal f(α∗) by
running LIBLINEAR with a small tolerance ε = 10−6.

Before presenting the main comparisons, by some experi-
ments we rule out mini-batch CD because it is less efficient
in compared with other methods. Details are left in Supple-
mentary Section III.

We present the main results of using l1 and l2 losses in
Figures 1 and 2, respectively. To check the scalability, 1, 2,
4, 8 cores are used. Note that our CPU has 8 cores and all
three approaches apply the shrinking technique. Therefore,
the result of asynchronous CD may be slightly different from
that in [6], where shrinking is not applied. From Figures 1
and 2, the following observations can be made.
- For some sparse problems, asynchronous CD gives excel-

lent speedup as the number of cores increases. However,
it fails to converge in some situations (url combined and
covtype when 8 cores are used). For all three dense prob-
lems with l1 or l2 loss, it diverges if 16 cores are used.



(a) rcv1 (b) yahoo-korea (c) yahoo-japan

(d) webspam (e) url combined (f) KDD2010-b

(g) covtype (Async-CD-8 fails) (h) epsilon (i) HIGGS

Figure 2: The same comparison as in Figure 1 except that the l2 loss is used.

- Algorithm 4 is robust because it always converges. Al-
though the scalability may not be as good as asynchronous
CD in the beginning, in Figure 1 it generally has faster
final convergence. Further, Algorithm 4 achieves much
better speedup for problems url combined and covtype,
where asynchronous CD may diverge.

- In compared with the serial algorithm in LIBLINEAR, we
can see that Algorithm 4 using one core is slower. How-
ever, as the number of cores increases, Algorithm 4 often
becomes much faster. This observation confirms the im-
portance of modifying the serial algorithm to take the
advantage of multi-core computation, where our discus-
sion in Section 3 serves as a good illustration.

- Results for l1 and l2 losses are generally similar though
we can see that for all approaches, the final convergence
for the l2 loss is nicer. The curves of training time versus
the objective value are sometimes close to straight lines.

- The resulting curve of Algorithm 4 may look like a piece-
wise combination of several curves. This situation comes
from the reduction of the ε1 parameter; see Section 4.3.

We have also compared these methods without applying
the shrinking technique. Detailed results are in Section V of
supplementary materials.

It is mentioned in Section 2.2.2 that to address the con-
vergence issue of the asynchronous CD method, the study in
[14] considers a semi-asynchronous setting. We modify the
code in [6] to have that w is recalculated by (6) after each
cycle of using all xi,∀i = 1, . . . , l. The computational time is
significantly increased, but we observe similar behavior. For
problems where the asynchronous CD method fails, so does
the new semi-asynchronous implementation. Therefore, it is
unclear to us yet how to effectively modify the asynchronous
CD method so that the convergence is guaranteed.

6. DISCUSSION AND CONCLUSIONS
Before making conclusions we discuss issues including lim-

itation and future challenges of the proposed approach.

6.1 Multi-CPU Environments and the Com-
parison with Parallel Newton Methods

Our current development is for the environment of a single
CPU with multiple cores. We find that if multiple CPUs



are used (i.e., the NUMA architecture in multi-processing),
then the scalability is slightly worse. The main reason is
because of the communication between CPUs. Assume two
CPUs are available: CPU-1 and CPU-2. When ∇B̄f(α) is
calculated in parallel (line 8 of Algorithm 4), an instance
xi may be loaded into the cache of CPU-2 for calculating
∇if(α). Later if xi is selected to the set B and CPU-1 is
utilized to sequentially conduct CD updates on elements in
B (line 11 of Algorithm 4), then xi must be loaded from
memory or transferred from the cache of CPU-2. How to
design an effective parallel dual CD method for multi-CPU
environments is an important future issue.

Our recent study [11] on parallel Newton methods for the
primal problem with l2 and LR losses easily achieves ex-
cellent speedup in multi-CPU environments. In compared
with Algorithm 4, a Newton method possesses the following
advantages for parallelization.
- For every operation the Newton method uses the whole

data set, so it is like that the set B̄ in Algorithm 4 be-
comes much bigger. Then the overhead for parallelization
is relatively smaller.

- In the previous paragraph we discussed that in a loop of
Algorithm 4 an xi may be accessed in two separate places.
Such situations do not occur in the Newton method, so
the issue of memory access or data movement between
CPUs is less serious.
Nevertheless, parallel dual CD is still very useful because

of the following reasons. First, in the serial setting, dual CD
is in some cases much faster than other approaches includ-
ing the primal Newton method, so even with less effective
parallelization, it may still be faster. Second, for the l1 loss,
the primal problem lacks differentiability, so solving the dif-
ferentiable dual problem is more suitable. Because the dual
problem possesses bound constraints 0 ≤ αi ≤ U,∀i, un-
constrained optimization methods such as Newton or quasi-
Newton cannot be directly applied. In contrast, CD meth-
ods are convenient choices for such problems.

6.2 Using ∇P f(α) or α− P [α−∇f(α)]

It is known that both

∇P f(α) = 0 and α− P [α−∇f(α)] = 0

are optimality conditions of problem (2). Here P [·] is the
projection operation defined as

P [αi] = min(max(αi, 0), U).

These two conditions are respectively used in lines 9-10 and
lines 13-14 of Algorithm 4. An interesting question is why
we do not just use one of the two.

In optimization, α − P [α − ∇f(α)] is often considered
more suitable because it gives a better measure about the
optimality when αi is close to a bound. For example,

αi = 10−5 and ∇if(α) = 5 imply that

∇P
i f(α) = 5 and αi − P [αi −∇if(α)] = 10−5.

Clearly αi cannot be moved much, so αi − P [αi −∇if(α)]
rightly indicates this fact. Therefore, it seems that we should
use αi − P [αi −∇if(α)] in lines 9-10 instead. We still use
project gradient mainly because of historical reasons. The
dual CD in LIBLINEAR currently relies on project gradient
for implementing the shrinking technique and so does the
asynchronous CD [6] used for comparison. Hence we follow

them for a fair comparison. Modifying Algorithm 4 to use
αi − P [αi −∇if(α)] is worth investigating in the future.

6.3 Conclusions
In this work we have proposed a general framework for

parallel dual CD. For one specific implementation we estab-
lish the convergence properties and demonstrate the effec-
tiveness in multi-core environments.
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