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Abstract

Non-negative matrix factorization (NMF) is useful to find basis information of non-negative data. Currently,

multiplicative updates are a simple and popular way to find the factorization. However, for the common NMF

approach of minimizing the Euclidean distance between approximate and true values, no proof has shown that that

multiplicative updates converge to a stationary point of the NMF optimization problem. Stationarity is important

as it is a necessary condition of a local minimum. This paper discusses the difficulty of proving the convergence.

We propose slight modifications of existing updates and prove their convergence. Techniques invented in this paper

may be applied to prove the convergence for other bound-constrained optimization problems.
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I. INTRODUCTION

Non-negative matrix factorization (NMF) is useful to find basis information of non-negative data [12], [9]. Given

an n × m data matrix V with Vij ≥ 0 and a pre-determined positive integer r < min(n, m), NMF finds two

non-negative matrices W ∈ Rn×r and H ∈ Rr×m so that

V ≈ WH.

If each column of V represents an object, this method approximates it by a linear combination of r “basis” columns

in W . NMF has been applied to many application areas. A recent NMF survey is [1].
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A common way to find W and H is by minimizing the Euclidean distance between V and WH:

min
W,H

f(W,H) ≡ 1
2

n∑
i=1

m∑
j=1

(
Vij − (WH)ij

)2

subject to Wia ≥ 0,Hbj ≥ 0,∀i, a, b, j. (1)

Each non-negative inequality is a “bound constraint,” as it relates to only a single variable. We also note that
n∑

i=1

m∑
j=1

(
Vij − (WH)ij

)2 = ‖V −WH‖2F ,

where ‖ · ‖F is the Frobenius norm.

A popular approach to solve the NMF optimization problems (1) is a multiplicative update algorithm by Lee and

Seung [10]. Though some papers such as [11] pointed out its possible slow convergence, this method is popular

due to the simplicity. Lee and Seung [10] proved that the update causes the function value to be non-increasing,

but there is no proof yet showing that any limit point is stationary. While optimization problems here may be non-

convex and finding a global minimum is difficult, the stationarity is still important–it is a necessary condition of a

local minimum. Therefore, existing multiplicative update algorithms lack sound optimization properties. Gonzales

and Zhang [6] presented numerical examples showing that Lee and Seung’s algorithm in [10] fails to approach a

stationary point. However, due to possible numerical inaccuracy, we think either a convergence proof or a non-

convergence example is desired. Other work which has touched the convergence issues includes [1], [3]. This paper

conducts a detailed study about the convergence properties of multiplicative update methods.

Besides multiplicative updates, other methods are available to minimize the NMF problem (1). Some examples

are [4], [1], [11]. These approaches may be more efficient, but are also more complicated.

The main difficulty of proving the convergence of multiplicative updates comes from the non-negativity con-

straints. Though multiplicative updates are close to standard fixed-point methods, existing fix-point proofs mainly

deal with unconstrained situations. Section II reviews Lee and Seung’s algorithm for (1) and discusses difficulties of

proving the convergence. Section III proposes a modified algorithm, which has the same computational complexity

per iteration. For this modified procedure, Section IV then proves that any limit point is stationary. We also show

that iterations are in a closed and bounded set, so at least one limit point exists.

Another NMF formulation minimizes the (generalized) Kullback-Leibler divergence between V and WH:

min
W,H

f(W,H) =
n∑

i=1

m∑
j=1

(
Vij log

Vij

(WH)ij
− Vij + (WH)ij

)
subject to Wia ≥ 0,Hbj ≥ 0,∀i, a, b, j. (2)

Lee and Seung also proposed a multiplicative algorithm to minimize (2). By transforming (2) to another form,

Finesso and Spreij [5] successfully analyzed the convergence property. Multiplicative updates for (2) are close to

EM (Expectation Maximization) algorithm in maximum likelihood, so their analysis is quite different from ours
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for (1). Section VI investigates the difference. The same section also discusses possible future issues, and gives

conclusions of this paper.

II. MULTIPLICATIVE UPDATE FOR (1) AND ITS CONVERGENCE ISSUES

Lee and Seung [10] proposed the following algorithm to solve (1).

Algorithm 1 Multiplicative update to solve (1)
For k = 1, 2, . . .

Hk+1
bj = Hk

bj

((W k)T V )bj

((W k)T W kHk)bj
, ∀b, j. (3)

W k+1
ia = W k

ia

(V (Hk+1)T )ia

(W kHk+1(Hk+1)T )ia
, ∀i, a. (4)

This procedure is not well-defined if denominators in (3) or (4) are zero. Moreover, the initial point is a concern;

some use positive matrices, but some merely consider nonnegative ones. Lin [11] discusses conditions so the

procedure is well-defined:

Theorem 1: [11, Theorem 1] If V has neither zero column nor row, and W 1
ia > 0 and H1

bj > 0,∀i, a, b, j, then

W k
ia > 0 and Hk

bj > 0,∀i, a, b, j,∀k ≥ 1.

We hope that any limit point of {W k,Hk} is stationary as a local minimum must be a stationary point. By

definition (W,H) is a stationary point of (1) if it satisfies the Karush-Kuhn-Tucker (KKT) optimality condition

(e.g., [2]):

Wia ≥ 0,Hbj ≥ 0,

∇W f(W,H)ia ≥ 0,∇Hf(W,H)bj ≥ 0,

Wia · ∇W f(W,H)ia = 0, and Hbj · ∇Hf(W,H)bj = 0,∀i, a, b, j,

(5)

where

∇W f(W,H) = (WH − V )HT and ∇Hf(W,H) = WT (WH − V ), (6)

are respectively, partial derivatives to elements in W and H .

Lee and Seung [10] proved the following properties:

1) The function value is non-increasing after every update:

f(W k,Hk+1) ≤ f(W k,Hk) and f(W k+1,Hk+1) ≤ f(W k,Hk+1). (7)

2) If Hk
bj > 0 and ∇Hf(W k,Hk)bj 6= 0,∀b, j, then the first inequality in (7) is strict. Similarly, the second

inequality is strict under conditions on W .
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Several papers such as [6], [11] pointed out that such properties do not imply the convergence to a stationary point.

Clearly, Algorithm 1 intends to have a fixed-point update: If Hk+1
bj = Hk

bj > 0 and ((W k)T W kHk)bj 6= 0, then

((W k)T V )bj = ((W k)T W kHk)bj implies ∇Hf(W k,Hk)bj = 0,

which is part of the KKT condition (5). A convergence proof of fix-point methods for minimizing an unconstrained

function f(x) usually involves the following steps:

1) f(xk+1) < f(xk) if ∇f(xk) 6= 0.

2) From a limit point x∗, if ∇f(x∗) 6= 0, we can

update x∗ to x∗+1 such that f(x∗+1) < f(x∗). (8)

3) If we have the continuity of f(x) and limk→∞ xk+1 = x∗+1, then

f(x∗) ≤ lim
k→∞

f(xk+1) = f(x∗+1) < f(x∗) (9)

causes a contradiction.

Clearly, this framework cannot be directly used here because of two difficulties:

1) Though Theorem 1 proves that W k
ia > 0 and Hk

bj > 0, it is unclear if W ∗
ia > 0 and H∗

bj > 0 or not. Hence in

(8) an update from a limit point (W ∗,H∗) to (W ∗,H∗+1) may not be well-defined.

2) If H∗
bj = 0, we must prove ∇Hf(W ∗,H∗)bj ≥ 0. This KKT condition is due to non-negative constraints. The

above framework does not reveal how to have this result.

Gonzales and Zhang [6] numerically showed that Algorithm 1 may fail to converge to a stationary point. However,

Lin [11] stated that due to possible numerical inaccuracy, a mathematical example is desired before drawing

conclusions. Thus the convergence issue remains open. In the next section, we will slightly modify Algorithm

1 so that the two difficulties are conquered. Then any limit point is stationary.

Computational complexity is another concern as we hope that our modifications are not more time consuming.

Here we analyze the cost of Algorithm 1. Lin [11] indicated that in (3) one should calculate W (HHT ) but not

(WH)HT as r < min(n, m). Hence, the main cost is on calculating (W k)T V and V (Hk+1)T in (3) and (4), each

of which takes O(nmr) operations. Therefore, the complexity of Algorithm 1 is

#iterations×O(nmr).

Some implementations of the multiplicative updates normalize (W,H) at each iteration so that W ’s column sums

or H’s row sums are ones. This normalization does not change the function value as for any for any r× r positive

diagonal matrix S, f(WS,S−1H) = f(W,H). We will consider this operation in our proposed algorithm.
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III. A MODIFIED MULTIPLICATIVE UPDATE

Lee and Seung [10] mentioned that the two update rules (3) and (4) are the same as

Hk+1
bj = Hk

bj −
Hk

bj

((W k)T W kHk)bj
∇Hf(W k,Hk)bj , ∀b, j, (10)

W k+1
ia = W k

ia −
W k

ia

(W kHk+1(Hk+1)T )ia
∇W f(W k,Hk+1)ia, ∀i, a. (11)

The algorithm is thus a gradient descent method. For updating Hk
bj ,

Hk
bj

((W k)T W kHk)bj

is referred to as the step size. The two difficulties raised in Section II can be reinterpreted as follows

1) The denominator of the step size may be zero.

2) If Hk
bj , numerator of the step size, is zero, and the gradient ∇Hf(W k,Hk)bj < 0, Hk+1

bj is not changed.

Hence one cannot use the strategy (8) for proving fixed-point convergence.

Therefore, we propose modifying the step size to:

H̄k
bj

((W k)T W kH̄k)bj + δ
,

where

H̄k
bj ≡

Hk
bj if ∇Hf(W k,Hk)bj ≥ 0,

max(Hk
bj , σ) if ∇Hf(W k,Hk)bj < 0.

(12)

Both σ and δ are pre-defined small positive numbers. Similarly, we can define W̄ k
ia. The modified algorithm is as

the following:

Algorithm 2 A modified algorithm for minimizing (1)
1) Given σ > 0 and δ > 0. Initialize W 1

ia ≥ 0,H1
bj ≥ 0,∀i, a, b, j.

2) For k = 1, 2, . . .

a) If (W k,Hk) is stationary, stop.

Else

Hk,n
bj = Hk

bj −
H̄k

bj

((W k)T W kH̄k)bj + δ
∇Hf(W k,Hk)bj , ∀b, j, (13)

W k,n
ia = W k

ia −
W̄ k

ia

(W̄ kHk,n(Hk,n)T )ia + δ
∇W f(W k,Hk,n)ia, ∀i, a. (14)

b) Normalize W k,n and Hk,n to Hk+1 and W k+1, respectively so that W k+1’s column sum is onea.

aIf the whole column is zero, then it as well as the corresponding row in H are unchanged.

We denote W k,n and Hk,n as intermediate matrices before normalization. Following [5], we impose the normal-

ization operation in order to prove that {W k,Hk} is in a bounded set (see Theorem 8).



6

This modified algorithm requires extra operations:

1) calculate H̄k (or W̄ k),

2) calculate (W k)T W kH̄k (or W̄ kHk,n(Hk,n)T ), and

3) add δ.

All are less than O(nmr), so the complexity per iteration remains the same. The use of δ follows from some NMF

papers (e.g., [7], [13]), which includes this factor to avoid division by zero. This is also related to penalty terms

added to the objective function. We discuss this aspect in more detail in Section VI.

The new algorithm is well-defined without requiring any condition on V . One could even start from only non-

negative matrices: W 1
ia ≥ 0 and H1

bj ≥ 0:

Theorem 2: If W 1
ia > 0 and H1

bj > 0,∀i, a, b, j, then

W k
ia > 0 and Hk

bj > 0,∀i, a, b, j,∀k ≥ 1. (15)

Moreover, if W 1
ia ≥ 0 and H1

bj ≥ 0,∀i, a, b, j, then

W k
ia ≥ 0 and Hk

bj ≥ 0,∀i, a, b, j,∀k ≥ 1.

Proof: When k = 1, (15) holds by the assumption of this theorem. Using induction, we assume results are

correct at k. Then from k to (k + 1), we note that the step size for updating H is non-negative:

H̄k
bj

((W k)T W kH̄k)bj + δ
≥ 0. (16)

We then consider two situations:

Case 1: If ∇Hf(W k,Hk)bj < 0, then using (16),

Hk,n
bj = Hk

bj −
H̄k

bj

((W k)T W kH̄k)bj + δ
∇Hf(W k,Hk)bj

≥ Hk
bj > 0.

Case 2: If ∇W f(W k,Hk)bj ≥ 0, then according to (12),

H̄k
bj = Hk

bj . (17)

As H̄k’s components are not smaller than those of Hk, and by assumption (W k,Hk) have non-negative elements,

we have
H̄k

bj

((W k)T W kH̄k)bj + δ
≤

H̄k
bj

((W k)T W kHk)bj + δ
. (18)

Using (17) and (18),

Hk,n
bj ≥ Hk

bj −
Hk

bj

((W k)T W kHk)bj + δ
∇Hf(W k,Hk)bj

= Hk
bj

((W k)T V )bj + δ

((W k)T W kHk)bj + δ
> 0.
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After normalization, Hk+1
bj > 0,∀b, j. The proof of W k+1

ia > 0 is similar.

If W 1
ia ≥ 0 and H1

bj ≥ 0,∀i, a, b, j, then the proof is the same.

IV. CONVERGENCE ANALYSIS

We begin the convergence analysis by showing that from Hk to Hk,n, all components not satisfying KKT

conditions are changed and the function value is strictly decreased. In contrast, elements satisfying KKT conditions

remain the same. When W k is fixed, the function f(W k,H) is the sum of m functions, each of which relates to

only one column of H . Hence, it is sufficient to consider any column h and discuss the function

f̄(h) ≡ 1
2
‖v −Wh‖2, (19)

where v is the corresponding column in V and W = W k. Here, both v and W are treated as constants.

Lee and Seung then consider an auxiliary function

A(h,hk) ≡ f̄(hk) + (h− hk)T∇f̄(hk) +
1
2
(h− hk)T D(h− hk), (20)

where D is a diagonal matrix with

Dbb ≡
(WT Whk)b

hk
b

,∀b = 1, . . . , r. (21)

They proved that

f̄(h) ≤ A(h,hk) ≤ A(hk,hk) = f̄(hk). (22)

Minimizing A(h,hk) with respect to h leads to the update rule (3). In addition, if f̄(hk)b 6= 0, then hk,n
b 6= hk

b .

From (21), this auxiliary function is not well-defined if hk
b = 0. Now we hope that if hk

b = 0 and ∇f̄(hk)b < 0

(i.e., another situation violating the KKT condition), then A(h,hk) is well-defined and hk
b can be changed as well.

Therefore, we define a new auxiliary function on non-KKT indices:

Ā(h,hk) ≡ f̄(hk) + (h− hk)T
I ∇f̄(hk)I +

1
2
(h− hk)T

I D̄II(h− hk)I , (23)

where

I ≡ {b | hk
b > 0,∇f̄(hk)b 6= 0 or hk

b = 0,∇f̄(hk)b < 0} (24)

= {b | h̄k
b > 0,∇f̄(hk)b 6= 0},

and D̄II is the sub-matrix of a diagonal matrix D̄ with elements

D̄bb ≡


((W k)T W kh̄k)b+δ

h̄k
b

if b ∈ I,

0 if b /∈ I.

(25)

Our new auxiliary function looks like a straightforward extension of the original one, but this modification is

not trivial. While we define Ā(h,hk) so that indices satisfying hk
b = 0 and ∇f̄(hk)b < 0 are taken care of,
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simultaneously we also need that Ā(h,hk) leads to the non-increasing property (22). This result is shown in the

following theorem:

Theorem 3: Let σ and δ be given in Algorithm 2 and hk be any column of Hk. Let I and D̄ be defined as in

(24) and (25), respectively. Let I ′ ≡ {1, . . . , r}\I . Then

arg min
hI

Ā(h,hk) = hk
I − D̄−1

II ∇f̄(hk)I . (26)

Moreover, hk,n defined by (13) satisfies

hk,n
I = arg min

hI

Ā(h,hk) and hk,n
I′ = hk

I′ , (27)

and

f̄(hk,n) ≤ Ā(hk,n,hk) ≤ Ā(hk,hk) = f̄(hk). (28)

Further, the following three properties are equivalent:

1) Both inequalities in (28) are strict.

2) ∇f̄(hk)I 6= 0.

3) hk,n 6= hk.

Proof: As D̄II is positive definite, Ā(h,hk) is a strictly convex function of hI , and has a unique minimum

satisfying

D̄II(h− hk)I +∇f̄(hk)I = 0. (29)

Thus, (26) follows. This result and the update rule (13) then imply (27).

Now, f̄(h) is a quadratic function, so

f̄(h) = f̄(hk) + (h− hk)T∇f̄(hk) +
1
2
(h− hk)T (WT W )(h− hk).

For any h with hI′ = hk
I′ ,

Ā(h,hk)− f̄(h) =
1
2
(h− hk)T

I (D̄ −WT W )II(h− hk)I . (30)

We use a technical Lemma 1 in Appendix A to show that (D̄ − WT W )II is positive definite. Then, (30) is

non-negative. With (27), the result (28) follows.

Next, we prove the three equivalent conditions on the strict decrease of the function value. Clearly, (26) and (27)

imply that ∇f̄(hk)I 6= 0 if and only if hk,n
I 6= hk

I . Using (30) and

Ā(hk,n,hk)− Ā(hk,hk) = −1
2
(hk,n − hk)T

I D̄II(hk,n − hk)I , (31)

both inequalities in (28) are strict if and only if hk,n 6= hk.

Theorem 3 immediately implies that the function value is strictly decreasing:
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Theorem 4: If Algorithm 2 generates an infinite sequence {W k,Hk}, then

f(W k+1,Hk+1) = f(W k,n,Hk,n) ≤ f(W k,Hk,n) ≤ f(W k,Hk),∀k. (32)

Moreover, one of the two inequalities is strict.

At this stage, one may think that we will use (9) to finish the convergence proof. Instead, we show that Hk and

Hk,n converge to the same point. With this property, the convergence proof is easier than using (9).

Theorem 5: Assume {Hk}, k ∈ K is a convergent sub-sequence and

lim
k∈K,k→∞

Hk = H∗. (33)

Then,

lim
k∈K,k→∞

Hk,n = H∗.

Proof:

Theorem 4 and the property f(W,H) ≥ 0,∀ W,H , imply that {f(W k,Hk)} is a bounded decreasing sequence,

which globally converges. Using (32),

lim
k∈K,k→∞

|f(W k,Hk,n)− f(W k,Hk)| = 0.

Since f(W k,Hk,n) − f(W k,Hk) is the sum of the difference at each column and the difference is non-positive

due to (28), we have

lim
k∈K,k→∞

|f̄(hk,n)− f̄(hk)| = 0, (34)

where hk is any column of Hk. If this theorem is wrong, there is a component b in a column hk, a value ε > 0,

and an infinite subset K̂ of K such that

|hk,n
b − h∗b | ≥ ε,∀k ∈ K̂.

Using (33), there is an infinite subset K̄ ⊂ K̂ such that

|hk
b − h∗b | ≤ ε/2,∀k ∈ K̄.

Combining the above two inequalities, we have

|hk,n
b − hk

b | ≥ ε/2,∀k ∈ K̄. (35)

We claim that ∀k ∈ K̄, h̄k
b > 0. Otherwise, h̄k

b = 0 implies hk,n
b = hk

b in (12), which violates (35). Using (28) and

(31),

f̄(hk,n)− f̄(hk) ≤ −
(hk,n

b − hk
b )2D̄bb

2
≤ −

(hk,n
b − hk

b )2δ
2h̄k

b

≤ −
(hk,n

b − hk
b )2δ

2 max(hk
b , δ)

≤ 0.
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With (34), taking the limit of the above inequality we have

lim
k∈ ¯K,k→∞

hk,n
b − hk

b = 0,

a contradiction to (35).

Now, we are ready to prove that at any limit point (W ∗,H∗), the matrix H∗ satisfies KKT optimality conditions:

Theorem 6: Assume {W k,Hk}, k ∈ K is a convergent sub-sequence and

lim
k∈K,k→∞

(W k,Hk) = (W ∗,H∗).

We have that

if H∗
bj > 0, then ∇Hf(W ∗,H∗)bj = 0, (36)

and

if H∗
bj = 0, then ∇Hf(W ∗,H∗)bj ≥ 0. (37)

Proof:

By the definition (12),

H̄k
bj = max(Hk

bj , σ) or Hk
bj ,

so the sequence {H̄k
bj}k∈K may have two convergent points H∗

bj or σ. Since the number of indices (b, j) is finite,

there is an infinite set K̄ ⊂ K such that

H̃∗ ≡ lim
k∈ ¯K,k→∞

H̄k exists. (38)

From Theorem 5,

lim
k∈ ¯K,k→∞

Hk
bj −Hk,n

bj =
H̃∗

bj

((W ∗)T W ∗H̃∗)bj + δ
∇Hf(W ∗,H∗)bj = 0. (39)

Note that H̃∗
bj ≥ H∗

bj . Hence if H∗
bj > 0, (39) immediately implies (36).

Next, we prove (37). If it is wrong, there is (b, j) such that

H∗
bj = 0 and ∇Hf(W ∗,H∗)bj < 0.

For all k ∈ K̄ large enough, ∇Hf(W k,Hk)bj < 0 and, hence

lim
k∈ ¯K,k→∞

H̄k
bj = H̃∗

bj = σ.

Therefore,
H̃∗

bj

((W ∗)T W ∗H̃∗)bj + δ
∇Hf(W ∗,H∗)bj > 0,

an inequality contradicting (39).
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The main convergence statement is in the following theorem:

Theorem 7: Any limit point of the sequence {W k,Hk} generated by Algorithm 2 is a stationary point of (1).

Proof: Theorem 6 implies the optimality condition on H∗. Using Theorem 5,

lim
k∈K,k→∞

(W k,Hk,n) = (W ∗,H∗).

We can then use the same proof in Theorem 6 to have the optimality condition on W ∗.

The remaining task is to prove that at least one limit point exists.

Theorem 8: The sequence {W k,Hk} has at least one limit point.

Proof: It suffices to prove that (W k,Hk), k = 1, . . . ,∞ are in a compact (i.e., closed and bounded) set. Since

W k is normalized to have column sum one (or zero for exceptional situations), we only need to show that {Hk}

is bounded. If this result is wrong, there is a component Hbj and an infinite index set K such that1

lim
k∈K

Hk
bj →∞, Hk

bj < Hk+1
bj ,∀k ∈ K, (40)

and

lim
k∈K,k→∞

W k
ib = W ∗

ib exists,∀i. (41)

We claim that W ∗
ib = 0,∀i. Otherwise, there is an index i such that

lim
k∈K,k→∞

(W kHk)ij ≥ lim
k∈K,k→∞

W k
ibH

k
bj = ∞.

Then

lim
k→∞

f(W k,Hk) ≥ lim
k∈K,k→∞

|(W kHk)ij − Vij |2 = ∞

contradicts Theorem 4, which shows that f(W k,Hk) is strictly decreasing. Since W k’s column sum is either one

or zero, W ∗
ib = 0,∀i implies

W k
ib = 0, ∀i, ∀k ∈ K large enough. (42)

Then,

∇Hf(W k,Hk)bj = 0,∀k ∈ K, so Hk,n
bj = Hk

bj ,∀k ∈ K. (43)

Moreover, by (42) and a similar argument in Theorem 5,

lim
k∈K,k→∞

W k,n
ib = lim

k∈K,k→∞
W k

ib = 0,∀i.

Thus, in normalizing (W k,n,Hk,n), Hk,n’s bth row is either unchanged (W k,n
ib = 0,∀i) or decreased (

∑
i W k,n

ib <

1). With (43),

Hk+1
bj ≤ Hk

bj ,∀k ∈ K,

1More formally, we have a sub-sequence so that limk∈KHk
bj → ∞ first. From that, a sub-sub-sequence satisfies Hk

bj < Hk+1
bj . Then, a

further sub-sequence satisfies (41).



12

TABLE I

IMAGE DATA: AVERAGE OBJECTIVE VALUE AND PROJECTED-GRADIENT NORMS OF USING THREE INITIAL POINTS UNDER SPECIFIED TIME

LIMITS.

Problem CBCL ORL Natural

Size (n r m) 361 49 2, 429 10, 304 25 400 288 72 10, 000

Time limit (in seconds) 25 50 25 50 25 50

Objective Value Original 954.10 907.10 15.52 14.11 362865.54 351006.54

Modified 971.47 917.86 16.20 14.31 377460.30 353900.09

Iteration Original 256.33 412.00 138.00 274.00 79.00 156.00

Modified 224.00 361.67 117.00 232.00 59.67 117.67

an inequality contradicting (40). Thus, {Hk} is bounded.

Therefore, {W k,Hk} is in a compact set, so there is at least one convergent sub-sequence.

V. EXPERIMENTS

Though the modified algorithm has the same computational complexity per iteration, it is important to check

its practical performance. We implemented both original and modified multiplicative updates in MATLAB. We

set σ = δ = 10−8 in Algorithm 2 and give the code in Appendix B. Clearly, our modifications can be easily

implemented.

We consider three image problems used in [8], [11]:

1) CBCL face image database.

2) ORL face image database.

3) Natural image data set [7].

Details of these sets and settings are in [8]. For the original multiplicative updates, we also normalize W and

H after each iteration. We compare objective values and number of iterations after running 25 and 50 seconds.

Experiments were conducted on an Intel Xeon 2.8GHz computer.

Table I reports the average results of using the following two random initial points:

Wia = |N(0, 1)|, Hbj = |N(0, 1)|,

where N(0, 1) is the normal distribution.

Clearly, the modified algorithm is slower as the objective value is higher and the number of iterations is smaller.

However, the difference between two objective values is rather small. Hence, in practice if one would like to safely

use multiplicative update algorithms, our modification is a possible choice.
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VI. DISCUSSION AND CONCLUSIONS

Earlier work such as [7], [13] adds penalty terms to increase the sparsity of W and H:

1
2

n∑
i=1

m∑
j=1

(
Vij − (WH)ij

)2 + δ
∑
i,a

Wia + δ
∑
b,j

Hbj . (44)

Then the update rule (3) becomes

Hk,n
bj = Hk

bj −
Hk

bj

((W k)T W kHk)bj + δ
(((W k)T W kHk)bj + δ − ((W k)T V )bj)

= Hk
bj

((W k)T V )bj

((W k)T W kHk)bj + δ
.

For this formulation, the penalty parameter δ can be directly used in Algorithm 2. The update rule is the same as

(13), but ∇Hf(W k,Hk)bj involves an additional term δ.

Section I mentioned that [5] addressed the convergence of minimizing the KL divergence formula (2). Here

we discuss the difference between their and our work. In [5], W and H are reparameterized to two other matrix

variables. Multiplicative update rules are also reformulated accordingly. In contrast, we keep working on W and

H , but slightly modify the update rule. Then, [5] nicely proves the global convergence of the two new matrix

variables. Since we try to specifically control the step size, our modified update rules help the numerical stability.

The analysis in [5] does not have such a property. In fact, for the analysis they define 0/0 = 0, which may causes

problems in practical implementations.

Gonzales and Zhang [6] proposed a method to accelerate Lee and Seung’s multiplicative updates. Instead of

using

hk,n
b = hk

b −
h̄k

b

((W k)T W kh̄k)b + δ
∇f̄(hk)b, b = 1, . . . , r,

they consider

hk,n
b = hk

b − α
h̄k

b

((W k)T W kh̄k)b + δ
∇f̄(hk)b, b = 1, . . . , r,

where α > 1. Thus, they use a larger step size along the negative gradient direction. This modification causes

problems in proving Lemma A. Hence, we cannot directly extend Theorem 3 to prove the strict decrease of

function values. How to analyze the convergence of Gonzales and Zhang’s method is an interesting future research

issue.

In summary, this paper has two main contributions:

1) Under minor modifications, any limit point of [10]’s multiplicative update algorithms is a stationary point.

2) Though bound constraints introduce difficulties in proving the convergence, we invent a technique to control

the step size. For multiplicative update algorithms to solve other bound-constrained problems, we may apply

the same approach to prove the convergence.
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APPENDIX

A. A Technical Lemma

Lemma 1: Given δ > 0, an r × r symmetric positive semi-definite matrix A with Aab ≥ 0,∀a, b, and a vector

x with xb ≥ 0,∀b. Let I be any index set such that

xb > 0 if b ∈ I, (45)

and define a diagonal matrix matrix D̄ with

D̄bb ≡


(Ax)b+δ

xb
if b ∈ I,

0 if b /∈ I.

(46)

Then (D̄ −A)II is symmetric positive definite.

Proof:

For any vector v with vI 6= 0,

vT
I (D̄ −A)IIvI

=
∑
a∈I

v2
a

δ

xa
+

∑
a∈I

v2
a

(Ax)a

xa
−

∑
a,b∈I

vavbAab (47)

>
∑
a∈I

v2
a

∑
b∈I Aabxb

xa
−

∑
a,b∈I

vavbAab (48)

=
1
2

∑
a,b∈I

v2
a

Aabxb

xa
+

1
2

∑
a,b∈I

v2
b

Abaxa

xb
−

∑
a,b∈I

vavbAab (49)

=
1
2

∑
a,b

Aab

(√
xb

xa
va −

√
xa

xb
vb

)2

≥ 0. (50)

The condition (45) ensures (47) to be well-defined. From (47) to (48) we use the property Aab ≥ 0 and xb ≥ 0,

∀b = 1, . . . , r. From (49) to (50) the symmetry of A is used.

B. MATLAB Code of Algorithm 2
function [W,H,iter] = multconv(V,W0,H0,timelimit,maxiter)

sigma = 1.0e-8; delta=sigma;
W = W0; H = H0;
[m,n] = size(V);

initt=cputime; t=initt;

for iter=1:maxiter,
if (iter == maxiter | cputime-initt > timelimit),
fprintf(’iter %d\n’, iter);
break

end

WtW = W’*W;
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gradH = WtW*H - W’*V;
Hb = max(H, (gradH<0)*sigma);
H = H - Hb./(WtW*Hb+delta).*gradH;

HHt = H*H’;
gradW = W*(HHt) - V*H’;
Wb = max(W, (gradW<0)*sigma);
W = W - Wb./(Wb*HHt+delta).*gradW;

S = sum(W,1);
W = W./repmat(S,m,1); H = H.*repmat(S’,1,n);

end
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