
Linear Convergence of a Decomposition Method for

Support Vector Machines

Chih-Jen Lin

Department of Computer Science and

Information Engineering

National Taiwan University

Taipei 106, Taiwan

cjlin@csie.ntu.edu.tw

Abstract

Recently the asymptotic convergence of some commonly used decomposition

methods for support vector machines has been established. However, their local

convergence rates are still unknown. In this paper, under the assumptions that

the kernel matrix is positive definite and the problem is non-degenerate, we prove

the linear convergence of a popular decomposition method.

1 Introduction

Given training vectors xi ∈ Rn, i = 1, . . . , l, in two classes, and a vector y ∈ Rl

such that yi ∈ {1,−1}, the support vector machines (SVM) (Cortes and Vapnik,

1995; Vapnik, 1998) require the solution of the following optimization problem:

min
α

f(α) =
1

2
αT Qα− eT α

subject to 0 ≤ αi ≤ C, i = 1, . . . , l, (1.1)

yT α = 0,

where e is the vector of all ones, C is the upper bound of all variables, and Q is an

l by l positive semidefinite matrix. Training vectors xi are mapped into a higher

(maybe infinite) dimensional space by the function φ and Qij ≡ yiyjK(xi, xj)

where K(xi, xj) ≡ φ(xi)
T φ(xj) is the kernel.

Due to the density of the matrix Q, currently the decomposition method is

one of the major methods to solve SVM (e.g. (Osuna et al., 1997; Joachims, 1998;

Platt, 1998)). It is an iterative process and in each iteration the index set of
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variables is portioned to two sets B and N , where B is the working set. Then

in that iteration variables corresponding to N are fixed while a sub-problem on

variables corresponding to B is minimized.

Among these decomposition methods, the software SV M light (Joachims, 1998)

is a popular one. It has a systematic way for selecting the working set B whose

size can be any even number. When the size of B is restricted to sets having two

elements, it coincides with a modification of the SMO algorithm by Keerthi et al.

(2001). Originally proposed by Platt (1998), the Sequential Minimal Optimization

(SMO) algorithm is an extreme of the decomposition method whose working sets

are restricted to two elements. The advantage of SMO is that in each iteration the

sub-problem can be analytically solved without using an optimization software.

Other software which have used the same working set selection as SV M light are,

for example, LIBSVM (Chang and Lin, 2001).

The asymptotic convergence of the decomposition method used in SV M light

was first proved in (Lin, 2001). More information about existing work on the

convergence of decomposition methods can be found in the same paper. Up to

now there are no results yet about local convergence of decomposition methods.

In this paper we will establish the linear convergence of the method used by

SV M light. The analysis of convergence rates is very important for optimization

methods as it helps to understand how fast an algorithm converges. It can also

give more insights on the practical behaviors.

This paper is organized as follows. In section 2 we briefly introduce the algo-

rithm used by SV M light, in particular, its working set selection. Section 4 presents

the main result of the linear convergence. Using this theoretical result, Section 5

explains some practical behaviors of decomposition methods. Finally in Section

7 we discuss the relation between our proof and some earlier work which focus on

general bound-constrained optimization.

2 The Method of SV M light

In this section we describe the working set selection of SV M light using the Karush-

Kuhn-Tucker (KKT) condition, (i.e. the optimality condition) of (1.1): If α is an

optimal solution of (1.1), there is a number b and two nonnegative vectors λ and
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µ such that

∇f(α) + by = λ− µ,

λiαi = 0, µi(C − α)i = 0, λi ≥ 0, µi ≥ 0, i = 1, . . . , l,

where ∇f(α) = Qα− e is the gradient of f(α). This can be rewritten as

∇f(α)i + byi ≥ 0 if αi = 0,

∇f(α)i + byi ≤ 0 if αi = C,

∇f(α)i + byi = 0 if 0 < αi < C.

Since yi = ±1, by defining

Iup(α) ≡ {i | αi < C, yi = 1 or αi > 0, yi = −1}, and

Ilow(α) ≡ {i | αi < C, yi = −1 or αi > 0, yi = 1},

a feasible α is optimal for (1.1) if and only if

max
i∈Iup(α)

−yi∇f(α)i ≤ min
i∈Ilow(α)

−yi∇f(α)i. (2.1)

When α is not an optimal solution, if i ∈ Iup(α), j ∈ Ilow(α), and −yi∇f(α)i >

−yj∇f(α)j, following (Keerthi and Gilbert, 2002), we call such (i, j) a “violating

pair.”

If q, an even number, is the size of the working set B and αk is the current

iterate, SV M light selects the working set in the following way: q/2 indices are

sequentially selected from elements in Iup(α
k) so that

−yi1∇f(αk)i1 ≥ −yi2∇f(αk)i2 ≥ · · · ≥ −yiq/2
∇f(αk)iq/2

. (2.2)

The other q/2 indices are sequentially selected from Ilow(αk) such that

−yj1∇f(αk)j1 ≤ · · · ≤ −yjq/2
∇f(αk)jq/2

. (2.3)

Therefore, SV M light essentially finds the q/2 most violated pairs into the working

set and we call (i1, j1) a “maximal violating pair.”

We consider only violating pairs so if −yiq/2
∇f(αk)iq/2

≤ −yjq/2
∇f(αk)jq/2

, we

reduce the size of the working set. Note that the working set will not be empty

as there is at least one violating pair if α is not optimal yet.
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Interestingly this working set selection was originally derived from the concept

of feasible directions in constrained optimization though we feel a derivation from

the violation of the KKT condition is more intuitive.

3 Existing Convergence Results

The asymptotic convergence of an optimization algorithm usually means that any

its convergent subsequence goes to a (local) optimum. Note that the strict decrease

of the objective value may not imply this property. The asymptotic convergence

of decomposition methods was first studied in (Chang et al., 2000). However, the

authors were able to consider only some types of decompoeition methods which

did not coincide with existing implementations. It was until (Lin, 2002a) that the

asymptotic convergence of SV M light was established:

Theorem 1 Assume the matrix Q satisfies

min
I

(min(eig(QII))) > 0, (3.1)

where I is any subset of {1, . . . , l} with |I| ≤ q and min(eig(·)) is the smallest

eigenvalue of a matrix. If {αk} is the sequence generated by the decomposition

method in Section 2, the limit of any its convergent subsequence is an optimal

solution of (1.1).

If the size of the working set is restriced to two (i.e. q = 2), (Lin, 2002a) provides

a proof of the above theorem without any assumption.

Another property related to the convergence is the “finite termination” of an

algorithm. For a given stopping condition with any pre-specified tolerance, it

discusses whether the optimization algorithm terminates in a finite number of

iterations. The first such results for the decomposition methods is in (Keerthi

and Gilbert, 2002):

Theorem 2 If the algorithm in Section 2 is used and q = 2, for any given ε > 0,

after a finite number of iterations,

max
i∈Iup(α)

−yi∇f(α)i ≤ min
i∈Ilow(α)

−yi∇f(α)i + ε (3.2)

is satisfied.
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Note that Theorem 2 does not imply Theorem 1 as both sides of (3.2) are not

continuous functions of α. That is, we cannot take their limits with ε → 0 and

claim that any convergent point has already satisfied the KKT condition and

hance is an optimum. For the general situation of more than two elements in the

working set, (Lin, 2002b) proves Theorem 2 under some minor assumptions.

4 Main Results on Linear Convergence

Before proving the main results, we need some assumptions. First we assume that

the kernel matrix is positive definite:

Assumption 1 K is positive definite.

Note that K and Q, the Hessian of (1.1), have the same eigenvalues so Q is positive

definite as well. Then (1.1) is a strictly convex programming problem and hence

has a unique global optimum α∗.

Theorem 1 implies that the whole sequence {αk} of the decomposition method

converges to α∗. We can also see that Theorem II.3 of (Lin, 2002b) holds:

1. If the algorithm takes infinite iterations,

max
i∈Iup(α∗)

−yi∇f(α∗)i = min
i∈Ilow(α∗)

−yi∇f(α∗)i.

Let us call the above quantity as b∗.

2. After k is large enough, only elements whose −yi∇f(α∗)i are b∗ can still be

modified. Furthermore, only such elements can still form violating pairs.

Therefore, in final iterations, the algorithm works only on a particular subset of

variables. This makes our analysis easier as convergence rates relate to behaviors

in final iterations. Moreover, for this particular subset of variables, we need an

additional assumption: problem (1.1) is non-degenerate.

Assumption 2 (Nondegeneracy) For the optimal solution α∗, we have ∇f(α∗)i+

b∗yi 6= 0 if α∗
i = 0 or C.
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This condition is also called strict complementarity in the optimization terminol-

ogy as it means two values in

α∗
i (Qα∗ − e + b∗y)i = 0

of the KKT condition cannot be both zeros. The situation is similar for (C −
α∗

i )(Qα∗ − e + b∗y)i = 0. Therefore, after k is large enough, all bounded variables

are fixed and are not included in the working set. By treating bounded variables

as constants essentially we are solving a problem with the following form:

min
α

f(α) =
1

2
αT Qα + pT α

subject to yT α = ∆, (4.1)

where 0 < αk
i < C for all i even though we do not write down inequality constraints

explicitly. Then the optimal solution α∗ with its Lagrange multiplier b∗ can be

obtained by the following linear system:[
Q y
yT 0

] [
α∗

b∗

]
=

[
−p
∆

]
. (4.2)

In each iteration, we consider minimizing f(αk
B+d) where d is the direction moving

from αk
B so the sub-problem is

min
d

1

2
dT QBBd +∇f(αk)T

Bd.

subject to yT
Bd = 0, (4.3)

where ∇f(αk) = Qαk + p now. If a solution of (4.3) is dk, then αk+1
B = αk

B + dk

and αk+1
N = αk

N . With the Lagrange multiplier bk, this sub-problem can be solved

by the following equation:[
QBB yB

yT
B 0

] [
dk

bk

]
=

[
−∇f(αk)B

0

]
. (4.4)

Using (4.2),

Q(αk − α∗) = Qαk + p + b∗y

= ∇f(αk) + b∗y. (4.5)

By defining Y ≡ diag(y) to be a diagonal matrix with elements of y on the

diagonal, with yi = ±1, we have

−Y Q(αk − α∗) = −Y∇f(αk)− b∗e.
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Now without inequalities, a “maximal violating pair” is obtained simply by the

maximal and the minimal elements of −Y∇f(αk). As simultaneously subtracting

a constant b∗ does not affect the order of a sequence, we have

argmaxi(−yi(Q(αk − α∗))i) = argmaxi(−yi∇f(αk)i) and

argmini(−yi(Q(αk − α∗))i) = argmini(−yi∇f(αk)i). (4.6)

The following two theorems are main results on linear convergence. They require

two technical lemmas which are left in the end of this section.

Theorem 3 There is c < 1 such that after k is large enough,

(αk+1 − α∗)T Q(αk+1 − α∗) ≤ c(αk − α∗)T Q(αk − α∗). (4.7)

Proof. We directly calculate the difference between the (k + 1)st and the kth

iterations:

(αk+1 − α∗)T Q(αk+1 − α∗)− (αk − α∗)T Q(αk − α∗) (4.8)

= 2(dk)T (Q(αk − α∗))B + (dk)T QBBdk

= (dk)T (2(Q(αk − α∗))B −∇f(αk)B − bkyB) (4.9)

= (dk)T ((Q(αk − α∗))B + (b∗ − bk)yB) (4.10)

= (dk)T ((Q(αk − α∗))B + (bk − b∗)yB) (4.11)

= −[−(Q(αk − α∗))B + (b∗ − bk)yB]T Q−1
BB[−(Q(αk − α∗))B + (b∗ − bk)yB],

where (4.9) is from (4.4), (4.10) is from (4.5), (4.11) is obtained by using the fact

yT
Bdk = 0 from (4.4), and the last equality is from (4.4) and (4.5). If we define

Q̂ ≡ YBQ−1
BBYB and v ≡ −Y (Q(αk − α∗)), (4.12)

where YB ≡ diag(yB), then vB = −YB(Q(αk − α∗))B and (4.8) becomes

−[vB + (b∗ − bk)eB]T Q̂[vB + (b∗ − bk)eB]. (4.13)

Using the fact that at least one “maximal violating pair” is in B, with (4.6) we

can define

v1 ≡ max
i

(vi) = max
i∈B

(vi) and vl ≡ min
i

(vi) = min
i∈B

(vi). (4.14)
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We denote that min(eig(·)) and max(eig(·)) to be the minimal and maximal

eigenvalues of a matrix, respectively. Then

[vB + (b∗ − bk)eB]T Q̂[vB + (b∗ − bk)eB]

≥ min(eig(Q̂))[vB + (b∗ − bk)eB]T [vB + (b∗ − bk)eB]

≥ min(eig(Q̂))
(v1 − vl)2

2
(4.15)

≥ min(eig(Q̂))

2
(

yT Q−1y∑
i,j |Q

−1
ij |

)2 max(|v1|, |vl|)2 (4.16)

≥ min(eig(Q̂))

2l
(

yT Q−1y∑
i,j |Q

−1
ij |

)2(Q(αk − α∗))T Q(αk − α∗) (4.17)

≥ min(eig(Q̂))

2l max(eig(Q−1))
(

yT Q−1y∑
i,j |Q

−1
ij |

)2(Q(αk − α∗))T Q−1Q(αk − α∗)

≥ min(eig(Q̂))

2l max(eig(Q−1))
(

yT Q−1y∑
i,j |Q

−1
ij |

)2(αk − α∗)T Q(αk − α∗), (4.18)

where (4.15) is from (4.14) and Lemma 1, (4.16) is from Lemma 2, and (4.17)

follows from (4.14).

Here we give more details about the derivation of (4.16): If v1vl ≤ 0, then of

course

|v1 − vl| ≥ max(|v1|, |vl|).

With yi = ±1, yT Q−1yP
i,j |Q

−1
ij | ≤ 1 so (4.16) follows. On the other hand, if v1vl ≥ 0,

we consider v = (Y QY )(−Y (αk − α∗)) from (4.12). Since −eT Y (αk − α∗) =

−yT (αk − α∗) = 0, we can apply Lemma 2: With

|(Y QY )−1
ij | = |Q−1

ij yiyj| = |Q−1
ij | and

eT (Y QY )−1e = yT Q−1y,

we have

|v1 − vl| ≥ max(|v1|, |vl|)−min(|v1|, |vl|)

≥ (
yT Q−1y∑

i,j |Q
−1
ij |

) max(|v1|, |vl|)

which implies (4.16).

Then we can define a constant c as follows:

c ≡ 1−min
B

(
min(eig(Q−1

BB))

2l max(eig(Q−1))
(

yT Q−1y∑
i,j |Q

−1
ij |

)2

)
< 1.
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Combining (4.13) and (4.18), after k is large enough, (4.7) holds. 2

The linear convergence of the objective function is as follows:

Theorem 4 There is c < 1 such that after k is large enough,

f(αk+1)− f(α∗) ≤ c(f(αk)− f(α∗)).

Proof. We will show that for any k,

f(αk)− f(α∗) =
1

2
(αk − α∗)T Q(αk − α∗)

so the proof immediately follows from Theorem 3. Using (4.2),

f(αk)− f(α∗)

=
1

2
(αk)T Qαk + pT αk − 1

2
(α∗)T Qα∗ − pT α∗

=
1

2
(αk)T Qαk + (−Qα∗ − b∗y)T αk − 1

2
(α∗)T Qα∗ − (−Qα∗ − b∗y)T α∗

=
1

2
(αk)T Qαk − (α∗)T Qαk +

1

2
(α∗)T Qα∗ (4.19)

=
1

2
(αk − α∗)T Q(αk − α∗).

Since we always keep the feasibility of αk, we can use yT αk = ∆ to cancel out the

term yT α∗ and have (4.19). 2

Next we present two technical lemmas used earlier.

Lemma 1 If v1 ≥ · · · ≥ vl,

l∑
i=1

v2
i ≥

(v1 − vl)
2

2
.

Proof.
l∑

i=1

v2
i ≥ v2

1 + v2
l ≥

(v1 − vl)
2

2
.

2

Lemma 2 If Q is invertible, then for any x such that

1. eT x = 0,
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2. v ≡ Qx, maxi((Qx)i) = v1 > vl = mini((Qx)i), and v1vl ≥ 0,

we have

min(|v1|, |vl|) ≤ (1− eT Q−1e∑
i,j |Q

−1
ij |

) max(|v1|, |vl|).

Proof. Since v1 > vl and v1vl ≥ 0, we have either v1 > vl ≥ 0 or 0 ≥ v1 > vl.

For the first case, if the result is wrong,

vl > (1− eT Q−1e∑
i,j |Q

−1
ij |

)v1,

so for j = 1, . . . , l,

v1 − vj ≤ v1 − vl

< (
eT Q−1e∑

i,j |Q
−1
ij |

)v1. (4.20)

With x = Q−1v and (4.20),

eT x = eT Q−1v

=
∑
i,j

Q−1
ij vj

=
∑
i,j

Q−1
ij (v1 − (v1 − vj))

≥ v1eT Q−1e− (v1 − vl)
∑
i,j

|Q−1
ij |

> v1

(
eT Q−1e− (

eT Q−1e∑
i,j |Q

−1
ij |

)
∑
i,j

|Q−1
ij |

)
= 0

causes a contradiction. The case of 0 ≥ v1 > vl is similar. 2

5 Some Practical Considerations

Earlier experiments have pointed out that if the kernel matrix is well conditioned,

the decomposition method converges more quickly. This has been mentioned in,

for example, (Hsu and Lin, 2002, Section 5).

Results in this paper provide more insights about this observation. Here, we

discuss the situation when the RBF kernel is used (i.e., K(xi, xj) = e−γ‖xi−xj‖2).
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When γ is large, Q → I is well conditioned. We show that for larger γ, the linear

convergence rate is higher:

Since Qii = 1, i = 1, . . . , l for the RBF kernel,

l∑
i=1

λi = trace(Q) = l,

where λ1, . . . , λl are eigenvalues of Q. Therefore,

min(eig(Q−1
BB)) ≤ 1 and max(eig(Q−1)) ≥ 1.

With (yT Q−1y)/
∑

i,j |Q
−1
ij | ≤ 1,

min
B

(
min(eig(Q−1

BB))

l max(eig(Q−1))
(

yT Q−1y

2
∑

i,j |Q
−1
ij |

)2

)
≤ 1

4l
.

When γ is large, Q → I so

min
B

(
min(eig(Q−1

BB))

l max(eig(Q−1))
(

yT Q−1y

2
∑

i,j |Q
−1
ij |

)2

)
→ 1

4l
,

its largest possible value. Therefore, the convergence seems faster when the kernel

matrix is well-conditioned.

On the other hand, when Q is very ill-conditioned, 1/ max(eig(Q−1)) = min(eig(Q))

can be very small. Then the rate constant c is close to 1 so the convergence is

very slow. For linear SVM with the number of training samples greater than the

number of attributes, Q is only positive semi-definite so min(eig(Q)) = 0. Practi-

cally decomposition methods converge very slowly for such cases so indeed people

consider that SMO might not be very suitable for linear SVM (Chung et al.,

2002). Though results in this paper assume the positive definiteness of the kernel

matrix, if we consider such linear SVM as ill-conditioned problems, our results

also helps to explain the slow convergence. We think that theoretical properties

of decomposition methods for linear SVM are worth for further investigation.

6 An Example

We have shown that under some general conditions, the decomposition method

discussed here is at least linearly convergent. However, it is still not clear whether
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the convergence is actually better than linear or not. Here, we present a simple

example which exactly has the linear convergence. Hence, in theory, the linear

convergence is already the best worst-case analysis.

Consider x1, x2, x3 with ‖x1 − x2‖ = ‖x1 − x3‖ = ‖x2 − x3‖, y = [1, 1,−1]T ,

and C = ∞. If the RBF kernel is used, the dual SVM problem is

min
α1,α2,α3

1

2

[
α1 α2 α3

]  1 a −a
a 1 −a
−a −a 1

α1

α2

α3

− (α1 + α2 + α3)

subject to α1 + α2 − α3 = 0,

0 ≤ α1, α2, α3,

where a = e−γ‖xi−xj‖2 . We assume C is large so is not needed here. At the optimal

solution,

α∗ =
[

2
3(1−a)

2
3(1−a)

4
3(1−a)

]T

. (6.1)

We will show that after k is large enough,

(αk+1 − α∗)T Q(αk+1 − α∗) =
1

4
(αk − α∗)T Q(αk − α∗). (6.2)

Now q, the size of the working set, must be two so the three possible sets are

{1, 2}, {1, 3}, and {2, 3}. We can see that Assumptions 1 and 2 are easily satisfied.

Thus, after k is large enough, αk
i , i = 1, . . . , 3 are strictly positive. Then, in each

iteration, after solving the sub-problem the two variables are positive so they

have the same yi∇f(α)i. Hence, under the rules of (2.2) and (2.3), any one for

the other two possible sets can be the working set of the next iteration. For

example, if {1, 3} is the working set of the kth iteration, then for the (k + 1)st

iteration, either {2, 3} or {1, 2} can be used.

For convenience, we define

ek
i ≡ αk

i − α∗
i , i = 1, . . . , 3.

We claim that at the kth iteration:

1. If {1, 3} is the working set, then

2ek+1
1 + ek+1

2 = 0. (6.3)
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2. If {2, 3} is the working set, then

ek+1
1 + 2ek+1

2 = 0. (6.4)

3. If {1, 2} is the working set, then

ek+1
1 − ek+1

2 = 0. (6.5)

For the first case, using (4.4),[
1 −a
−a 1

] [
αk+1

1

αk+1
3

]
−

[
1
1

]
+ bk+1

[
1
−1

]
= −αk

2

[
a
−a

]
. (6.6)

With

αk+1
1 − αk+1

3 = −αk
2,

we have

αk+1
1 =

1

1− a
− αk

2

2
.

Therefore, using (6.1) and αk+1
2 = αk

2,

2(αk+1
1 − α∗

1) + (αk+1
2 − α∗

2) =
2

1− a
− 3α∗

2 = 0.

The second case, (6.4), can be derived by a similar way. For the third case, it

is easy to see that if {1, 2} is the working set, αk+1
1 = αk+1

2 . With α∗
1 = α∗

2,

ek+1
1 = ek+1

2 =
ek
1 + ek

2

2
=

ek
3

2
. (6.7)

Using ek+1
2 = ek

2, ek+1
1 = ek

1, and ek+1
1 = ek+1

2 = ek
3/2, for the three respective

cases, by induction, if e1
i 6= 0, i = 1, . . . , 3, then

ek
i 6= 0, i = 1, . . . , 3, for all k. (6.8)

Now we are ready to prove (6.2). With αk
3 = αk

1 + αk
2,

(αk − α∗)T Q(αk − α∗)

= 2(1− a)((ek
1)

2 + (ek
2)

2 + ek
1e

k
2).

If {1, 3} is the working set, then with (6.3) and αk+1
2 = αk

2,

(αk+1 − α∗)T Q(αk+1 − α∗)

= 2(1− a)((ek+1
1 )2 + (ek+1

2 )2 + ek+1
1 ek+1

2 ) (6.9)

=
3

2
(1− a)(ek

2)
2.
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The validity of (6.2) requires

3
2
(1− a)(ek

2)
2

2(ek
1)

2 + 2(ek
2)

2 + 2ek
1e

k
2

=
1

4

which, under (6.8), is equivalent to

(ek
1 − ek

2)(e
k
1 + 2ek

2) = 0. (6.10)

Since {1, 3} is the current working set, in the previous iteration, the set must be

{1, 2} or {2, 3}. Thus, (6.10) follows from (6.5) and (6.4).

The proof for the case that {2, 3} is the working set is very similar. If {1, 2}
is the working set, putting (6.7) into (6.9), (6.10) becomes

(2ek
1 + ek

2)(e
k
1 + 2ek

2) = 0,

so the result also follows.

Indeed by a more detailed description, we can show that if the initial solution

is zero, (6.2) holds for all k = 1, 2, . . .

7 Discussion

The decomposition method has been an old optimization technique which is also

called, for example, “coordinate search,” “method of alternating variables,” or

“coordinate descent method.” However, in most cases only bound-constrained or

unconstrained optimization problems are considered where the linear convergence

(without the non-degeneracy assumption) has been established in, for example,

(Luo and Tseng, 1992) and references therein. With the additional linear con-

straint yT α = 0 and differences on the working set selection, we have not been

able to get similar proofs without the non-degeneracy assumption. How to fill this

gap is a further research issue.

On the other hand, after using the non-degeneracy assumption and (Lin,

2002b, Theorem II.3) to remove inequalities, (4.1) is a very simple problem. Hence

we essentially follow the structure of proving the linear convergence of the steepest

descent method for unconstrained convex quadratic programming problems (see,

for example, (Nocedal and Wright, 1999, Chapter 3.3)). Two news things we have

to take care of are:

14



1. Using the property that the “maximal violation pair” is selected so (4.16),

an expression only on the variables of the working set, can be connected to

(4.17) which is related to all variables.

2. Handling the linear constraint yT α = ∆. For the unconstrained case there

is no b∗ and bk so (4.15) can directly imply (4.16). Here we need Lemma 2

to connect them.
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