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Abstract

Support vector machines (SVMs) with the Gaussian (RBF) kernel have been

popular for practical use. Model selection in this class of SVMs involves two

hyperparameters: the penalty parameter C and the kernel width σ. This paper

analyzes the behavior of the SVM classifier when these hyperparameters take

very small or very large values. Our results help in a good understanding of

the hyperparameter space that leads to an efficient heuristic method of searching

for hyperparameter values with small generalization errors. The analysis also

indicates that if complete model selection using the Gaussian kernel has been

conducted, there is no need to consider linear SVM.

1 Introduction

Given a training set of instance-label pairs (xi, yi), i = 1, . . . , l where xi ∈ Rn and

y ∈ {1,−1}l, support vector machines (SVMs) (Vapnik 1998) require the solution
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of the following (primal) optimization problem:

min
w,b,ξ

1

2
wT w + C

l
∑

i=1

ξi

subject to yi(w
T zi + b) ≥ 1 − ξi, (1.1)

ξi ≥ 0, i = 1, . . . , l.

Here training vectors xi are mapped into a higher (maybe infinite) dimensional

space by the function φ as zi = φ(xi). C > 0 is the penalty parameter of the error

term.

Usually we solve (1.1) by solving the following dual problem:

min
α

F (α) =
1

2
αT Qα − eT α

subject to 0 ≤ αi ≤ C, i = 1, . . . , l, (1.2)

yT α = 0,

where e is the vector of all ones and Q is an l by l positive semidefinite matrix.

The (i, j)-th element of Q is given by Qij ≡ yiyjK(xi, xj) where K(xi, xj) ≡

φ(xi)
T φ(xj) is called the kernel function. Then w =

∑l
i=1 αiyiφ(xi) and

sgn(wT φ(x) + b) = sgn(
l

∑

i=1

αiyiK(xi, x) + b)

is the decision function.

We are particularly interested in the Gaussian kernel:

K(x̃, x̄) = exp(
−‖x̃ − x̄‖2

2σ2
). (1.3)

Our aim is to analyze the behaviors of the SVM classifier when C and/or σ2 take

very small or very large values. The motivation is that, such an analysis will help

in a good understanding of the hyperparameter space that will lead to efficient

heuristic ways of searching for points in that space with small generalization errors.

Some of the behaviors that we will discuss are known in the literature (although,

details associated with these are usually not written down carefully) but some key

behaviors are new results that are not entirely obvious. Here is a quick summary

of the asymptotic behaviors of the SVM classifier that are derived in this paper:
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• Severe underfitting (the entire data space is assigned to the majority class)

occurs in the following cases: (a) σ2 is fixed and C → 0; (b) σ2 → 0 and C

is fixed to a sufficiently small value; and (c) σ2 → ∞ and C is fixed.

• Severe overfitting (small regions around the training examples of the minor-

ity class are classified to be that class while the rest of the data space is

classified as the majority class) occurs in the case where σ2 → 0 and C is

fixed to a sufficiently large value.

• If σ2 is fixed and C → ∞ the SVM classifier strictly separates the training

examples of the two classes; this is a case of overfitting if the problem under

consideration has noise.

• If σ2 → ∞ and C = C̃σ2 where C̃ is fixed then the SVM classifier converges

to the Linear SVM classifier with penalty parameter C̃.

Figure 1 gives a summary of the asymptotic behaviors.

Asymptotic behaviors of the generalization error associated with the SVM

classifier as C and/or σ2 take extreme values can be understood via a study of

corresponding behaviors of the leave-one-out (loo) error. The loo error is com-

puted as follows. For the i-th example, (1.1) and (1.2) are solved after leaving

out that example. The resulting classifier is applied to check if the i-th example

is misclassified. The procedure is repeated for each i. The fraction of examples

that are misclassified is the loo error.

This paper is organized as follows. In Section 2 we analyze the asymptotic

behaviors of the SVM classifier using the Gaussian kernel. The results lead to

a simple and efficient heuristic model selection strategy which is described in

Section 3. Experiments show that the proposed method is competitive with the

usual cross validation search strategy in terms of generalization error achieved,

while at the same time, it is much more efficient.

2 Asymptotic Behaviors

To establish various asymptotic behaviors of the SVM decision function as well as

the loo error, we need the following assumption, which will be assumed throughout
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Figure 1: A figurative summary of the asymptotic behaviors. The problem has 11

examples in class 1 (shown by ×) and 7 examples in class 2 (shown by +). (Thus

class 1 is the majority class and class 2 is the minority class.) The plot in the center

shows the eight (log C, log σ2) pairs tried. The decision curves corresponding to

these eight pairs are displayed in the surrounding plots at respective positions.

Plots without a decision curve correspond to underfitting classifiers for which the

entire input region is classified as class 1.
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the paper.

Assumption 1

1. l1 > l2 +1 > 2 where l1 and l2 are the numbers of training examples in class

1 and class 2, respectively.∗

2. For i 6= j, xi 6= xj. That is, no two examples have identical x vectors.†

The following lemma is useful.

Lemma 1 For any given (C, σ2), the solution (α) of (1.2) is unique. Also, for

every σ2, {zi | yi = 1} and {zi | yi = −1} are linearly separable.

Proof. From (Micchelli 1986), if the Gaussian kernel is used and xi 6= xj ∀i 6= j

from Assumption 1, Q is positive definite. By Corollary 1 of (Chang and Lin

2001b), we get linear separability in z-space. Uniqueness of α follows from the

fact that (1.2) is a strictly convex quadratic programming problem. 2

We now discuss the various asymptotic behaviors. As the results of each case

are stated, it is useful to refer to the example shown in Figure 1 given in section

1. Wherever we come across results whose proofs do not shed any insight on the

asymptotic behaviors, we only state the results and relegate the proofs to the

appendix.

Case 1. σ2 fixed and C → 0

It can be shown (see the proof of Theorem 5 in (Chang and Lin 2001b) for

details) that, if C is smaller than a certain positive value, the following holds:

αi = C ∀ i with yi = −1. (2.1)

Let us take one such C. Using (2.1) together with
∑l

i=1 yiαi = 0 and l1 > l2, it is

easy to see that there exists at least one i for which αi < C and yi = 1. For such

∗ If l2 > l1 + 1 > 2, then we can always interchange the two classes and apply

all the results derived in this paper. Cases where |l1 − l2| ≤ 1 or min{l1, l2} < 2

correspond to abnormal situations that are not worth discussing in detail since

in practice the numbers of examples in the two classes rarely satisfy any of these

two conditions.
† This is a generic assumption that is easily satisfied if small random perturba-

tions are added to all training examples.
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an i we have

wT zi + b ≥ 1. (2.2)

For C → 0 we have αi → 0 and so wT z =
∑l

i=1 αiyiK(xi, x) → 0, where z = φ(x).

These imply that, if X is any compact subset of Rn, then for any given 0 < a < 1

there exists C̄ > 0 such that for all C ≤ C̄ we have

b ≥ a and |
l

∑

i=1

αiyiK(xi, x)| ≤
a

2
∀x ∈ X. (2.3)

Hence, for all C ≤ C̄

f(x) > 0 ∀x ∈ X.

In particular, if we take X to be the compact subset of data space that is of

interest to the given problem, then for sufficiently small C every point in this

subset is classified as class 1.

The first part of Assumption 1 allows us to use similar arguments for the case

of (1.2) with one example left out. Then we can also show that, as C → 0, the

number of loo errors is l2. Thus C → 0 corresponds to severe underfitting as

expected. Furthermore, we have the following properties as C → 0.

1. ‖w‖2 = αT Qα → 0

2. limC→0
1
C

∑l
i=1 αi = limC→0

2
C

∑

i:yi=−1 αi = 2l2

3. Using the equality of primal and dual objective function values at optimality

and the inequality αT Qα ≤ l2C2 we get

lim
C→0

l
∑

i=1

ξi = lim
C→0

1

C
(

l
∑

i=1

αi − αT Qα) = 2l2.

It is useful to interpret the above asymptotic results geometrically; in particular,

study the movement of the top, middle and bottom planes defined by wT z+b = 1,

wT z + b = 0 and wT z + b = −1 as C → 0. By (2.2) at least one example of class 1

lies on or above the top plane. By property 1 given above, the distance between

the top and bottom planes (which equals 2/‖w‖) goes to infinity. Hence, the

middle and bottom planes are forced to move down farther and farther away from

the location where the training points are located, causing the half space defined
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by wT z+b ≥ 0 to entirely cover X, the compact subset of interest to the problem,

after C becomes sufficiently small.

Remark 2.1 The results given above for C → 0 are general and apply to non-

Gaussian kernels also, assuming, of course, that all hyperparameters associated

with the kernel function are kept fixed. The results also apply if Q is a bounded

function of C since Theorem 5 of (Chang and Lin 2001b) holds for this case.

Remark 2.2 For kernels whose values are bounded (e.g., the Gaussian kernel),

there is C̄ such that (2.3) holds for all x ∈ Rn. Thus, for all C ≤ C̄,

f(x) > 0 ∀x ∈ Rn.

That is, for all C ≤ C̄ every point is classified as class 1.

Case 2. σ2 fixed and C → ∞

By Lemma 1 given at the beginning of this section, {zi | yi = 1} and {zi |

yi = −1} are linearly separable. This implies that it is possible to set ξi = 0 ∀i

while still remaining feasible for (1.1). Thus, as C → ∞, the solution of (1.1)

approaches the solution of the hard margin problem:

min
w,b

1

2
wT w

subject to yi(w
T zi + b) ≥ 1, i = 1, . . . , l. (2.4)

A formal treatment of this is in (Lin 2001) which shows that if (2.4) is feasible,

then there exists a C∗ such that for C ≥ C∗, the solution set of (1.1) is the same

as that of (2.4). An easy way to see this result is to solve (1.2) with C = ∞,

obtain the {αi} and set C∗ = maxi αi.

The limiting SVM classifier classifies all training examples correctly and so it

is an overfitting classifier. In particular, severe overfitting occurs when σ2 is small

since flexibility of the classifier is high when σ2 is small.

For the case of C → ∞, it is not possible to make any conclusions about the

actual value of the loo error. That value depends on the dataset as well as on the

value of σ2. However, after (1.2) is solved using all the examples it is possible to

give bounds on the loo error (Joachims 2000; Vapnik and Chapelle 2000) without

solving the quadratic programs obtained by leaving out one example at a time.
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Case 3. C is fixed and σ2 → 0

Let us define δij = 1 for i = j and δij = 0 if i 6= j. Since e−‖xi−xj‖
2/(2σ2) → δij

as σ2 → 0, we consider the following problem:

min
α

1

2
αT α − eT α

subject to 0 ≤ αi ≤ C, i = 1, . . . , l, (2.5)

yT α = 0.

Using Lemma 2 (proof in Appendix A.1), as σ2 → 0 the solution of (1.2) converges

to that of (2.5). Since l1 > l2, the solution of (1.2) has 0 < αi < C for at least

one i.‡ Thus b is uniquely determined and, as σ2 → 0, it approaches the value of

b corresponding to the primal form of (2.5).

Therefore, let us study the solution of (2.5). In Appendix A.2, we show that

its solution is given by: αi = α+ if yi = 1; αi = α− if yi = −1, where

α− =

{

Clim if C ≥ Clim

C if C < Clim,
α+ =

{

2l2/l if C ≥ Clim

l2C/l1 if C < Clim,
(2.6)

and Clim = 2l1/l. The threshold parameter b in the primal form corresponding to

(2.5) can be determined using the fact that 0 < α+ < C (and hence all class 1

examples lie on the top plane defined by wT z + b = 1):

b =

{

(l1 − l2)/l if C ≥ Clim,

1 − l2C/l1 if C < Clim.
(2.7)

Consider the classifier function f(x) = wT z + b corresponding to (2.5). In Ap-

pendix A.2 we also show the following.

1. If C ≥ Clim/2, f classifies all training examples correctly and classifies the

rest of the space as class 1. Thus it overfits the training data.

2. If C < Clim/2, then f classifies the entire space as class 1 and so it underfits

the training data.

‡ As we show below (see (2.6)) the solution of (2.5) is well in the interior of (0, C)

for at least one i. Since, for small values of σ2, the solution of (1.2) approaches

that of (2.5), it follows that the solution of (1.2) also has 0 < αi < C for at least

one i.
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3. The number of loo errors is l2.

Consider the SVM classifier corresponding to the Gaussian kernel for small values

of σ2. Even though the number of loo errors tends to l2 for all C, it is important

to note that the SVM classifier is qualitatively very different for large C and small

C. For large C, there are small regions around each example of class 2 which

are classified as class 2 (overfitting) while for small C, there are no such regions

(underfitting).

It is interesting to note that, if σ2 is small and C is greater than a threshold

which is around Clim, from (2.6), the SVM classifier does not depend on C. Thus,

contour lines of constant generalization error are parallel to the C axis in the

region where σ2 is small and C is large.

Case 4. C is fixed and σ2 → ∞

When σ2 → ∞, we can write

K(x̃, x̄) = exp(−‖x̃ − x̄‖2/2σ2)

= 1 −
‖x̃ − x̄‖2

2σ2
+ o(‖x̃ − x̄‖2/σ2)

= 1 −
‖x̃‖2

2σ2
−

‖x̄‖2

2σ2
+

x̃T x̄

σ2
+ o(‖x̃ − x̄‖2/σ2). (2.8)

Now consider (1.2). Using the simplification given above, we can write the first

(quadratic) term of the objective function in (1.2) as

∑

i

∑

j

αiαjyiyjK(xi, xj) = T1 +
T2 + T3 + T4

2σ2
+

1

2

∑

i

∑

j

αiαjyiyj
∆ij

σ2
,

where

T1 =
∑

i

∑

j

αiαjyiyj , T2 = −
∑

i

∑

j

αiαjyiyj‖xi‖
2,

T3 = −
∑

i

∑

j

αiαjyiyj‖xj‖
2 , T4 = 2

∑

i

∑

j

αiαjyiyjx
T
i xj, and

lim
σ2→∞

∆ij = 0. (2.9)

By the equality constraint of (1.2), T1 = (
∑

i αiyi)
2 = 0. We can also rewrite T2

as T2 = (
∑

i αiyi‖xi‖
2)(

∑

j αjyj) = 0. In a similar way, T3 = 0. By defining

α̃i =
αi

σ2
∀ i, (2.10)
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(1.2) can be written as §

min
α̃

F

σ2
=

1

2

∑

i

∑

j

α̃iα̃jyiyjK̃ij −
∑

i

α̃i

subject to 0 ≤ α̃i ≤ C̃, i = 1, . . . , l, (2.11)

yT α̃ = 0,

where K̃ij = xT
i xj + ∆ij and

C̃ =
C

σ2
. (2.12)

Remark 2.3 Note that K̃ij may not correspond to a valid kernel satisfying the

Mercer’s condition. But that is immaterial since we always operate with the con-

straint yT α̃ = 0. In the presence of this constraint (1.2) and (2.11) are equivalent.

Remark 2.4 If C is fixed at some value and σ2 is made large, C̃ of (2.11) goes to

zero and so the situation is similar to Case 1 that we discussed at the beginning

of this section. By (2.9), K̃ij is a bounded function for large σ2 (or, equivalently,

for small C̃). By the last sentence of Remark 2.1, results of Case 1 can be applied

here. Thus, for C fixed and σ2 → ∞, (2.11) corresponds to a severely underfitting

classifier. Since (2.11) and (1.2) correspond to the same problem in different forms,

they have the same primal decision function (for full details see (A.8)). Therefore,

in this situation we get a severely underfitting classifier.

For a given C̃, as σ2 → ∞ and C varies with σ2 as given by (2.12), we can see

that (2.11) is close to the following linear SVM problem:

min
α̃

1

2

∑

i

∑

j

α̃iα̃jyiyjx
T
i xj −

∑

i

α̃i

subject to 0 ≤ α̃i ≤ C̃, i = 1, . . . , l, (2.13)

yT α̃ = 0.

§ To do this, note that we need to divide the objective function by the term σ2.
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We are interested in their corresponding decision functions which can lead us to

analyze the performance of (1.1). Now the primal form of (2.13) is

min
w̃,b̃,ξ̃

1

2
w̃T w̃ + C̃

l
∑

i=1

ξ̃i

subject to yi(w̃
T xi + b̃) ≥ 1 − ξ̃i, (2.14)

ξ̃i ≥ 0, i = 1, . . . , l.

Let (w(σ2), b(σ2)) and (w̃, b̃) denote primal optimal solutions of (1.1) and (2.14),

respectively. We then have the following theorem.

Theorem 2 For any x, limσ2→∞ w(σ2)T z = w̃T x. If the optimal b̃ of (2.14) is

unique then limσ2→∞ b(σ2) = b̃ and hence the following also hold:

1. For any x,

lim
σ2→∞

w(σ2)T z + b(σ2) = w̃T x + b̃; (2.15)

2. If w̃T x + b̃ 6= 0, then for σ2 sufficiently large,

sgn(w(σ2)T z + b(σ2)) = sgn(w̃T x + b̃).

The proof is in Appendix A.3. Thus, for a given C̃, the limiting SVM Gaussian

kernel classifier as σ2 → ∞ is same as the SVM linear kernel classifier for C̃.

Hereafter, we will simply refer to the SVM linear kernel classifier as ‘Linear SVM’.

The above analysis can also be extended to show that, as σ2 → ∞, the loo error

corresponding to (1.1) and (2.13) are the same.

The above results also show that, in the part of the hyperparameter space

where σ2 is large, if (C1, σ
2
1) and (C2, σ

2
2) are related by C1/σ

2
1 = C2/σ

2
2 = C̃,

the classifiers corresponding to the two combinations are nearly the same. Hence,

they both will give nearly the same value for generalization error (or an estimate

of it such as k-fold cross validation error or loo error). Thus, in this part of

the hyperparameter space, contour lines of such functions will be straight lines

with slope 1: log σ2 = log C − log C̃. Then all classifiers defined by points on

that straight line for large σ2 are nearly the same as the Linear SVM classifier

corresponding to C̃.
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Given that for any x, limσ2→∞ w(σ2)T z = w̃T x holds without any assumption,

the assumption on the uniqueness of b̃ in Theorem 2 should only be viewed as

a minor technical irritant.¶ For normal situations, the uniqueness assumption

is a reasonable one to make. Unless C̃ is very small, typically there will be at

least one α̃i strictly in between 0 and C̃; when such an α̃i exists, Lemma 3 in

Appendix A.1 (as applied to (2.14)) implies the uniqueness of b̃. The case C̃ very

small corresponds to the upper left part of the plane in which log C and log σ2

are the horizontal and vertical axes. We can easily see this by considering C

fixed and increasing σ2 to large values (the upper part) or considering σ2 fixed

and decreasing C to small values (the left part). As Remark 2.4 and Case 1 of

this section show, each of these asymptotic behaviors corresponds to a severely

underfitting SVM decision function.

Finally, Theorem 2 also indicates that if complete model selection on (C, σ2)

using the Gaussian kernel has been conducted, there is no need to consider linear

SVM. This helps the selection of kernels.

3 A Method of Model Selection

It is usual to take log C and log σ2 as the parameters of the hyperparameter

space. Putting together the results derived in the previous section, it is easy

to see that, in the asymptotic (outer) regions of the (log C, log σ2) space there

exists a contour of generalization error (or an estimate such as loo error or k-fold

cross validation error) that looks like that shown in Figure 2 and which helps

separate the hyperparameter space into two regions: an overfitting/underfitting

region and a good region (which most likely has the hyperparameter set with the

best generalization error). (For loo, recall that, in the underfitting/overfitting

region, the number of loo errors is l2.) The straight line with unit slope in the

large σ2 region (log σ2 = log C − log C̃) corresponds to the choice of C̃ which is

small enough to make the Linear SVM an underfitting one. The presence of a

¶ The assumption is needed to state results cleanly. If b̃ is non-unique, SVM

classifiers also become non-unique and then it becomes clumsy to talk about

convergence of SVM decision functions.
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separating contour as outlined in Figure 2 has been observed on a number of real

world datasets (Lee 2001).

log Clim log C

log σ2

underfitting

underfitting overfitting

good region

log σ2 = log C − log C̃

Figure 2: A rough boundary curve separating the underfitting/overfitting region

from the “good” region. For each fixed C̃, the equation log σ2 = log C − log C̃

defines a straight line of unit slope. As σ2 → ∞ along this line, the SVM classifier

converges to the Linear SVM classifier with penalty parameter C̃. The dotted

line corresponds to the choice of C̃ that gives optimal generalization error for the

Linear SVM.

When searching for a good set of values for log C and log σ2, it is usual to

form a two dimensional uniform grid (say r× r) of points in this space and find a

combination that gives the least value for some estimate of generalization error.

This is expensive since it requires the trying of r2 (C, σ2) pairs. The earlier

discussion relating to Figure 2 suggests a simple and efficient heuristic method for

finding a hyperparameter set with small generalization error: form a line of unit

slope which cuts through the middle part of the good region (see the dashed line in

Figure 2) and search on it for a good set of hyperparameters. The C̃ that defines

this line can be set to the optimal value of penalty parameter for the Linear SVM.

Thus, we propose the following procedure.

1. Search for the best C of Linear SVM and call it C̃.

2. Fix C̃ from step 1 and search for the best (C, σ2) satisfying log σ2 = log C −

log C̃ using the Gaussian kernel.

The idea is that, as σ2 → ∞, SVM with Gaussian kernel behaves like Linear
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SVM and so the best C̃ should happen in the upper part of the “good” region in

Figure 2. Then a search on the line defined by log σ2 = log C− log C̃ gives an even

better point in the “good” region. In many practical pattern recognition problems,

a linear classifier already gives a reasonably good performance and some added

nonlinearities help obtain finer improvements in accuracy. Step 2 of our procedure

can be thought of as a simple way of injecting the required nonlinearities via the

Gaussian kernel. Since the procedure only involves two one dimensional searches,

it requires only 2r pairs of (C, σ2) to be tried.

To test the goodness of the proposed method, we compare it with the usual

method of using two dimensional grid search. For both, five-fold cross validation

was used to obtain estimates of generalization error. For the usual method, we

uniformly discretize the [−10, 10] × [−10, 10] region to 212 = 441 points. At

each point, a five-fold cross validation is conducted. The point with the best CV

accuracy is chosen and used to predict the test data.

Problem #inputs #trg #test Test set error of Test set error of
exs exs Usual grid method Proposed method

banana 2 400 4900 0.1235 (6,-0) 0.1178 (-2,-2)
diabetes 8 468 300 0.2433 (4,7) 0.2433 (4,6)
image 18 1300 1010 0.02475 (9,4) 0.02475 (1,0.5)
splice 60 1000 2175 0.09701 (1,4) 0.1011 (0,4)
ringnorm 20 400 7000 0.01429(-2,2) 0.018 (-3,2)
twonorm 20 400 7000 0.031 (1,3) 0.02914 (1,4)
waveform 21 400 4600 0.1078 (0,3) 0.1078 (0,3)
tree 18 700 11692 0.1132 (8,4) 0.1246 (2,2)
adult 123 1605 29589 0.1614 (5,6) 0.1614 (5,6)
web 300 2477 38994 0.02223 (5,5) 0.02223 (5,5)

Table 3.1: Comparison of the model selection methods. For each approach, apart

from the test error, the optimal (log C, log σ2) pair is also given.

For the proposed method, we search for C̃ by five-fold cross validation on

Linear SVM using uniformly spaced log C values in [−8, 2]. Then we discretize

[−8, 8] as values of log σ2 and check all points satisfying log σ2 = log C − log C̃.

Because now fewer points have to be tried, we use the smaller grid spacing of 0.5

for both discretizations. The total number of points tried is 54.

To empirically evaluate the usefulness of the proposed method, we consider
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several binary problems from (Rätsch 1999). For each problem (Rätsch 1999)

gives 100 realizations of the given dataset into (training set, test set) partitions.

We consider only the first of those realizations. In addition, the problem adult,

from the UCI “adult” data set (Asuncion and Newman 2007) and the problem

web, both as compiled by Platt (1998), are also included. For each of these two

datasets also, there are several realizations. For our study here, we only consider

the realization with the smallest training set; the full dataset with training data

(including duplicated ones) removed is taken as the test set. For all datasets used,

Table 3.1 gives the number of input variables, the number of training examples

and the number of test examples. All datasets are directly used as given in the

mentioned references, without any further normalization or scaling.

The SVM software LIBSVM (Chang and Lin 2001a) which implements a de-

composition method is employed for solving (1.2). Table 3.1 presents the test error

of the two methods as well as the corresponding chosen values of log C and log σ2.

It can be clearly seen that the new method is very competitive with the usual

method in terms of test set accuracy. For large datasets the proposed method has

the great advantage that it checks much fewer points on the (log C, log σ2) plane

and so the savings in computing time can be large.

Note that, in the chosen problems the following quantities have a reasonably

wide range: test error (1.5% to 25%), the number of input variables (2 to 300)

and the number of training examples (400 to 2477); and so, the empirical evalua-

tion demonstrates the applicability of the proposed approach to different types of

datasets.

A remaining issue is how to decide the range of log C for determining C̃ in step

1. From Table 3.1 we can see that log C̃ = log C − log σ2 is usually not a large

number. Furthermore, we observe that for all problems, after C is greater than a

certain threshold, the cross validation accuracy of the Linear SVM is about the

same. Therefore, if we start searching from small C values and go on to large C

values, the search can be stopped after the CV accuracy stops varying much. An

example of the variation of the five-fold CV accuracy of Linear SVM is given in

Figure 3.

For Linear SVMs we can formally establish that there exists a finite limiting
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Figure 3: Variation of CV accuracy of Linear SVM with C for the image problem

value C∗ such that, for C ≥ C∗ the solution of the Linear SVM remains unchanged.

If {xi : yi = 1} and {xi : yi = −1} are linearly separable then the above result is

easy to appreciate; the same ideas used in case 2 of section 2 can be applied to

show this. However, if {xi : yi = 1} and {xi : yi = −1} are not linearly separable

(which is typically the case) the result is non-trivial to establish. Here, we prove

the following theorem.

Theorem 3 There exists a finite value C∗ and (w∗, b∗) such that (w, b) = (w∗, b∗)

solves (1.2) ∀C ≥ C∗. If this decision function is used, the loo error is same for

all C ≥ C∗. Moreover, this w∗ is unique.

Details of the proof are in Appendix A.4.

A Appendix

A.1 Two useful Lemmas

Lemma 2 Consider an optimization problem with the form (1.2) and Q is a

function of σ2 (denoted as Q(σ2)). Let α(σ2) be its solutions. For a given number

a, if

Q∗ ≡ lim
σ2→a

Q(σ2) exists,

then there exists convergent sequence {α(σ2
k)} with σ2

k → a, and, the limit of

any such sequence is an optimal solution of (1.2) with the Hessian matrix Q∗.
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Moreover, if Q∗ is positive definite, limσ2→a α(σ2) exists.

Proof. The feasible region of (1.2) is independent of σ2 so is compact. Then

there exists convergent sequence {α(σ2
k)} with limk→∞ σ2

k = a. For any one such

sequence, we have

1

2
α(σ2

k)
T Q(σ2

k)α(σ2
k) − eT α(σ2

k) ≤
1

2
(α∗)T Q(σ2

k)α
∗ − eT α∗, and

1

2
(α∗)T Q∗α∗ − eT α∗ ≤

1

2
α(σ2

k)
T Q∗(σ2

k)α(σ2
k) − eT α(σ2

k),
(A.1)

where α∗ is any optimal solution of (1.2) with the Hessian matrix Q∗. If α(σ2
k)

goes to ᾱ, taking the limit of (A.1),

1

2
(α∗)T Q∗α∗ − eT α∗ =

1

2
ᾱT Q∗ᾱ − eT ᾱ.

Thus, ᾱ is an optimal solution too.

If Q∗ is positive definite, (1.2) is a strictly convex problem with a unique

optimal solution. This implies that limσ2→a α(σ2) exists. 2

Lemma 3 If (1.2) has an optimal solution with at least one free variable (i.e.,

0 < αi < C for at least one i), then the optimal b of (1.1) is unique.

Proof.

The Karush-Kuhn-Tucker (KKT) condition, (i.e. the optimality condition) of

(1.2) is: If α is an optimal solution, there is a number b and two nonnegative

vectors λ and µ such that

∇F (α) + by = λ − µ,

λiαi = 0, µi(C − α)i = 0, λi ≥ 0, µi ≥ 0, i = 1, . . . , l,

where ∇F (α) = Qα − e is the gradient of F (α) = 1/2αT Qα − eT α. This can be

rewritten as

∇F (α)i + byi ≥ 0 if αi = 0,

∇F (α)i + byi ≤ 0 if αi = C, (A.2)

∇F (α)i + byi = 0 if 0 < αi < C.
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Note that

∇F (α)i = yiw
T zi − 1

is independent of different optimal solutions α as the primal optimal solution w

is unique.

Let (w, b, ξ) denote a primal solution. As already said, w is unique. By con-

vexity of the solution set, the set of all possible b solutions, B is an interval. Once

b is chosen, ξ is uniquely defined. By assumption there exists b ∈ B and a corre-

sponding Lagrange multiplier vector α(b) with a free alpha, say 0 < α(b)k < C.

Thus α(b) is an optimal solution of (1.2) and so, by (A.2), ∇F (α)k + byk = 0.

Denote

A0 = {i | ∇F (α)i + byi > 0}, AC = {i | ∇F (α)i + byi < 0}, and

AF = {i | i /∈ A0 ∪ AC}.

Let us define 2e and 2f to be the minimum and maximum of the following set:

{bnew | ∇F (α)i + bnewyi > 0 if i ∈ A0;∇F (α)i + bnewyi < 0 if i ∈ AC}. (A.3)

Clearly e < b < f . Suppose B is not a singleton. Now choose bnew ∈ B ∩ [e, f ]

such that bnew 6= b. Let α(bnew) be any Lagrange multiplier corresponding to bnew.

Thus α(bnew) and bnew satisfy (A.2). Suppose bnew > b and yk = 1. Then

∇F (α)k + bnewyk > 0 so α(bnew)k = 0 < α(b)k. (A.4)

If we use (A.2) as applied to (b, α(b)) and (bnew, α(bnew)), (A.3) implies the follow-

ing: α(b)i = α(bnew)i ∀ i ∈ A0 ∪ AC with yi = yk; also, α(b)i ≥ α(bnew)i ∀ i ∈ AF

with yi = yk. Note that k is an element of this second group. Thus, with (A.4),

∑

i:yi=yk

α(b)i >
∑

i:yi=yk

α(bnew)i. (A.5)

This is a violation of the fact that both α(b) and α(bnew) are solutions of (1.2)

since, for a given dual solution α, dual cost is (‖w‖2/2)−2
∑

i:yi=1 αi and the first

term is same for α(b) as well as α(bnew). If yk = −1, the proof is the same but

(A.5) becomes
∑

i:yi=yk
α(b)i <

∑

i:yi=yk
α(bnew)i. A similar contradiction can be

reached if bnew < b. Thus B is a singleton and b is unique. 2
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A.2 Optimal solution of (2.5)

Karush-Kuhn-Tucker (KKT) conditions applied to (2.5) correspond to the exis-

tence of a scalar b and two nonnegative vectors λ and µ such that

αi − 1 + byi = λi − µi,

αiλi = 0, (C − αi)µi = 0, i = 1, . . . , l.
(A.6)

To show that the solution is given by (2.6) and (2.7), all that we need to do is to

show the existence of λ and µ so that (A.6) holds. For the solution (2.6), when

C ≥ Clim, using b defined in (2.7),

αi − 1 + byi = 0 ∀ i

so we can simply choose λ = µ = 0 so that (A.6) is satisfied.

If C < Clim,

αi − 1 + byi =

{

0 if yi = 1,
Cl
l1
− 2 ≤ 0 if yi = −1,

so (A.6) also holds, Therefore, (2.6) gives an optimal solution for (2.5).

Let us now analyze properties of the classifier function f associated with (2.5).

Note using (2.7) that b > 0. For x 6= xi, exp(−‖x − xi‖
2/σ2) → 0 as σ2 → 0.

Therefore, for such x, the classifier function corresponding to (2.5) is given by

f(x) = b. Since b > 0, all points x not in the training set are classified as class

1 irrespective of the value of C. This together with item (2) of Assumption 1

implies that the number of loo errors is equal to l2.

For a training point xi we have f(xi) → yiαi + b as σ2 → 0. Thus after

σ2 is sufficiently small, all class 1 training points are classified correctly by f .

For training points xi in class 2, we can use (2.6) and (2.7) to show that: (i)

for C > Clim/2, all of those points are classified correctly by f ; and, (ii) for

C ≤ Clim/2, all of those points are classified incorrectly by f .
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A.3 Proof of Theorem 2

To prove Theorem 2, first we write down the primal form of (2.11):

min
w̃,b̃,ξ̃

1

2
w̃T w̃ + C̃

l
∑

i=1

ξ̃i

subject to yi(w̃
T φ̃(xi) + b̃) ≥ 1 − ξ̃i, (A.7)

ξ̃i ≥ 0, i = 1, . . . , l,

where φ̃(x) ≡ σφ(x).‖ By defining w ≡ σw̃, multiplying the objective function of

(A.7) by σ2, and using (2.12), (A.7) has exactly the same form as (1.1), so we can

say

b = b̃, ξ = ξ̃, and w̃T φ̃(x) + b̃ = wT φ(x) + b. (A.8)

A difficulty in proving this theorem is that the solution of (A.7) is an element

of a vector space that is different from that of a solution of (2.14). Hence, to build

the relation as σ2 → ∞ we will consider their duals using Lemma 2.

Assume α̃(σ2) is the solution of (2.11) under a given C̃. It is in a bounded

region for all σ2 > 0 so there is a convergent sequence α̃(σ2
k) → α̃ as σ2

k → ∞. We

can apply Lemma 2 as now the ij component of the Hessian of (2.11) is a function

of σ2:

yiyjK̃ij = σ2yiyj

(

e−‖xi−xj‖/(2σ2) − 1 +
‖xi‖

2

2σ2
+

‖xj‖
2

2σ2

)

with the limit yiyjx
T
i xj as σ2 → ∞. Therefore, α̃(σ2

k) converges to an optimal

solution α̃ of (2.13).

We denote that w̃(σ2) and w̃ are unique optimal solutions of (A.7) and (2.14),

respectively. Then, for any such convergent sequence {α̃(σ2
k)}

∞
k=1, using yT α̃(σ2

k) =

‖ It should be pointed out that (2.11) is not directly the dual of (A.7). The

dual of (A.7) reduces to (2.11) when the yT α̃ = 0 constraint is used.
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0, we have that for any x,

lim
σ2

k
→∞

w̃(σ2
k)

T φ̃(x)

= lim
σ2

k
→∞

l
∑

i=1

yiα̃(σ2
k)iφ̃(xi)

T φ̃(x)

= lim
σ2

k
→∞

l
∑

i=1

yiα̃(σ2
k)i

(

σ2
k − ‖xi‖

2/2 + xT
i x − ‖x‖2/2

)

= lim
σ2

k
→∞

l
∑

i=1

yiα̃(σ2
k)i

(

−‖xi‖
2/2 + xT

i x
)

(A.9)

=
l

∑

i=1

yiα̃ix
T
i x + d(α̃) = w̃T x + d(α̃), (A.10)

where (A.9) follows from (2.8) and yT α̃(σ2
k) = 0 and d(α̃) ≡ −

∑l
i=1 yiα̃‖xi‖

2/2.

By a similar way we can prove

lim
σ2

k
→∞

w̃(σ2
k)

T w̃(σ2
k)

= lim
σ2

k
→∞

l
∑

i=1

l
∑

j=1

α̃(σ2
k)iα̃(σ2

k)jyiyjφ̃(xi)
T φ̃(xj)

=
l

∑

i=1

l
∑

j=1

α̃(σ2
k)iα̃(σ2

k)jyiyjx
T
i xj = w̃T w̃. (A.11)

Note that (A.11) follows from the discussion between (2.8) and (2.11). The last

equality is via w̃ =
∑l

i=1 α̃oxi as w̃ is the optimal solution of (2.11).

Next we consider that (w̃, b̃) is the unique optimal solution of (2.14). The

constraints of (A.7) imply that

max
yi=1

{1 − w̃(σ2)T φ̃(xi) − ξ̃(σ2)i} ≤ b̃(σ2) ≤ max
yi=−1

{−1 − w̃(σ2)T φ̃(xi) + ξ̃(σ2)i}.

Note that the primal-dual optimality condition implies

0 ≤ ξ̃(σ2)i ≤
l

∑

i=1

ξ̃(σ2)i ≤
eT α̃(σ2)

C̃
≤ l.

With (A.9) and the assumption l1 ≥ 1 and l2 ≥ 1, after σ2 is large enough, b̃(σ2) is

in a bounded region. When (w̃(σ2), b̃(σ2)) is optimal for (A.7), the optimal ξ̃(σ2)

is

ξ̃(σ2)i ≡ max(0, 1 − yi(w̃(σ2)T φ̃(xi) + b̃(σ2))).
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For any convergent sequence b̃(σ2
k) → b∗ with σ2

k → ∞, we can further have

a subsequence such that {α̃(σ2
k)} converges. Thus, we can consider any such

sequence with both properties. Then, (A.10) implies

ξ̃(σ2
k)i → ξ∗i = max(0, 1 − yi(w̃

T xi + d(α̃) + b∗)). (A.12)

Hence, (w̃, b∗ + d(α̃), ξ∗) is feasible for (2.14). By defining

ξ̄(σ2
k)i ≡ max(0, 1 − yi(w̃(σ2

k)
T φ̃(xi) − d(α̃) + b̃)),

(w̃(σ2
k), b̃ − d(α̃), ξ̄(σ2

k)) is feasible for (A.7). In addition, using (A.10),

ξ̃ ≡ lim
σ2

k
→∞

ξ̄(σ2
k) = max(0, 1 − yi(w̃

T xi + b̃)), (A.13)

so (w̃, b̃, ξ̃) is optimal for (2.14). Thus,

1

2
w̃T w̃ + C̃

l
∑

i=1

ξ̃i ≤
1

2
w̃T w̃ + C̃

l
∑

i=1

ξ∗i , and

1

2
w̃(σ2

k)
T w̃(σ2

k) + C̃
l

∑

i=1

ξ̃(σ2
k)i ≤

1

2
w̃(σ2

k)
T w̃(σ2

k) + C̃
l

∑

i=1

ξ̄(σ2
k)i. (A.14)

With (A.11), (A.12), and (A.13), taking the limit (A.14) becomes

1

2
w̃T w̃ + C̃

l
∑

i=1

ξ∗i ≤
1

2
w̃T w̃ + C̃

l
∑

i=1

ξ̃i.

Therefore, we have that (w̃, b∗ + d(α̃), ξ∗) is optimal for (2.14). Since b̃ is unique

by assumption,

b∗ + d(α̃) = b̃. (A.15)

Now we are ready to prove the main result (2.15). If it is wrong, there is ǫ > 0

and a sequence {w̃(σ2
k)} with σ2

k → ∞ such that

|w̃(σ2
k)

T φ̃(x) + b(σ2
k) − w̃T x − b̃| ≥ ǫ,∀k. (A.16)

Since we can find an infinite subset K such that limk∈K,σ2

k
→∞ b̃(σ2

k) = b∗ and (A.10)

holds, with b(σ2) = b̃(σ2) from (A.8), the above analysis (i.e., (A.10) and (A.15))

shows that

lim
k∈K,σ2

k
→∞

w(σ2
k)

T φ(x) + b(σ2
k)

= w̃T x + d(α̃) + b̃ − d(α̃)

= w̃T x + b̃.
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This contradicts (A.16) so (2.15) is valid.

Therefore, if w̃T x + b̃ 6= 0, after σ2 is sufficiently large,

sgn(w(σ2)T φ(x) + b(σ2)) = sgn(w̃T x + b̃).

A.4 Proof of Theorem 3

Let α1 be a feasible vector of (1.2) for C = C1 and α2 be a feasible vector of (1.2)

for C = C2. We say that α1 and α2 are on the same face if the following hold:

(i) {i | 0 < α1
i < C1} = {i | 0 < α2

i < C2}; (ii) {i | α1
i = C1} = {i | α2

i = C2};

and, (iii) {i | α1
i = 0} = {i | α2

i = 0}. To prove Theorem 3 we need the following

result.

Lemma 4 If C1 < C2 and their corresponding duals have optimal solutions at

the same face, then for any C1 ≤ C ≤ C2, there is at least one optimal solution

at the same face. Furthermore, there are optimal solutions α and b of (1.2) which

form linear functions of C in [C1, C2].

Proof of Lemma 4:

If α1 and α2 are optimal solutions at the same face corresponding to C1 and

C2, then they satisfy the following KKT conditions, respectively:

Qα1 − e + b1y = λ1 − µ1, λ1
i α

1
i = 0, (C1 − α1

i )µ
1
i = 0,

Qα2 − e + b2y = λ2 − µ2, λ2
i α

2
i = 0, (C2 − α2

i )µ
2
i = 0.

Since they are at the same face,

λ2
i α

1
i = 0, λ1

i α
2
i = 0,

(C1 − α1
i )µ

2
i = 0, (C2 − α2

i )µ
1
i = 0.

(A.17)

As C1 ≤ C ≤ C2, we can have 0 ≤ τ ≤ 1 such that

C = τC1 + (1 − τ)C2. (A.18)

Let

α ≡ τα1 + (1 − τ)α2, λ ≡ τλ1 + (1 − τ)λ2, (A.19)

µ ≡ τµ1 + (1 − τ)µ2, b ≡ τb1 + (1 − τ)b2.
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Then α, λ, µ, b satisfy the KKT condition at C:

Qα − e + by = λ − µ, λiαi = 0, (C − αi)µi = 0,

0 ≤ αi ≤ C, λi ≥ 0, µi ≥ 0, yT α = 0.

Using (A.18),

τ =
C − C2

C1 − C2

.

Putting it into (A.19), α and b are linear functions of C where C ∈ [C1, C2]. This

proves the lemma. 2

Let us now prove Theorem 3. As we already mentioned, if the points of

the two classes are linearly separable in x space then the proof of the result is

straightforward. So let us only give a proof for the case of linearly non-separable

points. Since the number of faces is finite, by Lemma 4 there exists a C∗ such

that for C ≥ C∗, there are optimal solutions at the same face. For the rest of the

proof let us only consider optimal solutions on a single face.

For any C1 > C∗, Lemma 4 implies that there are optimal solutions α and b

which form linear functions of C in the interval [C∗, C1]. Since

l
∑

i=1

ξi =
∑

i:αi=C

−[(Qα)i − 1 + byi], (A.20)

∑l
i=1 ξi is a linear function of C in this interval and can be represented as

l
∑

i=1

ξi = AC + B, (A.21)

where A and B are constants. If we consider another C2 > C1,
∑l

i=1 ξi is also a

linear function of C in [C∗, C2]. For each C, the optimal 1
2
wT w as well as

∑l
i=1 ξi

are unique. Thus, the two linear functions have the same values at more than two

points, so they are indeed identical. Therefore, (A.21) holds for any C ≥ C∗.

Since
∑l

i=1 ξi is a decreasing function of C (e.g., using techniques similar to

(Chang and Lin 2001b, Lemma 4)), A ≤ 0. However, A cannot be negative as

otherwise
∑l

i=1 ξi goes to −∞ as C increases. Hence, A = 0 and so
∑l

i=1 ξi is a

constant for C ≥ C∗.
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If (w1, b1, ξ1) and (w2, b2, ξ2) are optimal solutions at C = C1 and C2, respec-

tively, then

1

2
(w1)T w1 + C1

l
∑

i=1

ξ1
i ≤

1

2
(w2)T w2 + C1

l
∑

i=1

ξ2
i

and
1

2
(w2)T w2 + C2

l
∑

i=1

ξ2
i ≤

1

2
(w1)T w1 + C2

l
∑

i=1

ξ1
i

imply that (w1)T w1 = (w2)T w2. That is, αT Qα is a constant for C ≥ C∗.

Therefore (w2, b2, ξ2) is also feasible and optimal when C = C1. Since the

solution of w is unique (e.g., (Lin 2001, Lemma 1)), w1 = w2.

If F = {i | 0 < αi < C} 6= ∅, there is xi such that wT xi +b = yi. Hence b1 = b2

and so the decision functions as well as the loo rate are the same for C ≥ C∗.

On the other hand, if F = ∅ and we denote α(C) the solution of (1.2) at a

given C, then α(C) = (C/C∗)α(C∗) for all C ≥ C∗. As wT w = αT Qα becomes

a constant, we have w = 0 after C ≥ C∗. However, since F = ∅, the optimal b

might not be unique under the same C. For any one of such b, (w, b) is optimal

for (1.2) for all C ≥ C∗.

Finally, since wT w becomes a constant, for C ≥ C∗, the solution of (1.2) is

also a solution of

min
w,b,ξ

l
∑

i=1

ξi

subject to yi(w
T xi + b) ≥ 1 − ξi,

ξi ≥ 0, i = 1, . . . , l.

This completes the proof of Theorem 3. 2
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