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ABSTRACT
Matrix factorization is known to be an effective method for
recommender systems that are given only the ratings from
users to items. Currently, stochastic gradient descent (SGD)
is one of the most popular algorithms for matrix factoriza-
tion. However, as a sequential approach, SGD is difficult
to be parallelized for handling web-scale problems. In this
paper, we develop a fast parallel SGD method, FPSGD,
for shared memory systems. By dramatically reducing the
cache-miss rate and carefully addressing the load balance of
threads, FPSGD is more efficient than state-of-the-art par-
allel algorithms for matrix factorization.

Categories and Subject Descriptors
G.4 [Mathematics of Computing]: Mathematical Soft-
ware—Parallel and vector implementations

Keywords
Recommender system, Matrix factorization, Stochastic gra-
dient descent, Parallel computing, Shared memory algorithm

1. INTRODUCTION
Many customers are overwhelmed with the choices of prod-

ucts in the e-commerce activities. For example, Yahoo! Mu-
sic and GrooveShark provide a huge number of songs for
on-line audiences. An important problem is how to let users
efficiently find items meeting their needs. Recommender sys-
tems have been constructed for such a purpose. As demon-
strated in KDD Cup 2011 [3] and Netflix competition [1], a
collaborative filter using latent factors has been considered
as one of the best models for recommender systems. This
approach maps both users and items into a latent feature
space. A latent factor, though not directly measurable, of-
ten contains some useful abstract information. The affinity
between a user and an item is defined by the inner product of
their latent-factor vectors. More specifically, given m users,
n items, and a rating matrix R that encodes the preference
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of the uth user on the vth item at the (u,v) entry, ru,v, ma-
trix factorization [7] is a technique to find two dense factor
matrices P ∈ Rk×m and Q ∈ Rk×n such that ru,v ' pT

uqv,
where pu ∈ Rk and qv ∈ Rk are respectively the uth column
of P and the vth column of Q. The optimization problem is

min
P,Q

∑
(u,v)∈R

(ru,v − pT
uqv)2 + λP ‖pu‖2F + λQ ‖qv‖2F , (1)

where k is the pre-specified number of latent factors, ‖·‖F
is the Frobenius norm, (u, v) ∈ R indicates that rating ru,v
is available, λP and λQ are regularization coefficients for

avoiding over-fitting. Because
∑

(u,v)∈R
(
ru,v − pT

uqv

)2
is a

non-convex function of P and Q, (1) is a difficult optimiza-
tion problem. Many past studies have proposed optimiza-
tion methods to solve (1), e.g. [7] [14] [11]. Among them,
stochastic gradient descent (SGD) is popularly used. For ex-
ample, all of the top three teams in KDD Cup 2011 (track
1) employed SGD in their winning approaches.

The basic idea of SGD is that, instead of expensively cal-
culating the gradient of (1), it randomly selects a (u,v) entry
from the summation and calculates the corresponding gra-
dient [12] [6]. Once ru,v is chosen, the objective function in
(1) is reduced to(

ru,v − pT
uqv

)2
+ λPp

T
upu + λQq

T
v qv.

After calculating the sub-gradient over pu and qv, variables
are updated by the following rules

pu ← pu + γ (eu,vqv − λPpu) , (2)

qv ← qv + γ (eu,vpu − λQqv) , (3)

where

eu,v = ru,v − pT
uqv

is the error between the real and predicted ratings for the
(u,v) entry, and γ is the learning rate. The overall procedure
of SGD is to iteratively select an instance ru,v , apply update
rules (2)-(3), and may adjust the learning rate.

Although SGD has been successfully applied to matrix
factorization, it is not applicable to handle large-scale data.
The iterative process of applying (2)-(3) is inherently se-
quential, so it is difficult to parallelize SGD under advanced
architectures such as GPU, multi-core CPU or distributed
clusters. Several parallel SGD approaches have been pro-
posed (e.g., [15] [9] [8] [5] [4] [10]), although their focuses
may be on other machine learning techniques rather than
matrix factorization. In this work, we aim at developing an
effective parallel SGD method for matrix factorization in a



shared memory environment. Although for huge data a dis-
tributed system must be used, in many situations running
SGD on a data set that can fit in memory is still very time
consuming. For example, the data set of KDD Cup 2011 is
less than 4GB and can be easily stored in the memory of
one computer, but a single SGD iteration of implementing
(2)-(3) takes more than 30 seconds. The overall SGD proce-
dure can take hours. Therefore, an efficient parallel SGD to
fully take the power of multi-core CPU can be very useful
in practice.

Among existing parallel-SGD methods for matrix factor-
ization, some are directly designed or can be adapted for
shared-memory systems. We briefly discuss two state-of-the-
art methods because our method will improve upon them.
HogWild [10] randomly selects a subset of ru,v instances and
apply rules (2)-(3) in all available threads simultaneously
without synchronization between threads. The reason why
they can drop the synchronization is that their algorithm
guarantees the convergence when factorizing a highly sparse
matrix with the rare existence of the over-writing problem
where different threads access the same data or variables
such as ru,v, pu and qv at the same time. That is, one
thread is allowed to over-write another’s work. DSGD [4]
is another popular parallel SGD approach although it is
mainly designed for cluster environments. Given s compu-
tation nodes and a rating matrix R, DSGD uniformly grids
R into s by s blocks first. Then DSGD assigns s differ-
ent blocks to the s nodes. On each node, DSGD performs
(2)-(3) on all ratings of the block in a random order. As ex-
pected, DSGD can be adapted for shared-memory systems
if we replace a computational node with a thread.

In this paper, we point out that existing parallel SGD
methods may suffer from the following issues when they are
applied in a shared-memory system.
• Data discontinuity: the algorithm may randomly ac-

cess data or variables so that a high cache-miss rate is
endured.
• Block imbalance: for approaches that split data to

blocks and utilize them in parallel, cores/CPUs for
sparser blocks (i.e., a block contains fewer ratings)
must wait for those assigned to denser blocks.

Our main contribution is to design an effective method to
alleviate these issues. This paper is organized as follows. We
give details of HogWild and DSGD in Section 2, and then
Section 3 discusses difficulties in parallel SGD for matrix fac-
torization. Our proposed method is introduced in Section
4. We compare our method with state-of-the-art algorithms
using root mean square error (RMSE) as the evaluation mea-
sure in Section 5. RMSE is defined as√

1

number of ratings

∑
(u,v)∈R

(ru,v − r̂u,v)2, (4)

where R is the rating matrix of the test set and r̂u,v is the
predicted rating value. Finally, Section 6 summarizes our
work and gives future directions.

2. EXISTING PARALLELIZED STOCHAS-
TIC GRADIENT DESCENT ALGORITHMS

Following the discussion in Section 1, in this section, we
present two parallel SGD methods, HogWild [10] and DSGD
[4], in detail.

Algorithm 1 HogWild’s Algorithm

Require: number of threads s, R, P , and Q
1: for each thread i parallelly do
2: while true do
3: randomly select an instance ru,v from R
4: update corresponding pu and qv using (2)-(3),

respectively
5: end while
6: end for

Figure 1: An example shows updating sequences of two
threads in HogWild

2.1 HogWild
HogWild [10] assumes that the rating matrix is highly

sparse and deduces that for two randomly sampled ratings,
the two serial updates via (2)-(3) are likely to be indepen-
dent. The reason is that the selected ratings to be updated
almost never share the same user identity and item identity.
That is to say, iterations of SGD, (2)-(3), can be in parallel
executed in different threads. HogWild drops the synchro-
nization that prevents concurrent variable access via atomic
operations, each of which is a series of CPU instructions
that can not be interrupted. Even through the potential
over-writing may occur, they prove the convergence under
some assumptions such as the rating matrix is very sparse.

Algorithm 1 shows the whole process of HogWild. We
use Figure 1 to illustrate how two threads run SGD updates
simultaneously. The left matrix and the right matrix are
the updating sequences of two threads, where black dots are
ratings randomly selected by a thread and arrows indicate
the order of processed ratings. The red dot, which is simul-
taneously accessed by two threads in their last iterations in
Figure 1, indicates the occurrence of the over-writing prob-
lem. That is, two threads conduct SGD updates using the
same rating value ri,j . From Algorithm 1, the operations
include
• reading ri,j , pi and qj ,
• evaluating the right-hand sides of (2)-(3), and
• assigning values to the left-hand sides of (2)-(3)

The second operation does not change shared variables be-
cause it is a series of arithmetic operations on local variables
ri,j , pi and qj . However, for the first and the last operations,
we use atomic instructions that are executed without con-
sidering the situation of other threads. All available threads
would continuously execute the above-mentioned procedure
until achieving the user-defined number of iterations.

2.2 DSGD
Although SGD is a sequential process, DSGD takes the

property that some blocks of the rating matrix are mutu-
ally independent and their corresponding variables can be
updated in parallel [4]. DSGD uniformly grids the rating
matrix R into many sub-matrices (also called blocks), and



Algorithm 2 DSGD’s Algorithm

Require: number of threads s, maximum iterations T , R,
P , and Q

1: grid R into s× s blocks B and generate s patterns cov-
ering all blocks

2: for t = {1, . . . , T} do
3: Decide the order of s patterns sequentially or by ran-

dom permutation
4: for each pattern of s independent blocks of B do
5: assign s selected blocks to s threads
6: for b = {1, . . . , s} parallellly do
7: randomly sample ratings from block b
8: apply (2)-(3) on all sampled ratings
9: end for

10: end for
11: end for

Figure 2: Patterns of independent blocks for a 3 by 3 grided
matrix

applies SGD to some independent blocks simultaneously. In
the following discussion, we say two blocks are independent
to each other if they share neither any common column nor
any common row of the rating matrix. For example, in Fig-
ure 2, the six patterns of gray blocks in R cover all possible
patterns of independent blocks. Note that [4] restricts the
number of blocks in each patten to be s, the number of
available computational nodes, for reducing the data com-
munication in distributed systems; see also the explanation
below.

The overall algorithm of DSGD is shown in Algorithm 2,
where T is the maximal number of iterations. In line 2, R
is grided into s × s uniform blocks, and the intermediate
for-loop continuously assigns s independent blocks to com-
putation nodes until all blocks in R have been processed
once. The bth iteration of the innermost for-loop updates P
and Q by performing SGD on ratings in the block b. Given
a 4-by-4 divided rating matrix and 4 threads as an example
in Figure 3a, we show two consecutive iterations of the in-
nermost for-loop in Figure 3b. The left iteration assigns 4
diagonal blocks to 4 nodes (i0, i1, i2, i3); node i0 updates
p0 and q0, node i1 updates p1 and q1, and so on. In the
next (right) iteration, each node updates the same segment
of P , but for Q, q1, q2, q3 and q0 are respectively updated by
nodes i0, i1, i2 and i3. This example shows that we can keep
pk in node ik to avoid the communication of P . However,
nodes must exchange their segments of Q, which are alter-
natively updated by different nodes in different iterations.
For example, from Figure 3a to Figure 3b, node i0 must
send node i3 the segment q0 after finishing its computation.
Consequently, the total amount of data transferred in one
iteration of the intermediate loop is the size of Q because
each of s nodes sends |Q|/s and receives |Q|/s entries of Q
from another node, where |Q| is the total number of entries
in Q.
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(a) 4 by 4 grided rating matrix R and corresponding segments of P
and Q. Note that pi is the ith segment of P and qj is the jth segment
of Q.
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(b) An example of two consecutive iterations (the left is before the
right) of the innermost for-loop of Algorithm 2. Each iteration con-
siders a set of 4 independent blocks.

Figure 3: An illustration of the DSGD algorithm

3. PROBLEMS IN PARALLEL SGD METH-
ODS FOR MATRIX FACTORIZATION

In this section, we point out that parallel SGD methods
discussed in Section 2 may suffer some problems when they
are applied in a shared-memory environment. These prob-
lems are locking problem and memory discontinuity. We
introduce what these problems are, and explain how they
result in performance degradation.

3.1 Locking Problem
For a parallel algorithm, to maximize the performance,

keeping all threads busy is important. The locking problem
occurs if a thread idles because of waiting for other threads.
In DSGD, if s threads are used, then according to Algorithm
2, s independent blocks are updated in a batch. However,
if the running time for each block varies, then a thread that
finishes its job earlier may need to wait for other threads.

The locking problem may be more serious if R is un-
balanced. That is, available ratings are not uniformly dis-
tributed across all positions in R. In such a case, the thread
updating a block with fewer ratings may need to wait for
other threads. For example, in Figure 4, after all ratings in
block b1,1 have been processed, only one third of ratings in
block b0,0 have been handled. Hence the thread updating
b1,1 idles most of the time.

A simple method to make R more balanced is random
shuffling, which randomly permutes user identities and item
identities before processing. However, the amount of ratings
in each block may still not be exactly the same. Further,
even if each block contains the same amount of ratings, the
computing time of each code can still be slightly different.
Therefore, other techniques are needed to address the lock-
ing problem.

Interestingly, DSGD has a reason to ensure that s blocks
are processed before moving to the next s. As mentioned in
Section 2.2, it is designed for distributed systems, so min-
imizing the communication cost between computing nodes
may be more important than reducing the idle time of nodes.
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Figure 4: An example of the locking problem in DSGD.
Each dot represents a rating; gray blocks indicate a set of
independent blocks. Ratings in white blocks are not shown.
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Figure 5: Random method to select rating instances for up-
date.

However, in shared memory systems the locking problem be-
comes an important issue.

3.2 Memory Discontinuity
When a program accesses data in memory discontinuously,

it suffers from a high cache-miss rate and performance degra-
dation. Most SGD solvers for matrix factorization including
HogWild and DSGD randomly pick instances from R (or
from a block of R) for update. We call this setting as the
random method, which is illustrated in Figure 5. Though
the random method generally enjoys good convergence, it
suffers from the memory discontinuity seriously. The reason
is that not only are rating instances randomly accessed, but
also user/item identities become discontinuous.

The seriousness of the memory discontinuity varies in dif-
ferent methods. In HogWild, each thread randomly picks
instances among R independently, so it suffers from mem-
ory discontinuity in R, P , and Q. In contrast, for DSGD,
though ratings in a block are randomly selected, as we will
see in Section 4.2, we can easily change the update order to
mitigate the memory discontinuity.

4. OUR APPROACHES
In this paper, we propose two techniques, lock-free schedul-

ing and partial random method, to respectively solve the
locking problem mentioned in Section 3.1 and the memory
discontinuity mentioned in Section 3.2. We name the new
parallel SGD method as fast parallel SGD (FPSGD). In Sec-
tion 4.1, we discuss how FPSGD flexibly assigns blocks to
threads to avoid the locking problem. In Section 4.2, we
observe that a comprehensive random selection may not be
necessary, and show that randomization can be applied only
among blocks instead of within blocks to maintain both the
memory continuity and the fast convergence. In Section
4.3, we overview the complete design of FPSGD. Finally, in
Section 4.4, we introduce our implementation techniques to
accelerate the computation.

4.1 Lock-Free Scheduling
We follow DSGD to grid R into blocks and design a sched-

uler to keep s threads busy in running a set of independent
blocks. For a block bi,j , if it is independent from all blocks
being processed, then we call it as a free block. Otherwise,
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(a) 2 × 2 blocks
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x

x x
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0

0 1 2

(b) 3 × 3 blocks

Figure 6: An illustration of how the split of R to blocks
affects the job scheduling. T1 is the thread that is updating
block b0,0. T2 is the thread that is getting a new block from
the scheduler. Blocks with “x” are dependent on block b0,0,
so they cannot be updated by T2.

it is a non-free block. When a thread finishes processing
a block, the scheduler assigns a new block that meets the
following two criteria:

1. It is a free block.
2. Its number of past updates is the smallest among all

free blocks.
The number of updates of a block indicates how many

times it has been processed. The second criterion is applied
because we want to keep a similar number of updates for
each block. If two or more blocks meet the above two crite-
ria, then we randomly select one. Given s threads, we show
that FPSGD should grid R into at least (s + 1) × (s + 1)
blocks. Take two threads as an example. Let T1 be a thread
that is updating certain block and T2 be a thread that just
finished updating a block and is getting a new job from the
scheduler. If we grid R into 2×2 blocks shown in Figure 6a,
then T2 has only one choice: the block it just processed. A
similar situation happens when T1 gets its new job. Because
T1 and T2 always process the same block, the remaining two
blocks are never processed. In contrast, if we grid R into
3 × 3 blocks like Figure 6b, T2 has three choices: b1,1, b1,2
and b2,1, when getting a new block.

As discussed above, because we can always assign a free
block to a thread when it finishes updating the previous
one, our scheduler does not suffer from the locking problem.
However, for extremely unbalanced data sets, where most
available ratings are in certain blocks, our scheduler is un-
able to keep the number of updates in all blocks balanced.
In such a case blocks with many ratings are updated only
very few times. A simple remedy is the random shuffling
technique introduced in Section 3.1. In our experience, af-
ter random shuffling, the number of ratings in the heaviest
block is smaller than twice of the lightest block. We then
experimentally check how serious the imbalance problem is
after random shuffling. Here we define degree of imbalance
(DoI) to check the number of updates in all blocks. Let
UTM (t) and UTm(t) be the maximal and the minimal num-
bers of updates in all blocks, respectively, where t is the
iteration index. (FPSGD does not have the concept of iter-
ations. Here we call every cycle of processing (s+1)2 blocks
as an iteration.) DoI is defined as

DoI =
UTM (t)−UTm(t)

t
.

A small DoI indicates that the number of updates is similar
across all blocks. In Figure 7, we show DoI for three different
data sets. We can see that our scheduler reduces DoI to be
close to zero in just a few iterations. For details of the data
set used in Figure 7, please refer to Section 5.1.
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Figure 7: DoI on three data sets. Eight threads are used, and
R is grided into 9× 9 blocks after being randomly shuffled.

4.2 Partial Random Method
To achieve memory continuity, in contrast to the random

method, we can consider an ordered method to sequentially
select rating instances by user identities or item identities.
Figure 8 gives an example of following the order of users.
Then matrix P can be accessed continuously. Alternatively,
if we follow the order of items, then the continuous access
of Q can be achieved. For R, if the order of selecting rating
instances is fixed, we can store R into memory with the same
order to ensure its continuous access.

Although the ordered method can access data in a more
continuous manner, empirically we find that it is not very
stable. Figure 9 gives an example showing that under two
slightly different learning rates for SGD, the ordered method
can be either much faster or much slower than the random
method.

The above experiment indicates that a random access of
data/variables may be useful for the convergence. This prop-
erty has been observed in related optimization techniques.
For example, in coordinate descent methods to solve some
optimization problems, [2] shows that a random rather than
a sequential order to update variables significantly improves
the convergence speed. To compromise between data con-
tinuity and convergence speed, in FPSGD, we propose a
partial random method, which selects ratings in a block or-
derly but randomizes the selection of blocks. Although our
scheduling is close to deterministic by choosing blocks with
the smallest numbers of accesses, the randomness can be
enhanced by griding R into more blocks. Then at any time
point, some blocks have been processed by the same num-
ber of times, so the scheduler can randomly select one of
them. Figure 10 illustrates how the partial random method
works. The overall update sequence is neither user-by-user
nor item-by-item, so some randomness is achieved. Figure
11 extends the running time comparison in Figure 9 to in-
clude FPSGD. We can see that FPSGD enjoys both fast
convergence and excellent RMSE.

Some related methods have been investigated in [4], al-
though they showed that the convergence on the ordered
method in terms of training loss is worse than the random
method. Their observation is opposite to our experimental
results. A possible reason is that we consider RMSE on the
testing set while they consider the training loss.

Some subtle implementation details must be noted. We
discussed in Section 4.1 that FPSGD applies random shuf-
fling to avoid the unbalanced number of updates of each
block. However, after applying the random shuffling and
griding R in to blocks, the ratings in each block are not
sorted by user (or item) identities. To apply the partial ran-
dom method we must sort user (or item) identities before
processing each block because an ordered method is applied
within the block.

R

=

PT Q

Figure 8: Ordered method to select rating instances for up-
date.
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Figure 9: A comparison between the random method and
the ordered method using the Yahoo!Music data set. Here
one thread is used.

4.3 Overview of FPSGD
Algorithm 3 gives the overall procedure of FPSGD. It

first randomly shuffles R to avoid data imbalance as we
mentioned in Section 4.1. Then it grids R into at least
(s+1)×(s+1) blocks and sorts each block by user (or item)
identities so that the partial random method discussed in
Section 4.2 can be applied. Finally it constructs a scheduler
and launches s working threads. After the required number
of iterations is reached, it notifies the scheduler to stop all
working threads.

The pseudo code of the scheduler and each working thread
are shown in Algorithm 4 and Algorithm 5, respectively.
Each working thread continuously gets a block from the
scheduler by invoking get_job, and the scheduler returns
a block that meets criteria mentioned in Section 4.1. After
a working thread gets a new block, it processes ratings in
the block in an ordered manner (see Section 4.2). In the
end, the thread invokes put_job of the scheduler to update
the number of times that the block has been processed.

4.4 Implementation Issues
FPSGD is implemented in C++. For the data set Ya-

hoo!Music of about 250M ratings, using a typical machine
(details specified in Section 5.1), FPSGD finishes processing
all ratings once in 6 seconds and takes only about 8 minutes
to converge to a reasonable RMSE. Here we describe some
techniques employed in our implementation. First, empiri-
cally we find that using single-precision floating-point com-
putation does not suffer from numerical error accumulation.
For the data set Yahoo!Music, using single precision runs
1.1 times faster then using double precision. Second, mod-
ern CPU provides SSE instructions that can concurrently
run floating-point multiplications and additions. We apply
SSE instructions for vector inner products and additions.
For Yahoo!Music data set, the speed up is 2.4 times. Figure
12 shows the speedup after these techniques are applied in
two data sets.

5. EXPERIMENTS
In this section, we compare FPSGD with other parallel



Figure 10: An illustration of the partial random method.
Different colors indicate different threads. Each colored dot
represents the initial block of a thread.
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Figure 11: A comparison between the ordered method, the
random method, and the partial random method on the set
Yahoo!Music. One thread is used.

SGD methods mentioned in Section 2. Besides, we also
compared with CCD++ [13], which is a parallel coordi-
nate descent method for matrix factorization. It considers a
feature-wise update sequence based on coordinate descent.
At each iteration, one row of P and the corresponding row
of Q are selected for update. Their parallelization relies
on splitting the update of one row to several independent
sub-tasks. CCD++ is currently considered the best parallel
implementation in a shared-memory environment.

5.1 Settings
Data Sets: Three data sets, MovieLens,1 Netflix and Ya-

hoo!Music, are used for the experiments. For reproducibil-
ity, we consider the original training/test sets in our experi-
ments (as for MovieLens, we use Part B of the original data
set generated by the official script). Because the test set of
Yahoo!Music is not available, we consider the last four rat-
ings of each user for testing, while the remaining ratings for
training set. The statistics of each data set is in Table 1.

Platform: We use a server with two Intel Xeon E5620
2.4GHz processors and 64GB memory. There are four cores
in each processor.

Parameters: Table 1 lists the parameters used for each
data set. We let λP = λQ and follow the parameters chosen
in [13] for Netflix and Yahoo!Music. For MovieLens, we set
λP = λQ = 0.05. The learning rate is determined by an ad
hoc parameter selection. Because we focus on the running
speed rather than RMSE in this paper, we do not apply
an adaptive learning rate. From empirical experiences, the
influence of the initial value of P and Q cannot be ignored,
so we carefully set these values to be identical to [13].

In our platform, 8 physical cores are available, so we use
8 threads in all experiments. For FPSGD, Section 4 shows
that (s+1)×(s+1) blocks are already enough for s threads,

1http://www.grouplens.org/node/73

Algorithm 3 The overall procedure of FPSGD

1: randomly shuffle R
2: grid R into a set B with at least (s+ 1)× (s+ 1) blocks
3: sort each block by user (or item) identities
4: construct a scheduler
5: launch s working threads
6: wait until the total number of updates reaches a user-

defined value

Algorithm 4 Scheduler of FPSGD

1: procedure get job
2: bx = NULL
3: for all b in B do
4: if b is non-free then
5: continue
6: else if b.ut ≤ bx.ut then . ut: number of

updates
7: bx=b
8: end if
9: end for

10: return bx
11: end procedure
12: procedure put job(b)
13: b.ut = b.ut+ 1
14: end procedure

we use more blocks to ensure the randomness of blocks that
are simultaneously processed. For Yahoo!Music and Movie-
lens, R is grided into 32× 32 blocks; for Netflix, R is grided
into 16× 16 blocks because the number of items is smaller.

Evaluation: As most recommender systems do, the met-
ric adopted as our evaluation is RMSE on the test set, which
is disjoint with the training set; see Eq. (4). In addition,
the time in each figure refers to the training time.

Implementations: Among methods included for com-
parison, HogWild2 and CCD++3 are publicly available. We
reimplement HogWild under the same framework of our
FPSGD and DSGD implementations for a fairer compari-
son. In the official HogWild package, the formulation in-
cludes the average value of training ratings. After trying
different settings, the program still fails to converge. There-
fore, we present only results of our HogWild implementation
in the experiment.

5.2 Results
We first illustrate the effectiveness of our solutions for

data imbalance and memory discontinuity. Then, we com-
pare parallel matrix factorization methods including DSGD,
CCD++, HogWild and our FPSGD.

5.2.1 The effectiveness to address the locking prob-
lem

In Section 3.1, we mentioned that updating several blocks
in a batch may suffer from the locking problem if the data
is unbalanced. To verify the effectiveness of FPSGD, we
compare it with a modification where the scheduler processes
a batch of independent blocks as DSGD (Algorithm 2) does.
We call the modified algorithm as FPSGD**.

2http://hazy.cs.wisc.edu/hazy/victor/
3http://www.cs.utexas.edu/~rofuyu/libpmf/

http://www.grouplens.org/node/73
http://hazy.cs.wisc.edu/hazy/victor/
http://www.cs.utexas.edu/~rofuyu/libpmf/


Algorithm 5 Working thread of FPSGD

1: while true do
2: get a block b from scheduler->get job()
3: process elements orderly in this block
4: scheduler->put job(b)
5: end while
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Figure 12: A comparison between two implementations of
FPSGD in Netflix and Yahoo!Music. FPSGD implements
the two techniques discussed in Section 4.4, while FPSGD*
does not.

In Figure 13a, we compare the running time of FPSGD
and FPSGD** on three data sets. As we can see, FPSGD
runs much faster than FPSGD** because it does not suf-
fer from the locking problem. In Table 2, we find that
FPSGD runs 1.9 times, 1.3 times, and 1.6 times faster than
FPSGD** on MovieLens, Netflix, and Yahoo!Music, respec-
tively.
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Figure 13: (a) A comparison between FPSGD** and
FPSGD. (b) A comparison between the partial random
method and the random method. The data set from top
to bottom are: MovieLens, Netflix, and Yahoo!Music.

5.2.2 The effectiveness for discontinuous memory ac-
cess

We conduct experiments to investigate if the proposed
partial random method can not only avoid memory discon-
tinuity, but also keep good convergence.

Data Set MovieLens Netflix Yahoo!Music
m 71,567 2,649,429 1,000,990
n 65,133 17,770 624,961

#Training 9,301,274 99,072,112 252,800,275
#Test 698,780 1,408,395 4,003,960

k 40 40 100
λP 0.05 0.05 1
λQ 0.05 0.05 1
γ 0.003 0.002 0.0001

Table 1: The statistics and parameters for each data set

Data Set Method Time (s) RMSE
MovieLens FPSGD** 18.71 0.835

FPSGD 9.72 0.835
Netflix FPSGD** 116.60 0.919

FPSGD 90.37 0.919
Yahoo!Music FPSGD** 728.23 21.985

FPSGD 462.55 21.985

Table 2: A comparison between FPSGD** and FPSGD. See
Section 5.2.1 for the details of FPSGD**.

In Figure 13b, we select rating instances in each block
orderly (the partial random method) or randomly (the ran-
dom method). Both methods converge to a similar RMSE.
However, the training time of the partial random method is
obviously faster then the random method.

5.2.3 Comparison with the state-of-the-art methods
Figure 14 presents the test RMSE and training time of

various parallel matrix factorization methods.
Among the three parallel SGD methods, FPSGD is faster

than DSGD and HogWild. We believe that this result is be-
cause FPSGD is designed to effectively address issues men-
tioned in Section 3. However, we must note that for DSGD,
it is also easy to incorporate similar techniques (e.g., the
partial random method) to improve the performance.

From Figure 14, CCD++ is the fastest in the beginning,
but becomes slower than FPSGD. Because the optimization
problem of matrix factorization is non-convex and CCD++
is a more greedy setting than SGD by accurately minimiz-
ing the objective function over certain variables at each step,
we suspect that CCD++ may converge to some local min-
imum pre-maturely. On the contrary, SGD-based methods
may be able to escape from a local minimum because of the
randomness.

6. CONCLUSIONS AND FUTURE WORKS
To provide a better SGD solver for recommender systems,

we will extend our algorithm to solve variants of matrix-
factorization problems. To further reduce the cache-miss
rate, we plan to investigate non-uniform splits of the rating
matrix or other permutation methods such as Cuthill-McKee
ordering.

In conclusion, we point out some computational bottle-
necks in existing parallel SGD methods for shared-memory
systems. We propose FPSGD to address these issues and
confirm its effectiveness by experiments. The comparison
shows that FPSGD is more efficient than state-of-the-art
methods.

Based on this study, we develop the papckage LIBMF. It is
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Figure 14: A comparison among the state-of-the-art parallel
matrix factorization methods.

available at http://www.csie.ntu.edu.tw/~cjlin/libmf. Ap-
pendix A describes the formulation used in LIBMF.
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APPENDIX
A. FORMULATION USED IN LIBMF

In LIBMF, in addition to P and Q, we add user bias, item
bias, and average terms, which are useful for recommender
systems. The formulation is described in (5). Table 3 shows
the dimension and meaning of symbols in the formulation.

min
P,Q,a,b

∑
(u,v)∈R

(ru,v − pT
uqv − au − bv − avg)2

+ λP ||pu||2F + λQ||qv||2F + λa||a||2F + λb||b||2F
(5)

Symbol Dimension Meaning
m,n 1 × 1 number of users and items
k 1 × 1 number of latent dimensions
u, v 1 × 1 index indicates uth user and vth item
R m × n rating matrix
ru,v 1 × 1 (u, v)th rating of R
P k × m latent matrix
Q k × n latent matrix
pu,qv k × 1 uth column of P and vth column of Q
a m × 1 user bias vector
b n × 1 item bias vector
au, bv 1 × 1 uth element of a and vth element of b
λP , λQ 1 × 1 penalty of regularized term of P and Q
λa, λb 1 × 1 penalty of regularized term of a and b
avg 1 × 1 average rating in training data

Table 3: Symbols in (5).

http://www.csie.ntu.edu.tw/~cjlin/libmf
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