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I. Introduction

This document presents some materials not included in the paper. In Section II, we show
that the solution of subproblem (13) converges to zero. In Section III, we show that
newGLMNET has quadratic convergence if the loss function L(·) is strictly convex and
the exact Hessian is used as H in the quadratic sub-problem. In Section IV, we show that
newGLMNET terminates in finite iterations even with our shrinking. In Section V, because
of the sparsity of the model, we conduct preliminary experiments to show that some features
can be removed before L1 training to make training faster. In Section VI, we investigate the
sensitivity of newGLMNET’s adaptive inner stopping condition. Results are similar under
different ways to adjust the inner stopping condition. Section VII gives a comparison to
another method FISTA (Beck and Teboulle, 2009). The results show that newGLMNET is
more efficient than FISTA.

II. Convergence of the Solution of Subproblem (13)

For any subsequence {wkm} of {wk}, in this section, we show that if

{wkm} converges to some point and lim
m→∞

λkm‖dkm‖ = 0, (II.1)

then
lim
m→∞

‖dkm‖ = 0,

where λkm is the step size of the kmth iteration in (20). This property will be used in
Sections III and IV. The proof follows the approach of Hsieh and Dhillon (2011, Lemma 7).

If {‖dkm‖} does not converge to zero, then there is a subsequence of {dkm}, denoted by
{dks}, such that ‖dks‖ > δ for some δ > 0. Because {‖λksdks‖} also converges to zero, the
line search condition is not satisfied for step size λks/β.

f

(
wks +

λks
β

dks
)
− f(wks) > σ

λks
β

(∇L(wks)Tdks + ‖wks + dks‖1 − ‖wks‖1).

1



It can be rewritten by

L
(
wks +

λks
β dks

)
− L(wks) + ‖wks +

λks
β dks‖1 − ‖wks‖1

λks
β

> σ(∇L(wks)Tdks + ‖wks + dks‖1 − ‖wks‖1).

(II.2)

By (II.2) and the convexity of ‖ · ‖1, we have

L
(
wks +

λks
β dks

)
− L(wks)

λks
β

+ ‖wks + dks‖1 − ‖wks‖1 (II.3)

≥
L
(
wks +

λks
β dks

)
− L(wks) + ‖wks +

λks
β dks‖1 − ‖wks‖1

λks
β

> σ(∇L(wks)Tdks + ‖wks + dks‖1 − ‖wks‖1).

From Theorem 1(a) of (Tseng and Yun, 2009),

∇L(w)Tdks + ‖w + dks‖1 − ‖w‖1 ≤ −λmin‖dks‖2, (II.4)

where λmin is defined in Eq. (42) of Appendix A of the paper. We can combine (II.3) and
(II.4) to

L
(
wks +

λks
β dks

)
− L(wks)

λks
β

−∇L(wks)Tdks

> − (1− σ)(∇L(wks)Td + ‖wks + d‖ − ‖wks‖)
≥ (1− σ)λmin‖dks‖2.

By dividing both sides by ‖dks‖,

L
(
wks +

λks
β ‖d

ks‖ dks

‖dks‖

)
− L(wks)

λks
β ‖dks‖

− ∇L(wks)T
dks

‖dks‖

≥ (1− σ)λmin‖dks‖
≥ (1− σ)λminδ.

However, there exists a subsequence of {dks} such that dks/‖dks‖ converges to some point
because dks/‖dks‖ ∈ {d | ‖d‖ ≤ 1}, which is compact. Besides, {λks‖dks‖} also converges
to zero. Then the left side converges to zero in the subsequence, so there is a contradiction.
As a result, {dkm} converges to zero.

III. Quadratic Convergence of newGLMNET

In Appendix B of the paper, we showed that if the loss term L(w) is strictly convex, the
convergence rate of newGLMNET is at least linear. Note that we set H = ∇2L(w) + νI in
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(19) of the paper because ∇2L(w) may not be positive definite. If it is known beforehand
that the loss term L(w) is strictly convex, then ∇2L(w) is positive definite without the νI
term. In this section, we show that newGLMNET converges quadratically if the loss term
L(w) is strictly convex and H = ∇2L(w).1 The proof follows the approach in Hsieh et al.
(2011, Section 7.3), and we assume that
• each sub-problem is exactly solved,
• shrinking is not considered,
• L(w) is strictly convex, and
• σ in the line search (Eq. (20) of the paper) is in the (0, 0.5) interval.
To begin, we show that newGLMNET with H = ∇2L(w) still converges to the optimal

solution. We only need to show

∃λmin > 0 s.t. Hk � λminI, ∀k

still holds (Eq. (42) of the paper). Because L(w) is strictly convex and ∇2L(w) is contin-
uous,

λmin ≡ min
w∈{w|f(w)≤f(w1)}

λ(∇2L(w)) > 0 (III.1)

exists, where λ(∇2L(w)) is the smallest eigenvalue of ∇2L(w). Therefore, similar to Ap-
pendix A of the paper, newGLMNET with H = ∇2L(w) converges to the optimal solution.

Next, we divide the indices into three groups.

P = {j | ∇jL(w∗) = −1, }
Z = {j | −1 < ∇jL(w∗) < 1, }
N = {j | ∇jL(w∗) = 1, },

where w∗ is the unique optimal solution. From the optimality condition,
wj ≥ 0 if j ∈ P,
wj = 0 if j ∈ Z,
wj ≤ 0 if j ∈ N.

Therefore, it is equivalent to solving the following problem.

min
w

F (w) ≡ L(w) +
∑
j∈P

wj −
∑
j∈N

wj (III.2)

subject to wj ≥ 0 if j ∈ P
wj = 0 if j ∈ Z
wj ≤ 0 if j ∈ N

If all constraints in (III.2) are satisfied during the optimization process, then (III.2) becomes
an unconstrained problem.

min
w

F (w).

1. Note that even if ∇2L(w) is positive definite, newGLMNET only guarantees to converge at least linearly
if we use H = ∇2L(w) + νI; see Appendix B of the paper.
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Previous works (e.g., Dunn, 1980) have shown that if F (w) is strictly convex, ∇2F (w) is
Lipschitz continuous, and wk is updated by

wk+1 = arg min
w
∇F (wk)T (w −wk) +

1

2
(w −wk)∇2F (wk)(w −wk), (III.3)

then {wk} converges quadratically to w∗ for all w1 sufficient close to w∗. Because the
sub-problem of newGLMNET is exactly the same as (III.3) (if the sign of w is fixed), to
have quadratic convergence, we only need to show that newGLMNET with L1-regularized
logistic regression has the following properties.

1. F (w) is strictly convex and ∇2F (w) is Lipschitz continuous,
2. when k is large enough, the step size is always one, and
3. when k is large enough, all constraints in (III.2) are satisfied.

In the following three subsections, we will prove that the three properties hold.

III.1 Strict Convexity and Lipschitz Continuity

Because L(w) is strictly convex, F (w) is also strictly convex. Besides, for all w1 and w2,

‖∇2F (w1)−∇2F (w2)‖ = ‖XD(w1)XT −XD(w1)XT ‖
≤ ‖X‖‖XT ‖‖D(w1)−D(w2)‖
≤ ‖X‖‖XT ‖(max

i
|Dii(w1)−Dii(w2)|) (III.4)

= ‖X‖‖XT ‖
(

max
i
|∇Dii(w̃)T (w1 −w2)|

)
= ‖X‖‖XT ‖

(
max
i
|(τ̃(1− τ̃)2 − τ̃2(1− τ̃))yiw̃

T (w1 −w2)|
)

= ‖X‖‖XT ‖
(

max
i
|(τ̃(1− τ̃)(1− 2τ̃)yixi)

T (w1 −w2)|
)

≤ ‖X‖‖XT ‖
(

max
i
‖τ̃(1− τ̃)(1− 2τ̃)yixi‖‖w1 −w2‖

)
,

where τ̃ = τ(yiw̃
Tx) for some w̃ between w1 and w2, and (III.4) is from that D(w) is

diagonal. Because τ̃ is between zero and one, τ̃(1− τ̃)(1− 2τ̃) ∈ (−1, 1). Then,

‖∇2F (w1)−∇2F (w2)‖ ≤
(
‖X‖‖XT ‖max

i
‖xi‖

)
‖w1 −w2‖.

Hence, ∇2F (w) is Lipschitz continuous.

III.2 Step Size is Always One After k Large Enough

To simplify the notation, we define

d ≡ arg min
d
∇L(w)Td +

1

2
dT∇2L(w)d + ‖w + d‖ − ‖w‖,

L̃(t) ≡ L(w + td),
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and the right-hand side of the sufficient decrease condition (Eq. (20) of the paper) with
γ = 0 as

∆ ≡ ∇L(w)Td + ‖w + d‖ − ‖w‖.

Because ∇2L(w) is Lipschitz continuous, we have

L̃′′(t)− L̃′′(0) ≤ |L̃′′(t)− L̃′′(0)| = |dT (∇2L(w + td)−∇2L(w))d| ≤ tΛ‖d‖3, (III.5)

where Λ is the Lipschitz constant. Because L̃′′(0) = dT∇2L(w)d, (III.5) can be rewritten
as

L̃′′(t) ≤ dT∇2L(w)d + tΛ‖d‖3.

By integrating both sides with t, we have

L̃′(t) ≤ L̃′(0) + tdT∇2L(w)d + t2
1

2
Λ‖d‖3 = ∇L(w)Td + tdT∇2L(w)d + t2

1

2
Λ‖d‖3.

By integrating both sides again, we have

L̃(t) ≤ L̃(0) + t∇L(w)Td +
1

2
t2dT∇2L(w)d +

1

6
t3Λ‖d‖3.

Replace t with one and add the one norm term. Then we have

f(w + d) = ‖w + d‖1 + L(w + d)

≤ L̃(0) + ‖w‖1 +∇L(w)Td + ‖w + d‖1 − ‖w‖1 +
1

2
dT∇2L(w)d +

1

6
Λ‖d‖3

= f(w) + ∆ +
1

2
dT∇2L(w)d +

1

6
Λ‖d‖3.

Because d minimizes the quadratic sub-problem, for any α ∈ (0, 1),

0 ≥ q(d)− q(αd)

=

(
∇L(w)Td +

1

2
dT∇2L(w)d + ‖w + d‖1

)
−
(
α∇L(w)Td + α2 1

2
dT∇2L(w)d + ‖w + αd‖1

)
≥ (1− α)∇L(w)Td + (1− α2)

1

2
dT∇2L(w)d + ‖w + d‖1 − (α‖w + d‖1 + (1− α)‖w‖1)

= (1− α)

(
∇L(w)Td + (1 + α)

1

2
dT∇2L(w)d + ‖w + d‖1 − ‖w‖1

)
.

By taking α→ 0, we have

0 ≥ ∇L(w)Td + dT∇2L(w)d + ‖w + d‖ − ‖w‖.

Therefore,

λmin‖d‖2 ≤ dT∇2L(w)d ≤ −∇L(w)Td− ‖w + d‖+ ‖w‖ = −∆, and

f(w + d)− f(w) ≤
(

1

2
− Λ‖d‖

6λmin

)
∆.

Because d converges to zero by Section II, when k is large enough, the step size is one for
all σ < 1/2.
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III.3 Constraints can be Ignored After k Large Enough

The cases for j ∈ P , j ∈ N , and j ∈ Z are similar, so we only show the case for j ∈ Z.
Please see Hsieh et al. (2011, Lemma 11) for the case j ∈ P .

Assume there exists an infinite subsequence {wst} such that wstj 6= 0,∀t. When t is

large enough, then wst = wst−1 + d by Section III.2, where

d = arg min
d
∇L(wst−1)Td +

1

2
dT∇2L(wst−1)d + ‖wst−1 + d‖ − ‖wst−1‖. (III.6)

Because wstj = wst−1
j + dj 6= 0 and d is the optimal solution of (III.6), we have

∇jL(wst−1) + (∇2L(wst−1)d)j = +1 or − 1.

Besides, by the convergence of {wk} and Section II, d converges to zero, so ∇jL(wst−1)
should converge to +1 or −1. This is a contradiction to the assumption that ∇jL(w∗) ∈
(−1, 1). Therefore, wkj = 0 if j ∈ Z for all k large enough.

IV. Finite Termination and Asymptotic Convergence of Algorithm 3
with Shrinking

In Appendix A of the paper, without considering shrinking, we showed that if the subprob-
lem (13) is exactly solved, then any limit point of {wk} generated by newGLMNET is an
optimal point. In this section, we show the following two results if shrinking is applied and
the subproblem is exactly solved.

1. For any given stopping tolerance εout, newGLMNET in Algorithm 3 terminates in finite
iterations.

2. Any limit point of {wk} is optimal.
We denote Jk as the working set in the kth iteration. The followings are the steps of our
proof.

1. Proof by contradiction. Assume there is a infinite sequence {wk} generated by Algo-
rithm 3.

2. {f(wk)} strictly decreases and converges to a point f̃ .
3. {wkm}, a subsequence of {wk}, converges to a point w̃, and so do {wkm−1} and
{wkm+1}.

4. Then ‖∇Sf(wkm)‖1 converges to zero, and therefore Algorithm 3 terminates in finite
iterations.

5. We can assume that wkm for all m have the same working set J .
6. w̃ is an optimal solution in terms of J .
7. ∇f(w̃) = 0, so w̃ is actually an optimal solution of the whole problem.
8. Any limit point of {wk} is an optimal point.
Under a given εout, if newGLMNET by Algorithm 3 does not stop in finite iterations,

then {f(wk)} is an infinite sequence and

‖∇SJkf(wk)‖1 > εout (IV.1)

for all k. From Theorem 1(a) of Tseng and Yun (2009), we have

f(wk+1)− f(wk) ≤ −σλkλmin‖d‖2 ≤ −σλmin‖λkd‖2,∀k, (IV.2)
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where σ and λk are defined in (20), and λmin = ν as mentioned in Eq. (42) of Appendix A
of the paper. Note that dj = 0 for j /∈ Jk because we consider shrinking now and λk > 0
because ∇L(w) is Lipschitz continuous; see Appendix A of the paper and Lemma 5(b) of
Tseng and Yun (2009). Eq. (IV.2) guarantees that {f(wk)} strictly decreases. Because
{f(wk)} is lower bounded, it converges to a value f̃ .

lim
k→∞

f(wk) = f̃ . (IV.3)

Because the level set {w | f(w) ≤ f(w1)} is bounded and closed, we can find a
subsequence of {wk} such that the subsequence {wkm} converges to w̃. Besides, with
limk→∞ f(wk+1)− f(wk) = 0, by taking the limit of (IV.2), we have

lim
m→∞

‖λkm−1d
km−1‖ = 0. (IV.4)

Further,
lim
m→∞

wkm−1 = lim
m→∞

wkm = lim
m→∞

wkm+1 = w̃ (IV.5)

because λkmd
km = wkm+1 − wkm . From the result in Section II, (IV.4) and (IV.5) then

imply
lim
m→∞

‖dkm−1‖ = 0. (IV.6)

Then we show that ‖∇Sf(wkm)‖1 converges to zero. If dkm−1
Jkm−1 ∈ R|J

km−1| is the solution

of the subproblem based on wkm−1, by the optimality of the subproblem, we have for
j ∈ Jkm−1,

∇jL(wkm−1) + (Hkm−1dkm−1)j ∈


{−1} if wkmj > 0,

{1} if wkmj < 0,

[−1, 1] if wkmj = 0,

where dkm−1
j′ = 0 for j′ /∈ Jkm−1. By changing the signs of both sides and adding ∇jL(wkm),

we have for j ∈ Jkm−1,

∇jL(wkm)−∇jL(wkm−1)− (Hkm−1dkm−1)j

∈


{∇jL(wkm) + 1} if wkmj > 0,

{∇jL(wkm)− 1} if wkmj < 0,

[∇jL(wkm)− 1,∇jL(wkm) + 1] if wkmj = 0.

(IV.7)

From the definition of the minimum-norm subgradient, (IV.7) leads

|∇Sj f(wkm)| ≤ |∇jL(wkm)−∇jL(wkm−1)− (Hkm−1dkm−1)j |. (IV.8)

The right-hand side converges to to zero because of (IV.6) and the continuity of ∇L(w).
Therefore,

lim
m→∞

|∇Sj f(wkm)| = 0,∀j ∈ Jkm−1. (IV.9)

Further, for j /∈ Jkm−1, by the way we choose the working set,

∇jL(wkm−1) ∈ [−1, 1] and wkm−1
j = 0.
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Because wkm−1
j = wkmj , we have for j /∈ Jkm−1

∇jL(wkm)−∇jL(wkm−1) ∈ [∇jL(wkm)− 1,∇jL(wkm) + 1] and wkmj = 0,

and similar to (IV.8),

|∇Sj f(wkm)| ≤ |∇jL(wkm)−∇jL(wkm−1)|.

The right-hand side also converges to zero. With (IV.9), we have ‖∇Sf(wkm)‖ converges to
zero, a contradiction to (IV.1). As the result, the stopping condition (29) can be satisfied
in finite iterations.

Next, we show that w̃ is actually an optimal solution. Because of the finite (i.e., 2n)
possible working sets, one set must appear infinite times. As a result, we can assume all
{wkm} have the same working set J . If not, we can take a subsequence of {wkm} again to
remove the elements with different working sets. By the way of finding the working set J ,
we have

wkmj = dj = 0 and ∇Sj f(wkm) = 0, for all j /∈ J. (IV.10)

Assume w̃ is not an optimal solution (in terms of J). If we construct a subproblem
based on w̃, Tseng and Yun (2009, Lemma 2) show that the optimal solution ‖d̃‖ 6= 0.
Further, from (IV.2), we get

f(w̃ + λ̃d̃) < f(w̃), (IV.11)

where λ̃ is the step size obtained by linear search. Besides, for any wkm , we have

f(wkm + λ̃d̃) ≥ f(wkm+1). (IV.12)

Because f(w) is continuous, taking the limit of (IV.12) implies

f(w̃ + λ̃d̃) = lim
m→∞

f(wkm + λ̃d̃) ≥ lim
m→∞

f(wkm+1) = f(w̃), (IV.13)

which is a contradiction to (IV.11). Therefore, w̃ is an optimal solution (in terms of J).

We have shown that w̃ is optimal in terms of the working set J , so

∇SJf(w̃) = 0. (IV.14)

For j /∈ J , because wkmj = 0 are constant for all m,

|∇Sj f(wkm)| = max(0,∇jL(wkm)− 1).

Besides, ∇jL(wkm) is continuous, so max(0,∇jL(wkm) − 1) is continuous. Therefore, by
(IV.10), for j /∈ J ,

0 = lim
m→∞

|∇Sj f(wkm)|

= lim
m→∞

max(0,∇jL(wkm)− 1)

= max(0,∇jL(w̃)− 1) = |∇Sj f(w̃)|. (IV.15)
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By (IV.14) and (IV.15), we obtain

‖∇Sf(w̃)‖ = 0.

Therefore, w̃ is an optimal solution of the whole problem (1).
Finally, we prove that any limit point of {wk} is optimal. From (IV.3) and the result

that {wkm} converges to an optimal solution, {f(wkm)} globally converges to the optimal
function value f∗. Because f(w) is continuous, any limit point of {wk} has the function
value f∗. Thus, the proof is complete.

V. Rules for Feature Elimination

In Section 5.3, we describe our shrinking scheme for removing features in solving L1-
regularized problems. Some recent works such as El Ghaoui et al. (2010); Tibshirani et al.
(2011) proposed rules to cheaply eliminate features prior to the L1 training. We refer to
these rules as screening methods. Different from shrinking, which couples with a learning
algorithm, screening can be viewed as a data preprocessing step. The screening methods
identify some features corresponding to w∗j = 0 in the final model. By (safely) pruning those
features, the size of a training data set can be reduced. Further, these screening methods
are independent of optimization methods to solve (1).

Because screening methods aim to quickly identify some zero elements without solving
the optimization problem, the effectiveness may be limited. In the following experiments, we
investigate how GLMNET (or newGLMNET) may benefit from a screening method. Instead
of applying a specific screening method, we consider the best situation where all indices
with w∗j = 0 can be identified. Because such an ideal screening method is not available, we
run an L1 solver first on the original data set to identify all zero elements of w∗.

We conduct the running time comparison between GLMNET and newGLMNET on “the
screened data sets.” All other experimental settings are the same as those described in
Section 6. Results in Figure 1 indicate that the running time of GLMNET and newGLMNET
on the screen sets of news20 and gisette is significantly reduced. However, on the two larger
sets rcv1 and yahoo-korea, the running time is similar with/without the screening procedure.
The reason might be that the shrinking procedure in GLMNET and newGLMNET is very
effective to remove some features.

The preliminary experiments here show that the pre-processing step of pruning some
zero elements can possibly improve the training speed of GLMNET and newGLMNET on
some data sets.

VI. Update Rules for the Inner Stopping Tolerance εin

In the paper, the inner stopping condition (28) is updated by

εin ← εin/4

if the CD procedure exits after one iteration. To see if newGLMNET is sensitive to the
reduction ratio, in Figures 2 and 3 we respectively show function-value reduction and accu-
racy of using εin/2, εin/4, and εin/10. Results are very similar, although the update by εin/2
is slightly worse. One possible reason is that the sub-problem is loosely solved and more
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(a) news20 (b) gisette

(c) rcv1 (d) yahoo-korea

Figure 1: Running time comparisons between GLMNET and newGLMNET on the ideally
screened data sets (i.e., features with w∗j = 0 are removed before training). The legend GLM-
NET0 and newGLMNET0 are used, respectively, to indicate the curves of running GLMNET
and newGLMNET on the original data for reference.

iterations are needed to achieve similar function values of using εin/4 or εin/10. Therefore,
a large number of gradient evaluations of the loss function causes longer running time.

VII. Comparison between newGLMNET and FISTA

We conducted experiment to compare FISTA and newGLMNET for solving L1-regularized
logistic regression (1). To have a simple comparison, we do not consider shrinking. The
Lipschitz constant of logistic loss is C‖XT ‖‖X‖ as shown in Appendix A of the paper; see
Eqs. (39) and (41). We do not count the time of evaluating the constant when comparing
FISTA and newGLMNET.

At each iteration, FISTA finds the gradient direction, but newGLMNET finds the Newton
direction. Therefore, FISTA needs less time in each iteration. However, because of the slow
convergence speed, FISTA is overall slower than newGLMNET. Figure 4 shows the relative
function value difference versus the training time. Each point corresponds to an iteration.
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(a) KDD2010-b (b) rcv1

(c) yahoo-japan (d) yahoo-korea

(e) news20 (f) epsilon

(g) webspam (h) gisette

Figure 2: L1-regularized logistic regression: relative difference to the optimal function value
versus training time. Both x-axis and y-axis are log-scaled. We compare newGLMNET with
three update rules for inner stopping tolerance: εin ← εin/2, εin/4, and εin/10.
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(a) KDD2010-b (b) rcv1

(c) yahoo-japan (d) yahoo-korea

(e) news20 (f) epsilon

(g) webspam (h) gisette

Figure 3: L1-regularized logistic regression: testing accuracy versus training time (log-
scaled). We compare newGLMNET with three update rules for inner stopping tolerance:
εin ← εin/2, εin/4, and εin/10.
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(a) KDD2010-b (b) rcv1

(c) yahoo-japan (d) yahoo-korea

(e) news20 (f) epsilon

(g) webspam (h) gisette

Figure 4: Comparison of newGLMNET and FISTA for L1-regularized logistic regression (1).
Relative difference to the optimal function value versus training time. Both x-axis and
y-axis are log-scaled.
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We also tried to use FISTA to solve the sub-problem (13) in GLMNET or newGLMNET.
Sub-problem (13) can be considered as a L1-regularized least-square regression problem.
We show details in Appendix A of this document. In Beck and Teboulle (2009), FISTA
was applied to solve this type of problems. Because each run of newGLMNET involves
several iterations, we present only results of solving the first and the last sub-problems in
Figures 5 and 6, respectively. Each point in the figures corresponds to a FISTA iteration or
a CD cycle of newGLMNET. We can see that CD is faster than FISTA. This result seems to
be consistent with the theoretical convergence property. For CD, because (13) is strongly
convex after adding νI to the Hessian in (7), we can apply Tseng and Yun’s proof to
have linear convergence, but for FISTA, Beck and Teboulle (2009) proved only a sub-linear
convergence rate.

Appendix A. Solving Sub-problem (13) by FISTA

Sub-problem (13) minimizes qk(d), which is the second order approximation of problem (1).

qk(d) ≡

≡q̄k(d)︷ ︸︸ ︷
C

l∑
i=1

(τ(yi(w
k)Txi)− 1)yixi)

T

︸ ︷︷ ︸
≡∇L(wk)T

d +
1

2
dT (CXTDX + νI)︸ ︷︷ ︸

≡Hk

d+‖wk + d‖1 − ‖wk‖1.

(A.1)
Eq. (16) is the gradient of q̄k(w

k) in each direction, and the they can be rewritten as

∇q̄k(d) ≡ L(wk) +Hkd. (A.2)

Minimizing Eq. (A.1) is actually a least squares problem because H is symmetric positive
definite matrix and therefore can be decomposed to ATA for some nonsingular matrix A.
So Eq. (A.1) is equal to

1

2
(Ad +A−T∇L(wk))2 + ‖wk + d‖1 + constant.

Given any point d̂, FISTA minimizes the second order approximation of q̄k(d) plus the
regularization term

Q(d̂,d) ≡ q̄k(d̂) +∇q̄k(d̂)T (d− d̂) +
Λ

2
‖d− d̂‖22 + ‖d + wk‖1, (A.3)

where Λ is the Lipschitz constant of ∇q̄k(d). By Eq. (A.2), ‖H‖ = ‖CXTDX + νI‖ is a
Lipschitz constant. It can be further simplified to C‖XT ‖‖X‖ + ν by triangle inequality
and Appendix A.

As a separable problem, minimizing problem (A.3) has a closed-form solution similar to
Eq. (9)

dj =


d̂j − ∇j q̄k(d̂)+1

Λ if ∇j q̄k(d̂) + 1 ≤ Λ(wkj + d̂j),

d̂j − ∇j q̄k(d̂)−1
Λ if ∇j q̄k(d̂)− 1 ≥ Λ(wkj + d̂j),

−wkj otherwise.

(A.4)

The procedure of sub-problem (13) is Algorithm 1.
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(a) KDD2010-b (b) rcv1

(c) yahoo-japan (d) yahoo-korea

(e) news20 (f) epsilon

(g) webspam (h) gisette

Figure 5: Comparison of CD and FISTA for solving the first sub-problem (13). We present
relative difference to the optimal function value of the sub-problem versus training time.
Both x-axis and y-axis are log-scaled.
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(a) KDD2010-b (b) rcv1

(c) yahoo-japan (d) yahoo-korea

(e) news20 (f) epsilon

(g) webspam (h) gisette

Figure 6: Comparison of CD and FISTA for solving the last sub-problem (13). We present
relative difference to the optimal function value of the sub-problem versus training time.
Both x-axis and y-axis are log-scaled.
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Algorithm 1 FISTA algorithm for solving the inner problem.

• Given the Lipschitz constant Λ = C‖XT ‖‖X‖+ ν, t1 = 1, d0 = 0, and d̂1 = d0.
• for p = 1, 2, . . . , 1000

1. dp ← arg mindQ(d̂p,d) by (A.4).
2. if ‖∇q̄k(dp)‖1 ≤ εinner

break.
3. tp+1 ← (1 +

√
1 + 4(tp)2)/2.

4. d̂p+1 ← dp + (dp − dp−1)(tp − 1)/tp+1
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