
Supplement of “ Limited-memory Common-directions Method for Distributed
Optimization and its Application on Empirical Risk Minimization”

Ching-pei Lee∗ Po-Wei Wang† Weizhu Chen‡ Chih-Jen Lin§

I Introduction
In this document, we present more experimental results, and
detailed proofs for the theorems stated in the main paper.

II Detailed derivations for (4.37)
We show how to compute PTk uk−1 efficiently. From (2.15),
we have

ψTuk−1 = θk−1ψ
TPk−1tk−1,∀ψ ∈ Rn.

Therefore,(
PTk uk−1

)
i

=


θk−1M

k−1
i+2,:tk−1 if i < 2m− 1

θ2k−1t
T
k−1M

k−1tk−1 if i = 2m− 1

uTk−1sk−1 =
(
PTk sk−1

)
2m−1

if i = 2m

uTk−1∇f(wk) = (PTk ∇f(wk))2m−1 if i = 2m+ 1

,

For i < 2m− 1, we have

(PTk uk−1)i

= θk−1(P
T
k Pk−1tk−1)i

= θk−1M
k
i+2,:tk−1.

For i = 2m− 1, from (2.15) we have

(PTk uk−1)i

= θk−1u
T
k−1Pk−1tk−1

= θk−1t
T
k−1P

T
k−1Pk−1tk−1

= θk−1t
T
k−1M

k−1tk−1.

III Proof of Theorem 3.1
The solution of (3.16) also solves the following linear sys-
tem.

(III.1) PTk HkPkt = −PTk ∇f(wk),

∗University of Wisconsin-Madison. ching-pei@cs.wisc.edu
†Carnegie Mellon University. poweiw@cs.cmu.edu
‡Microsoft. wzchen@microsoft.com
§National Taiwan University. cjlin@csie.ntu.edu.tw

where Pk ≡ [q1, . . . , qm]. If qj satisfies (3.18), then the
right-hand side of (III.1) is not all zero, hence t 6= 0 and
Pkt 6= 0. Therefore, from (III.1), we have

−pTk∇f(wk) = (Pkt)
THkPkt ≥M2‖Pkt‖2 =M2‖pk‖2.

(III.2)

We then have from Assumption 1 and (III.2) that

f(wk + θkpk) ≤ f(wk) + θk∇f(wk)
Tpk + θ2k

ρ

2
‖pk‖2

≤ f(wk) + θk∇f(wk)
Tpk(1−

ρθk
2M2

).

From (III.2),∇f(wk)
Tpk < 0. Therefore, when

1− ρθk
2M2

≥ c1,

(2.14) is satisfied. Thus, we have that the backtracking line
search gets a step size θk such that

(III.3) θk ≥ min

(
1,

2β (1− c1)M2

ρ

)
.

Therefore, the backtracking line search procedure takes at
most min

(
0, dlogβ(2β(1− c1)(M2/ρ))e

)
steps.

IV Proof of Theorem 3.2
The j-th equation in the linear system (III.1) is

(IV.1) pTkHkqj = −∇f(wk)
Tqj .

By (3.17), (3.18), and (IV.1),

‖pk‖‖qj‖ ≥ |
1

M1
(pk)

THkqj |

= | 1
M1
∇f(wk)

Tqj | ≥ ‖∇f(wk)‖‖qj‖
δ

M1
.

Therefore,

(IV.2) ‖pk‖ ≥
δ

M1
‖∇f(wk)‖.

Combining (III.2) and (IV.2), we can establish the fol-
lowing result.

− pTk∇f(wk)

‖pk‖‖∇f(wk)‖
≥ M2‖pk‖2

‖pk‖‖∇f(wk)‖
≥ δM2

M1
.

ching-pei@cs.wisc.edu
poweiw@cs.cmu.edu
wzchen@microsoft.com
cjlin@csie.ntu.edu.tw


Now to show the convergence, by (2.14), (III.2), and
(IV.2), we have

f(wk+1) ≤ f(wk) + θkc1∇f(wk)
Tpk

≤ f(wk)−
M2δ

2θkc1
M2

1

‖∇f(wk)‖2.

From (III.3), we can replace θk in the above result with some
positive constant κ and get

(IV.3) f(wk+1) ≤ f(wk)−
M2δ

2κc1
M2

1

‖∇f(wk)‖2.

Thus, summing (IV.3) from w0 to wk, we get

k∑
j=0

M2δ
2κc1

M2
1

‖∇f(wj)‖2 ≤ f(w0)− f(wk+1)(IV.4)

≤ f(w0)− f∗,

where f∗ is the minimal objective value of f . Consequently,

min
0≤j≤k

‖∇f(wj)‖2 ≤
1

k + 1

k∑
j=0

‖∇f(wj)‖2

≤ 1

k + 1

M2
1

M2δ2κc1
(f(w0)− f∗)

and (3.19) follows. Note that since

k∑
j=0

‖∇f(wj)‖2

is bounded, we have that ‖∇f(wk)‖ converges to zero as k
approaches infinity.

Now consider that f satisfies (3.20). Deducting f∗ from
both sides of (IV.3) and combining it with (3.20), we get for
all k

(IV.5) f(wk+1)− f∗ ≤ (1− 2σM2δ
2κc1

M2
1

)(f(wk)− f∗),

and thus to get f(wk) − f∗ ≤ ε, it takes O(log(1/ε))
iterations. Note that our assumptions give c1 > 0, and
σM2/M

2
1 > 0. Therefore the coefficient in the right-hand

side of (IV.5) is smaller than 1.

V Proof of Corollary 3.1
We note that in Algorithm 1, because the gradient itself is
included in the directions, (3.18) is satisfied with δ = 1.
Moreover, (3.17) is satisfied by (M1,M2) = (ρ, σ) from
Assumption 1 and the strong convexity. Thus from (III.3),

θk ≥ min

(
1,

2β (1− c1)σ
ρ

)
≥ β(1− c1)σ

ρ
.

Note that in the second inequality, we utilized the fact that
β, 1 − c1, σ/ρ ∈ [0, 1]. Therefore, the backtracking line
search procedure takes at most dlogβ(β(1 − c1)(σ/ρ))e
steps, and we can take

(V.1) κ =
β(1− c1)σ

ρ
.

Now to show the linear convergence, the Polyak-
Łojasiewicz condition (3.20) holds with σ from the strong
convexity by [1, Theorem 2.1.10] and noting that∇f(w∗) =
0. Therefore, by (V.1), (IV.5) becomes

f(wk+1)− f∗ ≤ (1− 2βc1(1− c1)σ3

ρ3
)(f(wk)− f∗),

and the required iterations to reach an ε-accurate solution is
therefore

k ≥
log (f (w0)− f∗) + log

(
1
ε

)
log
(
1/
(
1− 2βc1(1−c1)σ3

ρ3

)) .
VI Convergence for Regularized Neural Networks
In this section, we show that the framework discussed in
Section 3 applies to the algorithm for the L2-regularized
nonconvex neural network problem considered in [2], with
a minor condition in solving the linear system below in
(VI.3), and therefore the result of Theorem 3.2 provides a
convergence rate guarantee for their algorithm.

The neural network problem considered in [2] is of the
following form.

(VI.1) min
θ

g(θ) ≡ 1

2
‖θ‖2 + C

l∑
i=1

ξ(θ;xi, yi),

where θ is the collection of all weights between two adjacent
layers of the neural network denoted as a vector, C > 0
is a parameter specified by users, {(yi,xi)}, i = 1, . . . , l
are the training instances, and ξ is nonnegative and twice
continuously differentiable with respect to θ. Therefore, g is
twice differentiable. Because ξ is nonnegative and a descent
method is used, given any initial point θ0, the sequence of
points generated by their algorithm is confined in the level
set

(VI.2) {θ | 1
2
‖θ‖2 ≤ 1

2
‖θ0‖2 + C

l∑
i=1

ξ(θ0;xi, yi)},

which is compact. Therefore, as a continuous function,
‖∇2g(θ)‖ is upper-bounded in this compact set, which is
equivalent to that the ‖∇g(θ1) − ∇g(θ2)‖/‖θ1 − θ2‖ is
upper bounded by some finite value. Thus Assumption 1
is satisfied.



(a) criteo (b) kdd2012.tr (c) url (d) KDD2010-b

(e) epsilon (f) webspam (g) news20 (h) rcv1t

Figure (I): Comparison of different algorithms with C = 10−3. We show training time v.s. relative difference to the optimal
function value. The horizontal lines indicate when the algorithm is terminated in practice by marking the stopping condition
of TRON in MPI-LIBLINEAR: ‖∇f(w)‖ ≤ εmin(#yi=1,#yi=−1)

l ‖∇f(0)‖, with ε = 10−2 (default), 10−3, and 10−4.

Recall from (2.2) that [2] combines two directions dk
and pSN

k−1, where dk is the stochastic Newton direction at
the current iterate θk. We will show that the direction dk
satisfies (3.18). The linear system solved in [2] to obtain dk
is

(VI.3) (GSk
+ λkI)dk = −∇f(θk),

where Sk is a random subset of instances, GSk
is a sub-

sampled Gauss-Newton matrix corresponding to Sk at θk,
λk > 0 is a damping factor, and I is the identity matrix.
The needed condition here is that λk is upper- and lower-
bounded by some positive constants. If λk ≥ λ > 0 always
holds, then with the positive semi-definiteness of GSk

, we
see that

(VI.4) − dTk∇f(θk) = d
T
k (GSk

+ λkI)dk ≥ λ‖dk‖2.

On the other hand, because θk is in the compact set (VI.2)
and GSk

is a continuous function of θk under a fixed Sk, if
λk is upper bounded, since there are only finite choices of
Sk as a subset of a finite set, there exists γ > 0 such that

(VI.5) ‖dk‖ = ‖(GSk
+ λkI)

−1∇f(θk)‖ ≥ γ‖∇f(θk)‖.

From (VI.4) and (VI.5),∣∣∣dTk∇f(θk)∣∣∣ ≥ λ‖dk‖2 ≥ λγ‖dk‖‖∇f(θk)‖,
and hence (3.18) holds. Therefore all conditions of Theorem
3.2 are satisfied. Because the iterates lie in a compact set,
there are convergent sub-sequences of the iterates, and every
limit point of the iterates is stationary by Theorem 3.2.

VII More Experiments
We present more experimental results that are not included
in the main paper in this section. We consider the same ex-
periment environment, and the same problem being solved.
We present the results using different values of C to see the
relative efficiency when the problems become more difficult
or easier. The result of C = 10−3 is shown in Figure (I),
and the result of C = 1, 000 is shown in Figure (II). For
C = 10−3, the problems are easier to solve. We observe
that L-CommDir-BFGS is faster than existing methods on
all data sets, and L-CommDir-Step outperforms state of the
art on all data sets but url, but is still competitive on url.
For C = 1, 000, L-CommDir-BFGS is the fastest on most
data sets, and the only exception is KDD2010-b, on which
L-CommDir-BFGS is slightly slower than L-CommDir-
Step, but faster than other methods. On the other hand,
L-CommDir-Step is slower than TRON on webspam but
faster than existing methods on other data sets. These results
show that our method is highly efficient by using (2.11) or
(2.12) to decide Pk. The other choice, L-CommDir-Grad, is
obviously inferior for most cases.

We also modify from TRON to obtain a line-search
truncated Newton solver to compare with our method. This
line-search truncated Newton method is denoted by NEW-
TON in the results in Figures (III)-(V). Results show that
NEWTON is consistently the fastest on criteo for all choices
of C, but L-CommDir-BFGS and L-CommDir-Step are
faster in most other cases.



(a) criteo (b) kdd2012.tr (c) url (d) KDD2010-b

(e) epsilon (f) webspam (g) news20 (h) rcv1t

Figure (II): Comparison of different algorithms with C = 1, 000. We show training time v.s. relative difference to the
optimal function value. The horizontal lines indicate when the algorithm is terminated in practice by marking the stopping
condition of TRON in MPI-LIBLINEAR: ‖∇f(w)‖ ≤ εmin(#yi=1,#yi=−1)

l ‖∇f(0)‖, with ε = 10−2 (default), 10−3, and
10−4.

(a) criteo (b) kdd2012.tr (c) url (d) KDD2010-b

(e) epsilon (f) webspam (g) news20 (h) rcv1t

Figure (III): Comparison with line-search truncated Newton with C = 10−3. We show training time v.s. relative difference
to the optimal function value. The horizontal lines indicate when the algorithm is terminated in practice by marking the
stopping condition of TRON in MPI-LIBLINEAR: ‖∇f(w)‖ ≤ εmin(#yi=1,#yi=−1)

l ‖∇f(0)‖, with ε = 10−2 (default),
10−3, and 10−4.



(a) criteo (b) kdd2012.tr (c) url (d) KDD2010-b

(e) epsilon (f) webspam (g) news20 (h) rcv1t

Figure (IV): Comparison with line-search truncated Newton with C = 1. We show training time v.s. relative difference
to the optimal function value. The horizontal lines indicate when the algorithm is terminated in practice by marking the
stopping condition of TRON in MPI-LIBLINEAR: ‖∇f(w)‖ ≤ εmin(#yi=1,#yi=−1)

l ‖∇f(0)‖, with ε = 10−2 (default),
10−3, and 10−4.

(a) criteo (b) kdd2012.tr (c) url (d) KDD2010-b

(e) epsilon (f) webspam (g) news20 (h) rcv1t

Figure (V): Comparison with line-search truncated Newton with C = 1, 000. We show training time v.s. relative difference
to the optimal function value. The horizontal lines indicate when the algorithm is terminated in practice by marking the
stopping condition of TRON in MPI-LIBLINEAR: ‖∇f(w)‖ ≤ εmin(#yi=1,#yi=−1)

l ‖∇f(0)‖, with ε = 10−2 (default),
10−3, and 10−4.



References
[1] Y. E. Nesterov. Introductory Lectures on Convex Opti-

mization: A Basic Course. Kluwer Academic Publish-
ers, 2003.

[2] C.-C. Wang, C.-H. Huang, and C.-J. Lin. Subsampled
Hessian Newton methods for supervised learning. Neu-
ral Comput., 27:1766–1795, 2015.


	Introduction
	Detailed derivations for (4.37)
	Proof of Theorem 3.1
	Proof of Theorem 3.2
	Proof of Corollary 3.1
	Convergence for Regularized Neural Networks
	More Experiments

