
Noname manuscript No.
(will be inserted by the editor)

Limited-memory Common-directions Method
for Large-scale Optimization: Convergence,
Parallelization, and Distributed Optimization

Ching-pei Lee · Po-Wei Wang ·
Chih-Jen Lin

received: date / accepted: date

Abstract In this paper, we present a limited-memory common-directions
method for smooth optimization that interpolates between first- and second-
order methods. At each iteration, a subspace of a limited dimension size is
constructed using first-order information from previous iterations, and an ef-
ficient Newton method is deployed to find an approximate minimizer within
this subspace. With properly selected subspace of dimension as small as two,
the proposed algorithm achieves the optimal convergence rates for first-order
methods while remaining a descent method, and it also possesses fast conver-
gence speed on nonconvex problems. Since the major operations of our method
are dense matrix-matrix operations, the proposed method can be efficiently
parallelized in multicore environments even for sparse problems. By wisely
utilizing historical information, our method is also communication-efficient
in distributed optimization that uses multiple machines as the Newton steps
can be calculated with little communication. Numerical study shows that our
method has superior empirical performance on real-world large-scale machine
learning problems.

Keywords Smooth optimization · Optimal method · First-order method ·
Second-order method

Ching-pei Lee
Institute of Statistical Sciences, Academia Sinica, Taipei, Taiwan
E-mail: chingpei@stat.sinica.edu.tw

Po-Wei Wang
Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA
E-mail: poweiw@cs.cmu.edu

Chih-Jen Lin
Department of Computer Science and Information Engineering, National Taiwan University,
Taipei, Taiwan
E-mail: cjlin@csie.ntu.edu.tw

2 Lee, Wang, and Lin

1 Introduction

We consider the following unconstrained smooth optimization problem.

min
w∈Rn

f (w) , (1)

where f is ρ-Lipschitz-continuously differentiable and the solution set Ω of
(1) is nonempty. We propose and study a limited-memory common-directions
method for (1). At each iteration, our method constructs a manifold or a
subspace of a limited dimension m in which we find the update direction. In
the manifold parameterized by a smooth function G, whose domain is usually
of a much smaller dimension, we may apply many efficient algorithms such as
the Newton method to find an update direction. That is, given the current w
and the manifold parameterized by a smooth function G : Rm → Rn, where
m� n, we approximately optimize

min
t∈Rm

f (w +G (t)) . (2)

This can be done through a Newton method that iteratively solves the quadratic
problem1

min
t∈Rm

∇tf
(
w +G

(
t(T)

))>
t +

1

2
t>∇2

tf
(
w +G

(
t(T)

))
t (3)

and conducts a line search, where t(T) is the iterate obtained at the T -th
Newton iteration. We call the iterations of constructing G and solving (2) the
outer iterations, and the Newton steps (3) inner iterations.

Problem (2) reduces the original optimization problem to a much lower
dimensional one and thus this subproblem can be solved efficiently in many
cases. In particular, if we assume that G is a linear function such that

G (t) = P t, ∀t ∈ Rm (4)

for some P ∈ Rn×m, then

∂G (t)

∂t>
= P,

∂2G (t)

∂t∂t>
= 0, ∀t ∈ Rm,

which reduces (3) to

min
t∈Rm

∇f
(
w +G

(
t(T)

))>
P t +

1

2
t>
(
P>∇2f

(
w +G

(
t(T)

))
P
)
t. (5)

This can be easily minimized by solving the following Newton linear system
when P>∇2f

(
w +G

(
t(T)

))
P is positive definite.

P>∇2f
(
w + P t(T)

)
P t = −P>∇f

(
w + P t(T)

)
. (6)

1 We do not assume f to be twice-differentiable, but its Lipschitz-continuous differentia-
bility ensures that it is twice-differentiable almost everywhere, and a generalized Hessian
can be used [7]. We use ∇2f to denote an arbitrary generalized Hessian, and when f is
twice-differentiable, this reduces to the Hessian.

Limited-memory Common-directions Method 3

Equivalently, each column of P is considered as a possible direction for up-
dating w, and solving the subproblem (2) finds the best linear combination of
the columns of P as the update direction. This explains the nomenclature –
each column of P is a “common direction” as they can be commonly used to
construct G in multiple outer iterations.

Notice that ∇2f
(
w +G

(
t(T)

))
P can be calculated in the cost of O(m)

gradient evaluations of f through automatic differentiation (see, for example,
[21, Chapter 8]), or in an even lower cost when the problem structure can
be utilized. Thereafter, obtaining the coefficients in (6) takes O(m2) inner
products of n-dimensional vectors. When m is small, the cost of calculating
the gradient and ∇2f

(
w +G

(
t(T)

))
P dominates, thus roughly the cost per

inner iteration is asymptotically equivalent to m iterations of gradient descent
if m is a fixed constant not affected by the problem parameters. Moreover,
in many situations when the problem possesses specific structures that can
be utilized, as described in Section 5.2, multiple inner iterations can even be
cheaper than conducting a single gradient evaluation for f , making one outer
iteration of our method cost the same as one iteration of gradient descent.

In the special case in which the column space of P is a subspace of the
space spanned by the gradients of f in the previous and current outer itera-
tions, our method can be seen as a first-order method. However, our method
is more general in allowing other possible directions, such as quasi-Newton
or stochastic Newton ones, being included. On the other hand, as Newton’s
method is applied in subspaces, our method can be considered as incorporat-
ing the curvature information as well. For example, when G(t) = ∇f(w)t, our
method with only one inner Newton step is similar to the Borwein-Barzilai
method [2] at deciding the step size of steepest descent using some spectral
information; when G includes recent update directions and the corresponding
gradient differences, our method is in spirit similar to quasi-Newton methods
in using these directions to approximate the Newton method. Therefore, it is
expected that the proposed method can enjoy advantages from both first- and
second-order methods. We will show that in theory, our method enjoys low
global iteration complexity just like (accelerated) first-order methods, while in
practice, our method converges even faster than second-order methods.

For problems with complicated structure, evaluations of the gradient, the
objective, and the Hessian may not be highly parallelizable, especially when the
data in the problem are sparse such that the bottleneck becomes memory ac-
cess. In this case, traditional batch methods do not enjoy parallelism as much
as expected. On the other hand, in the proposed limited-memory common-
directions method, the major operations of the m Hessian-vector products
and the O(m2) vector-vector inner products in constructing the left-hand side
matrix of (3) are by nature embarrassingly parallel at least up to m pro-
cessors. This means that our method can enjoy better parallelism than most
batch methods, and the vector-vector inner products can even be conducted
in a distributed manner where the P matrix is stored disjointly on multiple
machines.

4 Lee, Wang, and Lin

Another advantage of our method is in distributed optimization such that
multiple machines connected through a network are simultaneously used. For
this scenario, the communication cost, or equivalently the rounds of commu-
nication between machines to synchronize necessary information, is the usual
bottleneck. Thus, state of the art takes fast-convergent Newton-CG methods
with certain preconditioners to reduce the communication cost [13, 27, 28], but
one CG iteration takes one round of communicating an n-dimensional vector.
By adopting Newton directions in subspaces, the proposed method can ef-
fectively reduce the number of iterations and therefore the communication
rounds required to be lower than that of existing approaches. Moreover, un-
like Newton-CG approaches, with some additional computation, our method
obtains the Newton direction in a subspace by communicating only O(m2)
elements between machines. In essence, our method trades local computation
for communication, and the former is abundant in this case as we have mul-
tiple machines. Therefore, it is much more communication-efficient and hence
suitable for distributed optimization as well.

1.1 Related Work and our Contributions

Limited-memory methods have been extensively studied in the context of
quasi-Newton methods. When the initial Hessian estimate is a multiple of
the identity, it can be easily seen that quasi-Newton methods belonging to
the Broyden class find the update directions from the span of the current
and previous gradients. Therefore, they can be seen as a type of first-order
methods that finds the linear combination coefficients of the gradients using
inner products between the historical gradients and the update steps. Among
quasi-Newton methods, the limited-memory BFGS (L-BFGS) method [14] is
one of the most popular, thanks to its economical spatial and computational
costs per iteration and superior empirical convergence.

Recently, Wang et al. [26] proposed the common-directions method for
smooth and strongly convex empirical risk minimization (ERM) problems.
Their algorithm maintains the gradients up to the current iteration and finds
the update step as a linear combination of them. The combination is deter-
mined by approximately finding the best possible one through running multiple
iterations of the Newton method. The key ingredient in their algorithm is to
utilize the problem structure of ERM to efficiently compute the Hessian with
low cost. They show that by accumulating the gradients, this method pos-
sesses both the optimal global linear convergence rate for first-order methods
and local quadratic convergence from the Newton method, and empirically it
outperforms both optimal first-order methods and second-order methods on
small- and medium-scale problems. The major disadvantage of the common-
directions method is its usage of all gradients accumulated from the first iter-
ation on such that for a rather difficult problem that requires many iterations
to solve, both the storage and the subproblem solve become expensive.

Limited-memory Common-directions Method 5

In this paper, we consider a fusion between the common-directions method
and the limited-memory quasi-Newton methods to develop a limited-memory
common-directions method. In particular, instead of storing and using all gra-
dients accumulated from the first iteration on, our method uses only informa-
tion from the most recent m̂ iterations for a pre-specified value of m̂. To retain
information from the discarded gradients for possibly better convergence, we
also include the possibility of using as the common directions the momen-
tum terms or previous update steps adopted by optimal first-order methods
and limited-memory quasi-Newton methods. In comparison with our initial
presentation of the limited-memory common-directions method that focused
only on distributed optimization for a specific problem class [11], this paper
provides a more general treatment for smooth optimization with extended
theoretical analysis for optimal convergence rates, broader applicability, im-
proved algorithms, and extensive experiments. In particular, our Section 5.2
is a generalization of the algorithmic description in [11], Theorems 2 and 5 are
adapted from [11] to our more general setting, and Theorem 3 improves upon
the result in the same work, but other parts are newly developed.

Through this limited-memory setting, we obtain controllable spatial and
computational per-iteration cost, extend applicability from ERM to general
optimization problems with the help of automatic differentiation, and better
parallelize the computation. We develop convergence results using techniques
different from that in [26] because we no longer include all previous gradi-
ents in our search space. We show that the optimal linear convergence rate
for first-order methods on strongly convex problems is still attainable even
when the number of common directions at each iteration is as small as two. In
addition, we also cover the case not shown in [26] to prove that optimal con-
vergence rate of O(1/k2) for first-order methods on general convex problems
can also be obtained with two properly selected common directions (k is the
outer iteration counter in our method). Unlike other optimal methods that are
non-monotone, our method is a strictly descent one. Moreover, other optimal
methods only possess R-linear convergence on strongly convex problems, but
our method also achieves global Q-linear convergence (with a different rate).
Another contribution of this work in theory is showing that for a broad choices
of the common directions, even if (2) is solved as coarse as by only one New-
ton iteration, global sublinear convergence rates of O(1/k) on both convex
and nonconvex (to stationarity) problems, and global Q-linear convergence on
problems satisfying the Polyak- Lojasiewicz condition can be ensured.

We also discuss that our algorithm is also suitable for multicore paralleliza-
tion and distributed optimization to practically solve large-scale problems with
high efficiency, and show through numerical results that the empirical behav-
ior of the proposed algorithm is indeed suitable for these scenarios and can
outperform state of the art in multicore parallel optimization and distributed
optimization.

Empirical studies also show that our method outperforms optimal first-
order methods on a single-core setting, and state of the art methods in multi-

6 Lee, Wang, and Lin

core and distributed environments, and hence we have included the distributed
version of the proposed algorithm in the open-source package MPI-LIBLINEAR.2

1.2 Notations and Assumptions

We denote f∗ := minw f(w). Given any ε ≥ 0, we say that a point w is an ε-
accurate solution for (1) if f (w) ≤ f∗+ε. For a given set of vectors a1, . . . ,at,
span (a1, . . . ,at) denotes the subspace spanned by them. That is,

span (a1, . . . ,at) :=

{
t∑
i=1

βiai

∣∣∣∣∣βi ∈ <, i = 1, . . . , t

}
.

For any function G, Im(G) and dom(G) denote its image and effective domain,
respectively. When not specified otherwise, ‖ · ‖ signifies ‖ · ‖2. Given two
symmetric matrices A and B of the same dimension, A � B means that A−B
is positive semidefinite and A � B means A−B is positive definite. I denotes
the identity matrix, and σmin(A) the smallest eigenvalue of A. We denote the
k-th iterate by wk for all k ≥ 0.

The following is assumed throughout this work.

Assumption 1 The objective f in (1) is ρ-Lipschitz-continuously differen-
tiable for some ρ > 0. Moreover, the solution set Ω of (1) is non-empty.

We note that restricting the domain in (1) to Rn is just for the ease of
description, and our algorithm and analysis apply directly to any Euclidean
spaces.

1.3 Organization

This work is organized as follows. Section 2 describes and analyzes a version
of our algorithmic framework that achieves the optimal convergence rates for
first-order methods with a carefully selected G. A more general version is then
given in Section 3 with its convergence rates analyzed in Section 4. Discussion
in Section 5.1 studies the choice of the common directions for improving the
empirical convergence and how to utilize some special problem structures to
make our method highly efficient in Section 5.2. Numerical results are pre-
sented in Section 6 to examine the empirical performance of our method. We
further apply the proposed algorithm to parallel and distributed optimization
in Sections 7 and 8, respectively. Section 9 provides some concluding remarks.
All proofs are in the appendix.

2 http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/distributed-liblinear/.

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/distributed-liblinear/

Limited-memory Common-directions Method 7

2 Limited-memory Common-directions Method with Optimal
Convergence Rates

We start with a case in which our method can be viewed as a first-order
method, in the sense that at the k-th outer iteration,

wk ∈ w0 + span (∇f(w0), . . . ,∇f(wk−1))

for all k ≥ 0. It is known that the optimal iteration complexity for first-
order methods to reach an ε-accurate solution under Assumption 1 is O(1/

√
ε)

when f is convex (or equivalently the best convergence rate is O(1/k2)), and
O(
√
ρ/σ log(1/ε)), from an R-linear convergence rate, when f is σ-strongly

convex with σ > 0 [17, 19]. We will show that for a properly chosen G with
m as small as two, our method achieves such optimal iteration complexities if
(2) is approximately solved to enough accuracy.

We describe our method as a meta algorithm in Algorithm 1, such that
only outer iterations are considered while skipping the details of solving (2).
There are many possible algorithms to efficiently optimize (2) when G is linear
with a small dimension, and we postpone this discussion to later sections.

The choice of G can be quite arbitrary as long as it is linear, and for achiev-
ing the optimal convergence speed of first-order methods on σ-strongly convex
problems for some σ ≥ 0 (σ = 0 indicates that f is only convex), we only re-
quire that at the k-th outer iteration, Im(G) contains span (∇f(wk),vk+1 −wk),
where vk+1 is defined by{

v0 := w0,

vk+1 := 1
γk+1

((1− αk) γkvk + αkσwk − αk∇f (wk)) ,∀k ≥ 0,
(7)

with

γ0 =

{
ρ if σ = 0,

σ else,
γk+1 := (1− αk) γk + αkσ, ∀k ≥ 0, (8)

and αk being the positive solution to

ρα2
k = (1− αk) γk + αkσ. (9)

When σ > 0, equations (8) and (9) imply

γk ≡ σ, αk ≡ α :=

√
σ

ρ
, ∀k ≥ 0. (10)

When σ = 0, (8) and (9) in combination shows that

γk+1 = ρα2
k, ∀k ≥ 0. (11)

Therefore from (9),

ρα2
k+1 = γk+1 (1− αk+1) = ρα2

k(1− αk+1), ∀k ≥ 0, (12)

8 Lee, Wang, and Lin

and from the quadratic formula applied to (12) for k > 0 and to (8)-(9) for
k = 0, we have

α0 =
−1 +

√
5

2
, αk+1 =

−α2
k + αk

√
α2
k + 4

2
, ∀k ≥ 0. (13)

By induction, it is clear that αk > 0 for all k, so (10) and (11) imply that
γk+1 > 0 for all k. We can therefore see that no matter σ > 0 or σ = 0, vk in
(7) is always well-defined.

Using simple induction, we can see that

wk,vk+1 ∈ w0 + span (∇f(w0), . . . ,∇f(wk)) ,

so after including the span of vk+1−wk, our method can still be considered as
a first-order method. Notice that at the beginning of the k-th iteration, wk and
vk are already known, so we can obtain vk+1 before starting the k-th iteration
of the algorithm. For the case in which f is nonconvex, we are able to show that
min0≤T≤k ‖∇f(wT)‖2 converges to 0 at a rate of o(1/k), which is the same
speed as gradient descent and the accelerated gradient method for nonconvex
problems, as long as Im(G) includes a vector whose direction does not deviate
from the reversed gradient direction too much. Interestingly, unlike the result
for the convex cases that requires sufficient accurate subproblem solutions for
(2), this rate for stationarity can be achieved even if the subproblem is solved
very roughly, as we shall see later in Theorem 3 in Section 4.

Algorithm 1: Limited-memory Common-directions Method

Given w0 ∈ Rn for k=0,1,. . . do
Pick a positive integer m and linear function G : Rm → Rn

Approximately solve
tk ≈ arg min

t∈Rm
f(wk +G(t)) (14)

wk+1 ← wk +G(tk)
end

We prove below the optimality of Algorithm 1 in terms of the convergence
speed.

Theorem 1 Consider (1) with f σ-strongly convex for some σ ≥ 0 (σ = 0
implies that f is only convex). For any initial point w0, the following results
hold.

1. If σ > 0 and the subproblem solution for (2) at the k-th iteration generates
the next iterate wk+1 that satisfies the following conditions for all k ≥ 0,{

∇f (wk+1)
>

(vk+1 −wk+1) + σ
2 ‖vk+1 −wk+1‖2 ≥ 0,

f (wk+1) ≤ f (wk)− 1
2ρ ‖∇f (wk)‖2 ,

(15)

Limited-memory Common-directions Method 9

then Algorithm 1 generates objective values R-linearly convergent to the
optimum:

f (wk)− f∗ ≤
(

1−
√
σ

ρ

)k (σ
2
‖w0 −w∗‖2 + f (w0)− f∗

)
, (16)

and it takes O(
√
ρ/σ log(1/ε)) iterations to obtain an ε-accurate solution.

2. If σ = 0 and there exists a sequence {ψi} (not necessarily all nonnegative)
such that for all k ≥ 0,{

∇f (wk+1)
>

(vk+1 −wk+1) + ψk+1 ≥ 0,

f (wk+1) ≤ f (wk)− 1
2ρ ‖∇f (wk)‖2 ,

(17)

then the iterates generated by Algorithm 1 satisfy

f (wk)− f∗ ≤ 4

(k + 1)2

(
ρ

2
‖w0 −w∗‖2 + f (w0)− f∗ +

k−1∑
i=1

ψi
αi

)
, (18)

for all k ≥ 0 for any w∗ in the solution set. Therefore, if there exists a
constant A∞ <∞ such that

Ak :=

k∑
i=1

ψi
αi
≤ A∞, ∀k > 0, (19)

Algorithm 1 takes O(1/
√
ε) iterations to get an ε-accurate solution.

In Theorem 1, if ψk converges to zero at a rate of O(αkk
−(1+δ)) for any

δ > 0, (19) is satisfied. (We can simply set ψk = αk/(k
1+δ) for any δ > 0.)

When σ = 0, one can also replace αk defined by (9) with some simpler choices
such as αk = (q−1)/(k+q−1) with q > 2 proposed by Tseng [25]. In this case,
the optimal O(k−2) rate is still obtained, but the convergence rate requirement
of ψk can be simplified to O(k−(2+δ)) for any δ > 0. The proof is essentially
the same by noticing that in this case, instead of the equality in (12), we have

ρα2
k ≥ (1− αk) ρα2

k−1.

We then show that when G is selected properly, (15) and (17) can be met
by solving (2) approximately.

Proposition 1 Assume f is σ-strongly convex for some σ > 0. Consider (2)
at the k-th iteration with w = wk and let

ṽk+1 := vk+1 −wk. (20)

If span (∇f(wk), ṽk+1) ⊆ Im(G) and G is a linear function, then either
∇f (wk +G (t))

>
(ṽk+1 −G (t)) +

σ

2
‖ṽk+1 −G (t)‖2 ≥ 0, (21a)

f (wk +G (t)) ≤ f (wk)− 1

2ρ
‖∇f (wk)‖2 (21b)

holds for all t within some neighborhood of the solution set for (2); or either
G(t∗) = ṽk+1 or G(t∗) = −∇f(wk)/ρ is satisfied by all optimal solutions t∗.

10 Lee, Wang, and Lin

Proposition 2 Assume f is convex and σ = 0 in (7)-(9). Consider (2) at
the k-th iteration with w = wk. If span (∇f(wk), ṽk+1) ⊆ Im(G) and G is a
linear function, then given any ψk+1 > 0, either∇f (wk +G (t))

>
(ṽk+1 −G (t)) + ψk+1 ≥ 0, (22a)

f (wk +G (t)) ≤ f (wk)− 1

2ρ
‖∇f (wk)‖2 (22b)

holds for all t within some neighborhood of the solution set for (2); or there is
an optimal t∗ for (2) satisfies G(t∗) = −∇f(wk)/ρ and this t∗ satisfies (22).

Notice that (21) and (22) respectively imply (15) and (17) in the next it-
eration. The above propositions therefore imply that either any approximate
solution of (2) close enough to the solution set or some easily calculable vec-
tors satisfy the required conditions for ensuring optimal convergence rates in
Theorem 1. Thus, we can apply any convergent iterative subproblem solver to
(2) and get the condition (21) or (22) satisfied within finite iterations. More
specifically, when f is strongly convex, the minimizer is unique, and thus any
algorithm ensuring the convergence of the objective to the minimum will gen-
erate iterates that eventually reach the neighborhood satisfying (21). When f
is convex, any algorithm that produces an iterate sequence that converges to a
minimizer, such as gradient descent [4, 10], accelerated gradient [with suitable
parameters, 1, 5], randomized coordinate descent [with probability one, 23],
will be able to reach the neighborhood that satisfies (22) in finite iterations.
In fact, in our experiment in Section 6 for strongly convex f , we observe that
the condition (21) is always satisfied after one Newton step.

Including vk+1−wk in Im(G) as suggested by Propositions 1 and 2 requires
prior knowledge of the parameters σ and ρ. When these values are unknown,
one can use the line search techniques in [20] to obtain similar rates. We omit
details for this case as the analysis is very similar to that in Theorem 1.

We can also obtain a o(1/k) sublinear convergence rate for ‖∇f(wk)‖2
even if f is nonconvex, see Theorem 3 in Section 4.

3 Practical Limited-memory Common-directions Method

In this section, we discuss an efficient solver for the subproblem (2) with G
in the form (4). More specifically, we show how to apply a line-search Newton
method (5) on the subspace selected. For the subproblem, G can be decided
freely and is not limited to that suggested by Propositions 1 and 2.

We describe how one iteration of the Newton method for the subproblem
is done, and if one wants to run multiple inner iterations, it is just a repetition
of this procedure. Because dom(G) is usually of a very low dimension, we use a
full Newton step without truncation. This means that given the current iterate
w, we obtain an update direction t for the subproblem (2) through solving the
following m by m linear system constructed from (6) with t(0) = 0.

P>∇2f (w)P t = −P>∇f (w) . (23)

Limited-memory Common-directions Method 11

Computation of the coefficients in this linear system is easy. First, given P ,
we can use automatic differentiation to compute the matrix ∇2f (w)P . Then
the computation of both P>

(
∇2f (w)P

)
and P>∇f (w) is straightforward.

When the problem structure is known, we may also utilize it to get an even
lower cost in constructing the linear system, as we will discuss in Section 5.2.
The final update direction for w is then constructed as p := G(t) = P t.

Two pitfalls of directly using the p obtained above require extra care. The
first one is that when the matrix on the left-hand side of (23) is not positive
definite, it is possible that the resultant t is not a descent direction for (2)
and therefore P t may be a nondescent direction for f . To take care of this
problem, we add a sufficiently large multiple of the identity to the matrix on
the left-hand side of (23) whenever the smallest eigenvalue of it is smaller than
a given threshold τ > 0.

The second pitfall is that the full Newton’s step does not always ensure suf-
ficient objective value decrease. Therefore, to ensure convergence, we conduct
a line search procedure to find a suitable step size θ and update the iterate w
by

w ← w + θp.

Because we want to use the unit step size whenever possible in second-order
methods, we use a simple backtracking line search procedure such that given
parameters β, c1 ∈ (0, 1), we iteratively try i = 0, 1, . . . until

f
(
w + βip

)
≤ f (w) + c1β

i∇f (w)
>
p, (24)

and let θ = βi. The overall algorithm is summarized in Algorithm 2.
As a side note, there are many possible options for approximately solving

(2) and the described method of Newton steps with line search is just one of
them. For example, we can replace the matrix on the left-hand side of (23) with
any positive definite matrix and the convergence is still guaranteed, as we will
see in Section 4. We will also discuss in Section 5.2 a class of problems that we
can evaluate ∇f(G(t)) and ∇2f(G(t)) cheaply for multiple t with a fixed G,
in which case running multiple inner Newton iterations can be much cheaper
than updating G, so that running multiple Newton iterations and running a
single Newton iteration have almost the same cost per outer iteration.

3.1 Cost per Iteration

Let the cost of calculating the gradient ∇f(w) be denoted by Tgrad. By using
automatic differentiation, it takes at most O(mTgrad) to evaluate ∇2f (wk)Pk
and the total cost of forming the coefficients on the left-hand side is there-
fore O(mTgrad +m2n), where the second term is for the matrix-matrix prod-
uct. The cost for computing the right-hand side of (23) is simply O(mn) for
the matrix-vector product. The cost of computing the smallest eigenvalue of
P>k ∇2f(wk)Pk is O(m3), which is the same as inverting Hk. This cost is usu-
ally negligible in comparison to the O(m2n) cost of the matrix-matrix product.

12 Lee, Wang, and Lin

Algorithm 2: Practical Limited-memory common-directions method

Given w0,m > 0, M2 > 0, and β, c1 ∈ (0, 1). Compute ∇f(w0) and pick an initial
P0 that has no more than m columns

for k=0,1,. . . do
Compute ∇2f(wk)Pk
Compute P>k (∇2f(wk)Pk) and P>k ∇f(wk)

if σmin(P>k ∇
2f(wk)Pk) < M2 then

Hk ← (P>k ∇
2f(wk)Pk) + (M2 − σmin(P>k ∇

2f(wk)Pk))I
else

Hk ← P>k ∇
2f(wk)Pk

end

tk ← −H−1
k P>k ∇f(wk)

pk ← Pktk
∆k ← ∇f(wk)>pk
for i=0,1,. . . do

θk ← βi

if f(wk + θkpk) ≤ f(wk) + c1θk∆k then
Break

end

end
wk+1 = wk + θkpk
Compute ∇f(wk+1)
Pick some Pk+1 that has no more than m columns

end

The cost of the function value evaluation in the line search is no greater than
O(Tgrad) and usually much smaller. In addition, we will see in Section 4 that
the number of backtracking steps is bounded by a constant, and in practice
θk = 1 usually produces sufficient function decrease. Therefore, the cost per
iteration of Algorithm 2 is O(mTgrad +m2n+m3).

4 Convergence Analysis

We discuss the convergence speed of Algorithm 2. We separately discuss the
three cases in which f is nonconvex, f is convex, and f satisfies the Polyak-
 Lojasiewicz condition [9, 15, 22], respectively.

Instead of the specific matrix Hk considered in Algorithm 2, we prove
convergence rates for a more general setting in finding the update direction
pk. In particular, we consider solving

min
tk

∇f(wk)>pk +
1

2
p>k Ĥkpk

subject to pk = Pktk, (25)

where Ĥk is a given symmetric positive definite matrix such that there exist
M1 ≥M2 > 0 satisfying

M1I � Hk �M2I, ∀k. (26)

Limited-memory Common-directions Method 13

We denote the columns of Pk by

Pk = [qk1 , . . . , q
k
mk

] ∈ Rn×mk , (27)

and mk can change with k without any restriction except for mk > 0 for all k.
For the ease of description, we assume without loss of generality that Pk is

orthonormal, which can always be achieved through the Gram-Schmidt process
with cost O(m2

kn), which is no larger than the cost discussed in Section 3.1.
In this case, Algorithm 2 is a special case of the framework described here
because

P>k ∇2f(wk)Pk + aI = P>k (∇2f(wk) + aI)Pk

shows that the lower bound in (26) is satisfied automatically, and since ∇f is
ρ-Lipschitz continuous, −ρI � ∇2f � ρI and hence M1 ≤ 2ρ+M2.

The following theorems show the finite termination of the backtracking and
present the iteration complexity of our method with only minimal restrictions
on the choice of the vectors in Pk.

Theorem 2 Consider (25) for f(w) satisfying Assumption 1. If at iteration
k, ∣∣∇f(wk)>qkj

∣∣
‖∇f(wk)‖‖qkj ‖

≥ δ > 0, for some qkj in (27), (28)

and the update direction pk is the same as that defined in (25) with Hk satisfy-
ing (26), then the backtracking line search for (24) with any given β, c1 ∈ (0, 1)
terminates in finite steps, and the final step size satisfies

θk ≥ θ̄ := min

(
1,

2β (1− c1)M2

ρ

)
. (29)

The condition (28) does not require the existence of a descent direction. In-
stead, as long there is a direction whose angle with the gradient is bounded
away from being orthogonal, we can ensure that the update direction pk is a
descent one.

Now we discuss the convergence rates of the proposed algorithm. We start
with the nonconvex case.

Theorem 3 Assume f(w) satisfies Assumption 1. For an algorithm that it-
eratively solves (25) that satisfies the conditions (26) and (28) to obtain pk
and uses it as the update direction with backtracking line search to find a step
size satisfying (24), then the minimum of the norm square of the gradients

min
0≤J≤k

‖∇f(wJ)‖2

vanishes at a o(1/k) rate, and ‖∇f(wk)‖2 converges to zero.

Next, we consider the convex case.

14 Lee, Wang, and Lin

Theorem 4 Consider the same conditions in Theorem 3 and assume addi-
tionally that f is convex, and given any w0, the value

R0 := max
w:f(w)≤f(w0)

min
w∗∈Ω

‖w −w∗‖ (30)

is finite. We then have that f(wk) converges to f∗ at a global rate of O(1/k):

f (wk)− f∗ ≤ ρM2
1R

2
0

2M2
1 + ρM2δ2c1

∑k−1
T=0 θT

≤ ρM2
1R

2
0

2M2
1 + ρM2δ2c1kθ̄

. (31)

The first inequality in (31) provides the reason why we conduct line search
instead of directly applying θ̄ as the step size. Note that our assumption of
a finite R0 in (30) is weaker, in allowing an unbounded Ω, than assuming
bounded level sets. On the other hand, the stronger assumption of bounded
level set leads to a better convergence rate of o(1/k) as shown in [3, Proposition
1.3.3]. In comparison to Theorem 1, instead of (17) that requires a certain
quality of subproblem solutions, Theorem 4 uses the simple condition of a
bounded R0 for a wider applicability, and it results in a O(1/k) convergence
rate that is slower than the O(1/k2) one in Theorem 1.

Finally, we discuss the case in which linear convergence can be obtained.

Theorem 5 Consider the same assumptions in Theorem 3 and assume ad-
ditionally that f(w) satisfies the Polyak- Lojasiewicz condition [9, 15, 22] for
some σ > 0, i.e.,

‖∇f(w)‖2 ≥ 2σ(f(w)− f∗), ∀w, (32)

then the function values converge globally Q-linearly to f∗:

f(wk+1)− f∗ ≤
(

1− 2σM2δ
2θkc1

M2
1

)
(f(wk)− f∗)

≤
(

1− 2σM2δ
2θ̄c1

M2
1

)
(f(wk)− f∗) ,∀k ≥ 0,

where θ̄ is the lower-bound of the step size in (29).

Notice that (32) does not require convexity, and hence even on some nonconvex
problems, we can get linear convergence to the global optimum.

To obtain global convergence rates, we used parameters M1,M2, R0 and ρ
that are global. However, those values tend to be extreme values that barely
occur in practice, thus we often observe much better convergence rates locally.
Moreover, when the curvature information of f is properly included in Hk, we
tend to observe step sizes far away from the lower bound θ̄ and unit step size
is often accepted.

The theorems above provide convergence not only for our algorithm, but
also many others, such as the Barzilai-Borwein method [2] with a line search to
ensure sufficient objective decrease and line-search Newton methods. Similarly,
the algorithm of combining past gradients in [26] can also be treated as a
special case of our framework.

Limited-memory Common-directions Method 15

5 Implementation Details

In this section, we discuss the selection for Pk to improve the empirical per-
formance of our algorithm, and then describe a general problem class whose
structure we can utilize to make the implementation even more efficient.

5.1 Choices of the Common Directions

The convergence analysis in Section 4 only suggested that one should include
some vectors that are gradient-related. Theorem 1 and Propositions 1-2 suggest
that including the current iterate wk and a momentum vector related to vk
defined in (7) might achieve better theoretical convergence speed. However,
when we do not know ρ and σ, we are unable to calculate vk accurately.
In many accelerated first-order methods, instead of this deliberately chosen
vk, the update directions from previous iterations are used as “momentum
terms” to be combined with the current gradient to form the new update
step. Thus previous update directions and the current gradient are the most
natural choices for the common directions.

When all previous gradients from the first iteration on are included in
Pk, Wang et al. [26] show that we can even achieve asymptotic quadratic
convergence. This result suggests that the previous gradients are also good
choices to include. When we have a fixed m, how to balance the number of
previous gradients and previous update steps is a question. We observe that
for quasi-Newton methods belonging to the Broyden class, when the initial
estimate for the Hessian is a multiple of the identity, each quasi-Newton step
is a linear combination of the current gradient, the difference of the previous
gradients in the form ∇f(wi+1) − ∇f(wi), and the previous update steps;
see, for example, [21, Chapter 6]. For their limited-memory versions such as
L-BFGS [14], the same number of previous updates and previous gradients
are used together with the current gradient. As L-BFGS is quite popular in
practice, we adopt this choice to use the same number of previous steps and
gradient differences. We also take the current iterate as one column of Pk
because it is already available.

Assume m is even, now for the k-th iteration, we have chosen to use wk,
∇f(wk), and the pairs (pi,∇f(wi+1)−∇f(wi)) for i = k − 1, k − 2, . . . , k −
(m/2− 1) to form Pk. From (25), we see that when Hk in Algorithm 2 is not
damped by a multiple of identity, using pi, i = k − 1, k − 2, . . . , k − (m/2− 1)
together with wk is equivalent to using wi, i = k, k − 1, . . . , k − (m/2− 1), as
they will result in the same span and therefore the same pk. Similarly, using
the difference of the gradients is equivalent to directly using the gradients.
Therefore, our construction of Pk simplifies to

Pk =
[
wk−(m

2 −1)
,∇f

(
wk−(m

2 −1)

)
, . . . ,wk,∇f (wk)

]
. (33)

This makes the update of Pk straightforward – we just add the current iterate-
gradient pair, and then discard the oldest pair when the number of columns in

16 Lee, Wang, and Lin

Pk is larger than m. It has been shown in our preliminary report [11] that using
previous gradient differences and update steps simultaneously gives better
empirical performance than using only one of them.

Another choice is to include in Pk some approximation of the Newton
step that can be cheaply obtained to span a subspace whose distance to the
solution set might be closer. One such case is taking the diagonal entries of
the (generalized) Hessian to form the diagonal matrix D(wk), and then use
the vector D(wk)−1∇f(wk) as an approximated Newton step. In this case,
assuming m is a multiple of three, we take

Pk =

[
wk−(m

3 −1)
,∇f

(
wk−(m

3 −1)

)
, D
(
wk−(m

3 −1)

)−1
∇f

(
wk−(m

3 −1)

)
, . . . ,

wk,∇f (wk) , D (wk)
−1∇f (wk)

]
. (34)

We will compare the empirical performance of (33) and (34) in Section 6.

5.2 Problem Structure for Efficient Implementation

The part of forming the linear system (23) is the major additional cost of our
algorithm in comparison to first-order algorithms. We will show that when the
problem is of the form

f (w) = Q(w) + g
(
X>w

)
, (35)

where Q is a real and quadratic function, X = (x1, · · · ,xl) ∈ Rn×l, and g is

separable in the sense g(z) =
∑l
i=1 gi(zi), highly efficient implementation is

possible for the choices of Pk in (33) or (34). We further write Q in the form

Q(w) =
1

2
w>Aw + b>w (36)

for some symmetric matrix A ∈ Rn×n and vector b ∈ Rn. Problems of the
form (35) are widely seen in applications including machine learning and signal
processing.

The key is to note that for any k > 0, Pk and Pk+1 have overlapping
columns and only few columns are updated, and we can thus denote

Pk+1 = [V̂k,wk+1, Vk+1], (37)

where V̂k are the columns also appear in Pk and Vk+1 are the columns only
appear in Pk+1 excluding wk+1. Using this notation, our discussion below
can cover any choices of Pk as long as existing columns are reused (and the
discussion involving wk+1 can be skipped if wk+1 is not a column of Pk+1).

Throughout the iterations, we will maintain

X>Pk, X>wk, P>k APk, and P>k b, (38)

Limited-memory Common-directions Method 17

and discuss their usage and update below. We will assume that the computa-
tion of both X>v for any v ∈ Rn and X>u for any u ∈ Rl cost O(TX) for
some TX (the most common scenarios include that TX = ln when X is dense
and that TX equals the number of nonzero elements in X when X is sparse),
and similarly assume that computing Av for v ∈ Rn costs O(TA). Under As-
sumption 1, (35) is twice-differentiable almost everywhere. Its gradient and
(generalized) Hessian [16] are respectively

∇f(w) = Aw + b +Xuw, ∇2f(w) = A+XDwX
>, (39)

where Dw is a diagonal matrix, and

(Dw)i,i := ∂2gi(x
>
i w), (uw)i := ∂gi(x

>
i w), i = 1, . . . , l. (40)

The main computation at each iteration of Algorithms 1 and 2 is to con-
struct and solve the linear system (23). For problems of the form (35), if at
the k-th iteration, the iterate is wk and the linear function (4) is defined by
Pk, then the matrix on the left-hand side of (23) is

P>k ∇2f(wk)Pk = P>k APk + P>k XDwk
X>Pk. (41)

For large-scale problems, one should maintain X>Pk and calculate the second
term in (41) by (X>Pk)>Dwk

(X>Pk) instead of P>k (XDwk
X>)Pk, where the

latter requires O(n2) storage and O(n2l) computation to explicitly form the
Hessian matrix of g(X>w). Further, X>Pk does not need to be calculated
from scratch (which has an expensive O(lmn) cost) because we can take the
property that Pk and Pk−1 share most columns to efficiently update X>Pk−1
toX>Pk. We should also maintainX>wk (which is actually a column ofX>Pk
for our choice of Pk) so that the cost of computing Dwk

can be reduced from
the original O(TX) to O(l). The second term of (41) can thus be efficiently
computed in O(m2l) time, which is often even cheaper than computing the
gradient of g(X>wk) that costs O(TX).

For maintaining X>Pk, we have from (37) that

X>Pk =
[
X>V̂k−1, X

>wk, X
>Vk

]
. (42)

The term X>V̂k−1 is directly available because it is a submatrix of X>Pk−1
maintained in the (k−1)-th iteration, and X>wk is obtained from the previous
iteration in the line search procedure that we will explain later when discussing
(48). Finally, from (33) and (34), Vk in (37) has only one or two columns for
all k, so computing X>Vk and therefore maintaining XPk costs only O(TX).

Next, we consider the first term in (41) and use (37) to deduce that

P>k APk = P>k

[
AV̂k−1, Awk, AVk

]
. (43)

We compute AVk in O(TA) cost, and then P>k (AVk) costs only O(mn). To
compute P>k Awk, in addition to (38), from the previous iteration we keep
track of θk−1, tk−1, (44), and the update direction

pk−1 = Pk−1tk−1. (44)

18 Lee, Wang, and Lin

Then the following calculation is conducted.

P>k Awk = P>k A (wk−1 + θk−1Pk−1tk−1) = P>k Awk−1 + θk−1P
>
k APk−1tk−1

=

 V̂ >k−1Awk−1
w>k Awk−1(
V >k A

)
wk−1

+ θk−1


(
V̂ >k−1APk−1

)
tk−1(

w>k APk−1
)
tk−1(

V >k A
)

(Pk−1tk−1)

 , (45)

where, if possible, we use parentheses to specify the details of operations
that will be explained below. For the first row in (45), both V̂ >k−1Awk−1

and V̂ >k−1APk−1 are entries in P>k−1APk−1 maintained, and the inner prod-
uct between the latter and tk−1 costs only O(m). For the third row in (45)
that involves V >k APk−1tk−1 and V >k Awk−1, we use AVk computed above and
Pk−1tk−1 available in (44), and the remaining inner products cost only O(n).
For the second row in (45), we note that

w>k Awk−1 = (wk−1 + θk−1Pk−1tk−1)
>
Awk−1

= w>k−1Awk−1 + θk−1t
>
k−1

(
P>k−1Awk−1

)
involves two entries in P>k−1APk−1 and the computation costs only O(m) for

the inner product between tk−1 and P>k−1Awk−1, which is exactly w>k APk−1tk−1

needed in (45). Finally, P>k AV̂k−1 in (43) can be decomposed into

P>k AV̂k−1 =

 V̂ >k−1AV̂k−1w>k AV̂k−1
V >k AV̂k−1

 . (46)

The first entry is available from P>k−1APk−1, and the rest two have been cal-

culated above (w>k AV̂k−1 from the first row in (45) and V >k AV̂k−1 as entries
of P>k (AVk) in (43)), so these entries are obtained with no additional cost.
Therefore, the cost of maintaining the term P>k APk using information from
P>k−1APk−1 is O(TA +mn).

Next is the right-hand side of (23), which from (39) can be calculated by

P>k ∇f(wk) = P>k Awk + P>k b +
(
X>Pk

)>
uwk

. (47)

The cost is low because X>Pk and P>k Awk have been respectively calculated

in (42) and (45), and we only need to compute uwk
,
(
X>Pk

)>
uwk

, and P>k b.
As indicated in (38), P>k b should be maintained because we can reuse some
elements of P>k−1b and only need to calculate V >k b.3 The cost of maintaining

P>k b is thus only O(n). The calculation of uwk
is O(l) because X>wk is

obtained from the previous iteration in (48), and the part of
(
X>Pk

)>
uwk

costs only O(ml). This means that the right-hand side of (23) is not the
bottleneck.

3 The update of w>k b is similar to (48) and only costs O(m).

Limited-memory Common-directions Method 19

When we conduct line search in (24), the above calculated information
can be utilized to reduce the cost. The term ∇f(wk)>pk can be calculated
between (47) and tk with O(m) cost. All other terms are already known (the
previous objective value is maintained) so we just need to discuss how to
evaluate f(wk + βipk) with multiple values of i efficiently. For g(X>w), we
can use X>Pk obtained in (42) to calculate (X>Pk)tk in O(lm) time. Thus

X>wk + βi
(
X>Pk

)
tk (48)

for each i can be obtained in O(l) time. Therefore, for each i, g(X>(w+βip))
can be evaluated in O(l) time as well. For the quadratic part, we see that(

wk + βiPktk
)>
A
(
wk + βiPktk

)
= w>k Awk + 2βiw>k APktk + β2it>k

(
P>k APk

)
tk.

(49)

As P>k APk is maintained, w>k Awk is one of its elements, and w>k APktk−1 has
been calculated in (45), we just need O(m2) overhead for the last term. Then
each line search step costs only O(1) on this part. Note that the sum in (48)
with the final βi accepted will be X>wk+1 needed for the next iteration; see
(38). The new function value f(wk+1) is also obtained.

Interestingly, the line search procedure via (48) and (49) does not generate
the next iterate wk+1. Thus, in the end of the iteration we calculate the update
direction

pk = Pktk, (50)

which as shown in (44) and (45) will be used in the next iteration, and finally
obtain

wk+1 = wk + θkpk. (51)

We summarize in Algorithm 3 how we maintain additional information to
make the implementation for (35) more efficient and show the corresponding
cost of each computational step.

The problem structure (35) also allows us to conduct multiple inner iter-
ations with a cost much lower than parts other than solving the subproblem
in an outer iteration, including updating Pk and calculating the full gradient.
We explain that as long as Pk remain unchanged, the coefficients in the New-
ton linear systems can be evaluated quickly. From (6), (40), and (41), if w is
changed in an inner iteration, all we need to calculate for updating the coeffi-
cients in the Newton linear system are Dw and (X>Pk)>Dw(X>Pk) for the
matrix, and uw, (P>k A)w, (X>Pk)>uw for P>k ∇f(w). For the data-related
part g(z) with z = X>w, the objective value, uw, and Dw can all be quickly
calculated in O(l) time through z that is maintained by (48). Notice that in
this case, the column of wk in (37) is the iterate from the latest outer iteration,
but not the latest iterate from the inner iteration (so are other columns in Pk
such as ∇f(wk)), so the update of w and z are disentangled from the update
of Pk, where the former two change every inner iteration but the last one is
updated every outer iteration. Thus, when Pk and therefore X>Pk remains
unchanged, we can compute (X>Pk)>Dw(X>Pk) in O(lm2) time. For (47),

20 Lee, Wang, and Lin

Algorithm 3: Efficient implementation of Algorithm 2 for (35).

Given w0 ∈ Rn and matrices A and X such that computing Av and X>v respectively
cost O(TA) and O(TX)

Compute X>w0, Aw0, and f(w0)
for k=0,1,. . . do

Use X>wk to compute ∇f(wk) by (39) . O(TX + TA + n+ l)
Update Pk in the form (37)
Compute X>Pk (using X>Pk−1, tk−1 and θk−1 if k > 0)

– X>V̂k−1 . O(1)

– X>wk is available from (48) . O(1)

– X>Vk . O(TX)*

Compute P>k APk (through (43) using P>k−1APk−1, tk−1 and θk−1 if k > 0)

– AVk and then P>k (AVk) . O(TA +mn)*

– P>k Awk by (45) . O(m+ n)

– P>k AV̂k−1 by (46) . O(1)

Compute P>k b (using tk−1, θk−1 and P>k−1b if k > 0) . O(n)

Use X>wk to calculate (40)
Construct the linear system (23) by (41) and (47) . O(m2l + n)

Solve the system (23) for tk . O(m3)

Compute t>k (P>k APk)tk and (X>Pk)tk respectively for (49) and (48) . O(l+m2)
Conduct backtracking line search to find θk that satisfies (24) using (49) and (48)

and record f(wk+1)
Compute pk by (50) and wk+1 by (51) . O(mn)

end

*Note that Vk constructed by (33) or (34) has at most 2 columns, so the cost of X>Vk and
AVk are indeed O(TX) and O(TA).

from (45), P>k Aw can be updated with O(m+n) cost, and with both uw and
X>Pk available, (X>Pk)>uw costs only O(lm) to compute. Thus construct-
ing and solving the linear system can be much cheaper than, for example,
calculating X>Vk when Pk is updated in an outer iteration. We have therefore
explained why (35) allows us to solve (2) with multiple inner Newton itera-
tions efficiently. For updating (38) after one outer iteration, we accumulate the
values of t in all inner iterations within the same outer iteration to conduct
the updates in the manner discussed above.

5.2.1 Summary of Cost Analysis

We summarize the cost of the major steps in Algorithm 3 in Table 1. In total,
the computational cost per iteration is

O
(
TX + TA +m2l + l ×# (line search steps) +mn+m3

)
, (52)

and the number of line search steps is upper-bounded by a constant according
to Theorem 2 while in practice we observe that unit step size is often accepted.
In general, m tends to a small constant such that O(m3) = O(1) and the
dominant term is often TX + TA + m2l. For example, if A and X are both

Limited-memory Common-directions Method 21

Step Cost
Compute ∇f(wk) using Awk and X>wk O(TX + TA + n+ l)
X>Pk O(TX)
P>k APk O(TA +mn)
P>k b O(n)
(40) O(l)
Compute (41) and (47) O(m2l + n)
Solve (23) O(m3)
Line search O(l +m2 + l ×#(line search steps))
Compute pk and wk+1 O(mn)

Table 1: Summarization of the cost of the major computational steps of Algorithm 3.

dense, TX + TA = O(ln). When m and the number of backtracking steps are
not large, the last three terms in (52) are clearly dominated by TX+TA. If X or
A are sparse, unless the matrix is highly sparse such that each row or column
has a small number of non-zeros, the dominant term is still TX + TA +m2l.

In comparison with the general cost analysis given in Section 3.1, from (39)
and (40), we note that TX+TA is exactly Tgrad (assuming l+n = O(TX+TA) as
argued above). Therefore, while the plain implementation involvesm(TX+TA),
Algorithm 3 by utilizing the problem structure requires only two to three (Tx+
TA), as can be seen from (52). As TX + TA is usually dominant, the efficient
implementation described above can indeed lead to significant improvement
in the computational cost.

6 Numerical Experiments

We present numerical results of Algorithms 1 and 2 running with a single
core of a machine with 16GB memory. Code for reproducing our results in
this section and Sections 7-8 is available at https://www.csie.ntu.edu.tw/

~cjlin/papers/l-commdir/l-commdir-journal-exp.tar.gz.
Throughout the experiments, we consider `2-regularized logistic regression

and `2-regularized squared-hinge loss SVM problems, which are of the forms

min
w

1

2
‖w‖2 + C

l∑
i=1

log
(
1 + exp

(
yiw

>xi
))
, and (53)

min
w

1

2
‖w‖2 + C

l∑
i=1

max
{

1− yiw>xi, 0
}2
, (54)

respectively, where C > 0 is a pre-specified parameter, xi, i = 1, . . . , l are the
feature vectors of the training data with corresponding labels yi ∈ {−1, 1}.
Notice that both problems are of the form (35), with A = I and b = 0 in the
quadratic part, and gi(zi) is the summand times C.

Both problems satisfy Assumption 1 and the `2 regularization makes the
problem strongly convex. Thus Theorem 5 and the first case of Theorem 1
apply because σ-strong convexity implies (32) with the same σ. The datasets

https://www.csie.ntu.edu.tw/~cjlin/papers/l-commdir/l-commdir-journal-exp.tar.gz
https://www.csie.ntu.edu.tw/~cjlin/papers/l-commdir/l-commdir-journal-exp.tar.gz

22 Lee, Wang, and Lin

we use are summarized in Table 2.4 We compare the relative difference to the
optimal objective value: ∣∣∣∣f(w)− f∗

f∗

∣∣∣∣ , (55)

where f∗ is obtained by running our algorithm long enough. All methods are
implemented in C/C++.

We first examine the optimal convergence speed described in Theorem 1
and compare Algorithm 1 with related approaches. To apply Theorem 1, we
consider Proposition 1 and take

Pk = [∇f(wk),vk,wk] (56)

at each iteration to include the span of ∇f(wk) and ṽk+1, as required by
Proposition 1. We use this choice instead of directly including ṽk+1 because
wk and vk are maintained throughout for calculating vk+1, so we can utilize
these two vectors easily. The subproblem (14) is solved by the Newton method
described in Section 3, with the inner stopping condition being (21). Notice
that classical analysis for line-search Newton guarantees that the inner iterates
will approach the solution set of (2), and Proposition 1 ensures that when the
iterate is close enough to the solution set, this condition will be satisfied.
Therefore, (21) is a valid stopping condition.

We use the (smaller) first four datasets listed in Table 2 in this experiment.
For parameters estimation, it is clear that for (53) and (54) the quadratic term
is 1-strongly convex so we always have σ = 1. For ρ, clearly the gradient of the
quadratic term is 1-Lipschitz continuous, and in the data-related term, each
gi(x

>
i w) has a Cρ̂‖xi‖22-Lipschitz continuous gradient with ρ̂ = 0.25 for (53)

and ρ̂ = 2 for (54). We thus set ρ as the following upper bound.

ρ = 1 + C

l∑
i=1

ρ̂‖xi‖22. (57)

We compare the following methods.

– L-CommDir-Optimal: Algorithm 1 with the settings described above.
– Accelerated gradient (AG) [18, 20]: we use the same σ = 1 and the ρ

estimation in (57).
– CommDir [26]: the unlimited-memory version of Algorithm 3 that takes all

gradients up to the current iteration to form P in (2).
– L-CommDir-BFGS: Algorithm 3 with (33).
– L-CommDir-Diag: Algorithm 3 with (34).

We use the suffix “-t” for L-CommDir-BFGS and L-CommDir-Diag to indicate
that information from the latest t iterations (including the current iteration) is
used. We mainly use t = 5, making m = 10 for (33) in L-CommDir-BFGS and
m = 15 in (34) for L-CommDir-Diag. To compare with L-CommDir-Optimal,

4 All except yahoo-japan and yahoo-korea are downloaded from http://www.csie.ntu.

edu.tw/~cjlin/libsvmtools/datasets.

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets

Limited-memory Common-directions Method 23

Table 2: Data statistics.

Dataset #instances #features Density (%)
a9a 32,561 123 11.2757%
real-sim 72,309 20,958 0.2448%
news20 19,996 1,355,191 0.0336%
rcv1t 677,399 47,236 0.1549%
yahoo-japan 140,963 832,026 0.0160%
yahoo-korea 368,444 3,053,939 0.0111%

we also consider t = 1 (information from the current iteration only), making
m = 2 and m = 3 respectively for L-CommDir-BFGS and L-CommDir-Diag. For
all methods that require line search to satisfy (24), we use the fixed parameters
β ≡ 0.5 and c1 ≡ 10−2 throughout in both this section and all following
experiments.

The results are shown in Tables 3. We see that L-CommDir-Optimal always
needs only one Newton step to satisfy (22), making Algorithm 1 with the in-
ner stopping condition being (15) equivalent to Algorithm 2 under Pk in (56)
in this experiment. Except for a9a, L-CommDir-Optimal always outperforms
AG significantly, while when AG is faster, L-CommDir-Optimal takes at most
four times of the number of iterations, confirming that our method is con-
verging at least as fast. We also see that when t = 1, L-CommDir-BFGS and
L-CommDir-Diag tend to be worse than L-CommDir-Optimal, indicating that a
momentum term is indeed helpful. However, when t ≥ 5, L-CommDir-BFGS,
L-CommDir-Diag, and CommDir all converge much faster than these optimal
first-order methods empirically in terms of both the running time and the
number of iterations. Note that L-CommDir-BFGS always takes no fewer iter-
ations than CommDir, as the subspace considered by the former is always in
that of the latter, but L-CommDir-Diag sometimes converges faster. Notice that
L-CommDir-BFGS and CommDir can still be considered as first-order methods
in the sense that pk ∈ span (w0,∇f(w0), . . . ,∇f(wk)), but they show much
faster empirical performance.5 Hence, we focus on using (33) and (34) for P
in the sequel.

We continue to compare CommDir and L-CommDir further using all datasets
in Table 2. We further try C ∈ {10−3, 1, 103} to test how the algorithms per-
form when the condition number changes. We compare CommDir with both
L-CommDir-BFGS and L-CommDir-Diag using information from the latest t
iterations with t ∈ {5, 10, 15, 20}. The results are shown in Tables 4-5.

In all situations, CommDir requires fewer iterations than L-CommDir-BFGS.
But even with only t = 5, the convergence speed of L-CommDir-BFGS is com-
petitive. When it comes to the real running time, however, on difficult problems
that take more iterations, especially when C = 103, CommDir can be much

5 Obviously, pk ∈ span (w0,∇f(w0),w1,∇f(w1), . . . ,wk,∇f(wk)), and by simple induc-
tion, we can conclude that each wk ∈ span (w0,∇f(w0),∇f(w1), . . . ,∇f(wk−1)) for all k.
Therefore, pk is in the span of the previous gradients and the initial point.

24 Lee, Wang, and Lin

Table 3: Single-core comparison of different methods on (53) and (54) with C = 1. We
present the required time (in seconds) and number of iterations to make (55) no larger than
10−8. The names Optimal, BFGS, and DIAG omit the prefix L-CommDir. The row “largest
inner iter.” of L-CommDir-Optimal shows the largest number of inner iterations taken over
the outer iterations to solve (2) to satisfy (21).

Problem (53) (54)
Data a9a real-sim news20 rcv1t a9a real-sim news20 rcv1t

AG
Time 30.5 50.6 118.8 3275.1 36.1 68.0 315.1 4801.3
Iter. 2355 1295 635 4145 5780 4248 2241 12032

Optimal
Time 60.5 3.5 11.5 241.6 169.3 11.9 71.9 1428.0
(Outer) Iter. 3488 51 46 265 20726 385 357 3127
Largest inner iter. 1 1 1 1 1 1 1 1

BFGS-1
Time 85.4 5.3 14.0 468.8 304.5 22.3 194.6 2612.0
Iter. 5995 88 72 564 41008 748 1285 6094

DIAG-1
Time 292.9 6.3 40.1 453.1 796.3 23.7 288.0 1323.0
Iter. 13577 60 104 296 58780 415 958 1589

BFGS-5
Time 2.1 1.4 3.5 44.3 2.4 2.1 9.6 74.5
Iter. 107 20 13 44 215 59 40 154

DIAG-5
Time 3.6 2.2 6.7 66.2 6.6 2.9 13.9 91.3
Iter. 109 17 12 35 309 43 28 98

CommDir
Time 3.3 1.4 4.8 45.8 4.9 3.1 19.3 264.3
Iter. 61 18 13 37 76 40 33 101

slower in later iterations when m becomes large, while L-CommDir does not
suffer from this issue and is therefore much faster.

We also observe that L-CommDir-Diag tends to be faster than L-CommDir-
BFGS in terms of the iteration count, but the running time might not be
as advantageous because computing the diagonal entries of the Hessian is
as costly as computing the gradient. Also, from (34), Vk+1 in (37) has two
columns in L-CommDir-Diag, so its updating X>Pk is more costly than that
of L-CommDir-BFGS.

7 Multicore Parallelization

In comparison to other first-order and even second-order methods, one advan-
tage of our method is that it can be better parallelized. When the problem
is of the form (35) and X is sparse, the bottleneck of first-order methods
is the computation of X>w in (40) for calculating the gradient. This cal-
culation is mainly reading through all the entries of X, so the bottleneck is
usually the memory bandwidth instead of the computational power. There-
fore, its parallelism is limited. Similar situation applies to second-order meth-
ods that repeatedly calculate the Hessian-vector products, as that is also a
memory-bound procedure. Therefore, although theoretically all non-stochastic
first-order and second-order methods are inherently parallel as the major op-
erations are matrix-vector products, usually we do not experience that much
speedup by using more cores.

On the other hand, the additional calculation of (41) in our method is a
matrix-matrix calculation and the most expensive part (X>Pk)>Dwk

(X>Pk)

Limited-memory Common-directions Method 25

Table 4: Single-core comparison of L-CommDir and CommDir on (53). We present the required
time and number of iterations to make (55) no larger than 10−8.

D
a
ta

C
B
F
G
S
-5

B
F
G
S
-1
0
B
F
G
S
-1
5
B
F
G
S
-2
0
C
o
m
m
D
ir
D
IA

G
-5

D
IA

G
-1
0
D
IA

G
-1
5
D
IA

G
-2
0

a
9
a

0
.0
0
1
T
im

e
0
.1

0
.1

0
.1

0
.1

0
.1

0
.2

0
.2

0
.2

0
.2

It
e
r.

8
8

8
8

8
7

7
7

7

1
T
im

e
2
.1

3
.0

4
.4

5
.8

3
.3

3
.6

3
.8

4
.0

3
.9

It
e
r.

1
0
7

8
8

8
2

7
5

6
1

1
0
9

6
1

4
2

3
4

1
0
0
0

T
im

e
2
2
.0

2
3
.8

2
6
.8

3
7
.7

1
0
.4

1
1
.6

7
.7

6
.6

6
.8

It
e
r.

1
0
8
6

6
6
6

4
4
9

4
0
5

9
8

3
4
4

1
1
9

6
3

4
8

re
a
l-
si
m

0
.0
0
1
T
im

e
0
.2

0
.2

0
.2

0
.2

0
.2

0
.3

0
.3

0
.3

0
.3

It
e
r.

3
3

3
3

3
3

3
3

3

1
T
im

e
1
.4

1
.6

1
.6

1
.4

1
.4

2
.2

2
.4

2
.3

2
.3

It
e
r.

2
0

1
8

1
8

1
8

1
8

1
7

1
5

1
5

1
5

1
0
0
0

T
im

e
1
9
.3

2
4
.6

3
0
.9

3
8
.1

5
1
.4

2
9
.3

3
4
.2

4
7
.4

6
3
.7

It
e
r.

2
6
1

2
2
2

1
8
8

1
6
4

1
2
8

2
1
6

1
6
0

1
4
4

1
3
4

n
e
w
s2

0

0
.0
0
1
T
im

e
0
.7

0
.7

0
.7

0
.7

0
.8

0
.9

0
.9

0
.9

0
.9

It
e
r.

3
3

3
3

3
2

2
2

2

1
T
im

e
3
.5

4
.1

4
.0

4
.0

4
.8

6
.7

7
.1

7
.2

7
.2

It
e
r.

1
3

1
3

1
3

1
3

1
3

1
2

1
1

1
1

1
1

1
0
0
0

T
im

e
3
0
.9

3
9
.4

4
3
.1

4
2
.1

5
0
.1

8
5
.2

8
3
.8

7
4
.7

7
1
.0

It
e
r.

1
0
7

9
7

8
4

7
0

5
5

1
4
3

9
8

6
9

5
6

rc
v
1
t

0
.0
0
1
T
im

e
5
.3

5
.2

5
.3

5
.2

5
.3

1
0
.1

9
.9

9
.9

9
.9

It
e
r.

6
6

6
6

6
6

6
6

6

1
T
im

e
4
4
.3

5
3
.5

6
5
.9

7
9
.6

4
5
.8

6
6
.2

8
1
.5

9
7
.8

1
0
6
.5

It
e
r.

4
4

3
9

3
7

3
7

3
7

3
5

3
1

2
9

2
8

1
0
0
0

T
im

e
9
3
8
.8

1
1
1
8
.0

1
5
1
3
.0

2
0
2
4
.0

9
9
6
7
.9

7
3
6
.6

8
2
5
.0

1
1
4
1
.0

1
5
9
8
.0

It
e
r.

9
1
6

7
3
6

6
6
2

6
1
2

3
8
0

3
8
2

2
7
8

2
5
0

2
3
9

y
a
h
o
o
jp

0
.0
0
1
T
im

e
1
.4

1
.4

1
.4

1
.4

1
.5

2
.7

2
.7

2
.7

2
.7

It
e
r.

4
4

4
4

4
4

4
4

4

1
T
im

e
1
8
.3

1
8
.1

1
9
.7

2
1
.9

2
1
.8

2
4
.1

2
4
.6

2
5
.8

2
6
.8

It
e
r.

4
6

3
6

3
3

3
3

3
3

3
1

2
5

2
3

2
3

1
0
0
0

T
im

e
3
1
1
.5

2
7
6
.2

2
8
8
.7

3
3
2
.5

7
1
2
.8

3
6
9
.9

3
3
4
.2

3
9
3
.0

4
5
0
.5

It
e
r.

7
7
6

5
0
6

3
9
8

3
5
3

2
0
4

4
5
9

3
0
0

2
6
4

2
3
2

y
a
h
o
o
k
r

0
.0
0
1
T
im

e
1
2
.9

1
2
.8

1
2
.8

1
2
.8

1
3
.4

2
1
.4

2
1
.2

2
1
.2

2
1
.2

It
e
r.

6
6

6
6

6
5

5
5

5

1
T
im

e
2
1
2
.6

1
9
3
.1

1
9
6
.6

2
0
5
.1

2
1
9
.7

2
5
6
.7

2
4
6
.6

2
5
3
.6

2
6
0
.1

It
e
r.

9
4

7
2

6
3

5
8

5
5

5
7

4
6

4
1

3
8

1
0
0
0

T
im

e
3
8
0
5
.0

3
0
7
1
.0

3
0
0
2
.0

3
2
4
4
.0

9
8
6
3
.5

3
3
6
0
.0

3
4
1
1
.0

3
4
5
9
.0

3
8
0
9
.0

It
e
r.

1
6
7
4

1
1
1
3

8
9
5

7
9
8

3
7
7

7
4
2

6
1
2

5
0
4

4
5
3

involves dense matrix-matrix operations, so there are more data reusing and
the memory bandwidth is not the bottleneck anymore. Therefore, better par-
allelism of our method can be expected in multicore environments.

Moreover, in the multicore setting, except the step of solving the linear
system, each of other steps in Table 1 invovles a set of independent operations
such as matrix-vector products. Thus, they can be easily parallelized. Assume
m3 is relatively small and we do no parallelize it, then if we have K cores, the
computational cost of one iteration of Algorithm 3 reduces from (52) to

O

(
TX + TA +m2l + l ×# (line search steps) +mn

K
+m3

)
. (58)

26 Lee, Wang, and Lin

Table 5: Single-core comparison of L-CommDir and CommDir on (54). We present the required
time and number of iterations to make (55) no larger than 10−8.

D
a
ta

C
B
F
G
S
-5

B
F
G
S
-1
0
B
F
G
S
-1
5
B
F
G
S
-2
0
C
o
m
m
D
ir
D
IA

G
-5

D
IA

G
-1
0
D
IA

G
-1
5
D
IA

G
-2
0

a
9
a

0
.0
0
1
T
im

e
0
.2

0
.3

0
.3

0
.2

0
.2

0
.4

0
.4

0
.4

0
.4

It
e
r.

1
9

1
7

1
7

1
7

1
7

1
8

1
5

1
5

1
5

1
T
im

e
2
.4

3
.6

5
.3

7
.1

4
.9

6
.6

6
.3

5
.0

3
.2

It
e
r.

2
1
5

1
7
4

1
5
6

1
3
9

7
6

3
0
9

1
5
7

7
6

4
1

1
0
0
0

T
im

e
1
4
.9

1
3
.9

1
8
.4

2
4
.2

1
1
.3

4
.1

3
.0

3
.1

3
.6

It
e
r.

1
3
3
0

6
6
1

5
1
9

4
4
0

1
0
4

1
9
3

7
6

5
1

4
4

re
a
l-
si
m

0
.0
0
1
T
im

e
0
.3

0
.3

0
.3

0
.3

0
.2

0
.5

0
.5

0
.5

0
.5

It
e
r.

5
5

5
5

5
5

5
5

5

1
T
im

e
2
.1

2
.0

2
.2

2
.4

3
.1

2
.9

2
.7

2
.9

3
.1

It
e
r.

5
9

4
6

4
2

4
0

4
0

4
3

3
2

3
0

2
9

1
0
0
0

T
im

e
3
5
.3

3
0
.9

3
4
.4

3
8
.2

2
0
4
0
.0

1
7
0
.0

1
8
9
.9

2
1
0
.8

2
5
0
.6

It
e
r.

1
1
8
4

8
6
2

7
9
8

7
3
8

4
8
0

2
9
1
1

2
6
9
8

2
4
4
9

2
3
8
7

n
e
w
s2

0

0
.0
0
1
T
im

e
0
.9

0
.9

0
.9

0
.9

1
.0

1
.9

1
.9

1
.9

1
.9

It
e
r.

4
4

4
4

4
4

4
4

4

1
T
im

e
9
.6

1
1
.7

1
3
.3

1
4
.8

1
9
.3

1
3
.9

1
8
.0

1
9
.5

2
1
.0

It
e
r.

4
0

3
5

3
3

3
3

3
3

2
8

2
6

2
4

2
4

1
0
0
0

T
im

e
1
5
4
.5

2
2
1
.1

2
7
8
.1

3
4
6
.3

2
3
6
6
.6

1
0
2
5
.0

1
1
4
4
.0

1
5
0
7
.0

1
8
5
0
.0

It
e
r.

6
7
3

6
3
0

5
8
9

5
8
3

4
0
0

2
1
3
2

1
5
2
8

1
4
7
5

1
4
2
7

rc
v
1
t

0
.0
0
1
T
im

e
9
.3

9
.8

9
.1

9
.1

8
.4

1
8
.2

1
7
.8

1
7
.3

1
7
.3

It
e
r.

1
2

1
2

1
2

1
2

1
2

1
2

1
1

1
1

1
1

1
T
im

e
7
4
.5

7
4
.2

8
1
.4

9
1
.2

2
6
4
.3

9
1
.3

9
2
.3

9
8
.9

1
1
1
.4

It
e
r.

1
5
4

1
2
9

1
1
9

1
1
3

1
0
1

9
8

8
4

7
6

7
3

1
0
0
0

T
im

e
1
4
6
3
.0

1
4
9
0
.0

1
6
2
8
.0

1
8
0
1
.0

-
1
9
4
0
.0

2
0
4
6
.0

2
4
0
2
.0

2
7
9
2
.0

It
e
r.

3
2
8
2

2
8
6
3

2
6
4
4

2
4
7
1

-
2
2
1
3

2
0
0
6

1
9
9
2

1
9
4
9

y
a
h
o
o
jp

0
.0
0
1
T
im

e
3
.1

3
.1

3
.1

3
.1

3
.4

4
.8

4
.9

4
.9

4
.9

It
e
r.

9
9

9
9

9
7

7
7

7

1
T
im

e
4
9
.8

5
1
.8

5
8
.1

6
5
.5

1
1
1
.6

5
4
.3

5
6
.3

6
2
.0

6
8
.8

It
e
r.

1
8
2

1
3
9

1
2
1

1
1
1

8
9

9
8

7
4

6
4

5
9

1
0
0
0

T
im

e
1
2
9
9
.0

1
2
1
1
.0

1
3
2
1
.0

1
4
1
3
.0

-
5
8
8
2
.0

6
3
0
4
.0

6
9
4
4
.0

8
1
7
8
.0

It
e
r.

5
2
4
7

3
5
6
5

2
9
9
6

2
5
6
6

-
1
1
4
9
2

8
7
8
9

7
3
1
6

6
8
3
3

y
a
h
o
o
k
r

0
.0
0
1
T
im

e
2
5
.8

2
7
.4

2
6
.6

2
6
.7

2
7
.9

4
7
.7

4
5
.2

4
5
.2

4
5
.2

It
e
r.

1
2

1
2

1
2

1
2

1
2

1
1

1
0

1
0

1
0

1
T
im

e
5
6
9
.6

5
2
5
.6

5
2
3
.4

5
5
0
.3

9
2
6
.4

5
7
5
.5

5
8
5
.3

6
2
1
.9

6
7
6
.6

It
e
r.

3
0
4

2
3
2

1
9
4

1
7
4

1
3
0

1
5
2

1
2
7

1
1
3

1
0
5

1
0
0
0

T
im

e
1
1
4
4
0
.0

1
0
8
6
0
.0

1
0
7
3
0
.0

1
0
8
6
0
.0

-
-

-
-

-
It
e
r.

7
5
5
4

5
8
3
0

4
7
9
1

4
1
2
3

-
-

-
-

-
“
-”

in
d
ic
a
te
s
th

a
t
th

e
a
lg
o
ri
th

m
fa
il
s
to

re
a
ch

th
e
d
e
si
re
d

p
re
c
is
io
n

w
it
h
in

4
h
o
u
rs
.

We also note that in a shared-memory multicore environment, communication
between cores is usually extremely fast and not an issue for the overall running
time.

7.1 Multicore Experiments

To verify our discussion, we conduct numerical experiments to show the em-
pirical speedup of our method using different number of cores, and compare
it with Multicore-LIBLINEAR 2.30 [12],6 which is a state-of-the-art multicore

6 https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/multicore-liblinear/.

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/multicore-liblinear/

Limited-memory Common-directions Method 27

Table 6: Data statistics.

Dataset #instances #features Density (%)
url 2,396,130 3,231,961 0.0036%
epsilon 400,000 2000 100.0000%
webspam 350,000 16,609,143 0.0224%
KDD2010-a 8,407,752 20,216,830 0.0002%

package for (53). In particular, we compare our method with the trust-region
Newton method with preconditioned conjugate gradient implemented in this
package. What we intend to see is how the algorithms scale with the number of
cores, so we compare the respective running time speedup of the algorithms. In
this experiment, we present the results of (53) with C = 1, and take historical
information from the latest ten iterations for L-CommDir. In addition to the
datasets in Table 2, we also consider some larger ones listed in Table 6.7 For
each algorithm, the speedup is computed as:

Speedup of using k cores =
Running time of using 1 core

Running time of using k cores
.

In this experiment, all solvers are run on an Intel multi-core dualsocket ma-
chine with 180 GB memory. Each socket is associated with 20 cores, and we
enforce all the threads to use cores from the same socket. Parallelization is
achieved through openMP and Intel Math Kernel Library. The results are in
Figure 1. We see that for a9a, real-sim, and news20, L-CommDir has much bet-
ter speedup than Multicore-LIBLINEAR. Moreover, L-CommDir-Diag achieves
significant parallelism on epsilon, and for others the speedup of L-CommDir and
Multicore-LIBLINEAR are similar. This together with the high speedup show
that multicore parallelization is indeed very useful for L-CommDir to reduce
the running time.

8 Distributed Optimization

For distributed environments that connect multiple machines through a net-
work, the situation is quite different. By using multiple machines, the memory
bandwidth and computational power are usually less severe a problem, but
often the expensive inter-machine communication becomes the bottleneck. In
the standard setting of distributed optimization with K machines, f is a sum-
mation of individual functions

f(w) =

K∑
k=1

fk(w), (59)

7 All are downloaded from http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets.

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets

28 Lee, Wang, and Lin

1 2 4 6 8 10
Cores

1
2
4
6
8

10

Sp
ee

du
p

Multicore-LIBLINEAR
L-CommDir-BFGS
L-CommDir-Diag

(a) a9a

1 2 4 6 8 10
Cores

1
2
4
6
8

10

Sp
ee

du
p

Multicore-LIBLINEAR
L-CommDir-BFGS
L-CommDir-Diag

(b) real-sim

1 2 4 6 8 10
Cores

1
2
4
6
8

10

Sp
ee

du
p

Multicore-LIBLINEAR
L-CommDir-BFGS
L-CommDir-Diag

(c) news20

1 2 4 6 8 10
Cores

1
2
4
6
8

10

Sp
ee

du
p

Multicore-LIBLINEAR
L-CommDir-BFGS
L-CommDir-Diag

(d) rcv1t

1 2 4 6 8 10
Cores

1
2
4
6
8

10

Sp
ee

du
p

Multicore-LIBLINEAR
L-CommDir-BFGS
L-CommDir-Diag

(e) yahoo-japan

1 2 4 6 8 10
Cores

1
2
4
6
8

10

Sp
ee

du
p

Multicore-LIBLINEAR
L-CommDir-BFGS
L-CommDir-Diag

(f) yahoo-korea

1 2 4 6 8 10
Cores

1
2
4
6
8

10

Sp
ee

du
p

Multicore-LIBLINEAR
L-CommDir-BFGS
L-CommDir-Diag

(g) url

1 2 4 6 8 10
Cores

1
2
4
6
8

10

Sp
ee

du
p

Multicore-LIBLINEAR
L-CommDir-BFGS
L-CommDir-Diag

(h) epsilon

1 2 4 6 8 10
Cores

1
2
4
6
8

10

Sp
ee

du
p

Multicore-LIBLINEAR
L-CommDir-BFGS
L-CommDir-Diag

(i) webspam

1 2 4 6 8 10
Cores

1
2
4
6
8

10
Sp

ee
du

p
Multicore-LIBLINEAR
L-CommDir-BFGS
L-CommDir-Diag

(j) KDD2010-a

Fig. 1: Speedup using multiple cores.

where each fk is exclusively available only on the k-th machine. Thus it takes
one round of inter-machine communication of an n-dimensional vector to com-
pute the gradient. For Newton method, computing the whole Hessian needs
to communicate O(n2) elements, which is prohibitively expensive. Therefore,
conjugate gradient (CG) that computes Hessian-vectors is adopted, as each
Hessian-vector requires communicating an n-dimensional vector only. State
of the art for distributed optimization [13, 27, 28] are Newton-CG methods
with different preconditioners to reduce the overall rounds of communication
needed, as Newton methods are fast-convergent asymptotically, and precondi-
tioners could reduce the needed CG iterations per Newton step, but in practice
these approaches can still take many CG iterations.

In distributed optimization, trading computation for communication could
help reduce the running time. Our method that interpolates between first- and
second-order methods is a perfect case for this purpose. The computation of
the linear system in this setting is by letting each machine compute

P>k ∇2fk (w)Pk

locally and then use communication to do the summation over k. This in-
volves little communication (as the matrix is just m by m) but is computation-
heavy, while our method has fast empirical convergence similar to second-order
methods because the real Hessian is used, making the convergence faster and
therefore cutting the required rounds of communication. In comparison with

Limited-memory Common-directions Method 29

0 2 4 6
Running Time (Seconds)

10-10

10-5

D
iff

e
re

n
ce

 t
o
 O

p
t.

 F
u
n
.

V
a
lu

e

MPI-LIBLINEAR
L-BFGS
L-CommDir-BFGS
L-CommDir-Diag

0 5 10 15 20 25
Rounds of Communication

10-10

10-5

D
iff

e
re

n
ce

 t
o
 O

p
t.

 F
u
n
.

V
a
lu

e

MPI-LIBLINEAR
L-BFGS
L-CommDir-BFGS
L-CommDir-Diag

(a) yahoo-japan

0 5 10 15 20
Running Time (Seconds)

10-10

10-5

D
iff

e
re

n
ce

 t
o
 O

p
t.

 F
u
n
.

V
a
lu

e

MPI-LIBLINEAR
L-BFGS
L-CommDir-BFGS
L-CommDir-Diag

0 10 20
Rounds of Communication

10-10

10-5

D
iff

e
re

n
ce

 t
o
 O

p
t.

 F
u
n
.

V
a
lu

e

MPI-LIBLINEAR
L-BFGS
L-CommDir-BFGS
L-CommDir-Diag

(b) yahoo-korea

0 5 10 15 20 25
Running Time (Seconds)

10-10

10-5

D
iff

e
re

n
ce

 t
o
 O

p
t.

 F
u
n
.

V
a
lu

e

MPI-LIBLINEAR
L-BFGS
L-CommDir-BFGS
L-CommDir-Diag

0 10 20 30
Rounds of Communication

10-10

10-5

D
iff

e
re

n
ce

 t
o
 O

p
t.

 F
u
n
.

V
a
lu

e

MPI-LIBLINEAR
L-BFGS
L-CommDir-BFGS
L-CommDir-Diag

(c) epsilon

0 50 100 150
Running Time (Seconds)

10-10

10-5

100

D
iff

e
re

n
ce

 t
o
 O

p
t.

 F
u
n
.

V
a
lu

e

MPI-LIBLINEAR
L-BFGS
L-CommDir-BFGS
L-CommDir-Diag

0 50 100 150
Rounds of Communication

10-10

10-5

100

D
iff

e
re

n
ce

 t
o
 O

p
t.

 F
u
n
.

V
a
lu

e

MPI-LIBLINEAR
L-BFGS
L-CommDir-BFGS
L-CommDir-Diag

(d) url

0 50 100 150
Running Time (Seconds)

10-10

10-5

D
iff

e
re

n
ce

 t
o
 O

p
t.

 F
u
n
.

V
a
lu

e

MPI-LIBLINEAR
L-BFGS
L-CommDir-BFGS
L-CommDir-Diag

0 10 20 30 40
Rounds of Communication

10-10

10-5

D
iff

e
re

n
ce

 t
o
 O

p
t.

 F
u
n
.

V
a
lu

e

MPI-LIBLINEAR
L-BFGS
L-CommDir-BFGS
L-CommDir-Diag

(e) webspam

0 500 1000
Running Time (Seconds)

10-10

10-5

100

D
iff

e
re

n
ce

 t
o
 O

p
t.

 F
u
n
.

V
a
lu

e

MPI-LIBLINEAR
L-BFGS
L-CommDir-BFGS
L-CommDir-Diag

0 50 100 150 200
Rounds of Communication

10-10

10-5

100

D
iff

e
re

n
ce

 t
o
 O

p
t.

 F
u
n
.

V
a
lu

e

MPI-LIBLINEAR
L-BFGS
L-CommDir-BFGS
L-CommDir-Diag

(f) KDD2010-a

Fig. 2: Comparison of different algorithms with C = 10−3 for (53). We show running time
(left) and rounds of communication (right) v.s. (55).

first-order methods, our method is guaranteed to be no worse in terms of the
worst-case communication complexity through Theorem 1, while the empiri-
cal performance is usually magnitudes better. On the other hand, in addition
to the O(n) communication cost for computing the full gradient due to the
distributed nature in (59), our method takes only O(m2) communication cost
to obtain a non-truncated Newton step in a subspace. In summary, the com-
putational cost per machine of Algorithm 3 in a distributed environment with
K machines is the same as (58), while the communication cost per tieration is

O
(
(m2 + n)Comm(K)

)
,

where Comm(K) is the communication cost of transmitting one scalar among
K machines.

In comparison to Newton-CG methods that conduct multiple CG iterations
per truncated Newton step, each CG iteration has communication cost O(n)
and our obtained step is a non-truncated full Newton step in a subsapce.
Thus, when the subspace is close to a solution, our method can be much more
communication-efficient than Newton-CG methods.

30 Lee, Wang, and Lin

0 10 20 30 40
Running Time (Seconds)

10-10

10-5

100

D
iff

e
re

n
ce

 t
o
 O

p
t.

 F
u
n
.

V
a
lu

e

MPI-LIBLINEAR
L-BFGS
L-CommDir-BFGS
L-CommDir-Diag

0 50 100 150
Rounds of Communication

10-10

10-5

100

D
iff

e
re

n
ce

 t
o
 O

p
t.

 F
u
n
.

V
a
lu

e

MPI-LIBLINEAR
L-BFGS
L-CommDir-BFGS
L-CommDir-Diag

(a) yahoo-japan

0 50 100 150 200
Running Time (Seconds)

10-10

10-5

D
iff

e
re

n
ce

 t
o
 O

p
t.

 F
u
n
.

V
a
lu

e

MPI-LIBLINEAR
L-BFGS
L-CommDir-BFGS
L-CommDir-Diag

0 100 200 300
Rounds of Communication

10-10

10-5

D
iff

e
re

n
ce

 t
o
 O

p
t.

 F
u
n
.

V
a
lu

e

MPI-LIBLINEAR
L-BFGS
L-CommDir-BFGS
L-CommDir-Diag

(b) yahoo-korea

0 50 100 150 200
Running Time (Seconds)

10-15

10-10

10-5

100

D
iff

e
re

n
ce

 t
o
 O

p
t.

 F
u
n
.

V
a
lu

e

MPI-LIBLINEAR
L-BFGS
L-CommDir-BFGS
L-CommDir-Diag

0 100 200 300
Rounds of Communication

10-15

10-10

10-5

100

D
iff

e
re

n
ce

 t
o
 O

p
t.

 F
u
n
.

V
a
lu

e

MPI-LIBLINEAR
L-BFGS
L-CommDir-BFGS
L-CommDir-Diag

(c) epsilon

0 500 1000 1500
Running Time (Seconds)

10-10

10-5

100

D
iff

e
re

n
ce

 t
o
 O

p
t.

 F
u
n
.

V
a
lu

e

MPI-LIBLINEAR
L-BFGS
L-CommDir-BFGS
L-CommDir-Diag

0 500 1000 1500
Rounds of Communication

10-10

10-5

100

D
iff

e
re

n
ce

 t
o
 O

p
t.

 F
u
n
.

V
a
lu

e

MPI-LIBLINEAR
L-BFGS
L-CommDir-BFGS
L-CommDir-Diag

(d) url

0 500 1000
Running Time (Seconds)

10-10

10-5

100

D
iff

e
re

n
ce

 t
o
 O

p
t.

 F
u
n
.

V
a
lu

e

MPI-LIBLINEAR
L-BFGS
L-CommDir-BFGS
L-CommDir-Diag

0 50 100 150
Rounds of Communication

10-10

10-5

100

D
iff

e
re

n
ce

 t
o
 O

p
t.

 F
u
n
.

V
a
lu

e

MPI-LIBLINEAR
L-BFGS
L-CommDir-BFGS
L-CommDir-Diag

(e) webspam

0 5000 10000
Running Time (Seconds)

10-10

10-5

100

D
iff

e
re

n
ce

 t
o
 O

p
t.

 F
u
n
.

V
a
lu

e

MPI-LIBLINEAR
L-BFGS
L-CommDir-BFGS
L-CommDir-Diag

0 1000 2000
Rounds of Communication

10-10

10-5

100

D
iff

e
re

n
ce

 t
o
 O

p
t.

 F
u
n
.

V
a
lu

e

MPI-LIBLINEAR
L-BFGS
L-CommDir-BFGS
L-CommDir-Diag

(f) KDD2010-a

Fig. 3: Comparison of different algorithms with C = 1 for (53). We show running time (left)
and rounds of communication (right) v.s. (55).

8.1 Distributed Experiments

We proceed to examine the empirical performance of our method for dis-
tributed optimization. The distributed environment is a cluster of ten ma-
chines running MPI connected through a 1Gbps network. We compare the
following methods.

– MPI-LIBLINEAR:8 A public package for distributed optimization on ERM
problems. We use the distributed trust region Newton solver with precon-
ditioned conjugate gradient using the diagonal entries of the Hessian as the
preconditioner [8, 13, 28].

– VL-BFGS [6]: An implementation of L-BFGS specialized for distributed en-
vironments. We use historical information from the previous 10 iterations.

– L-CommDir: our method with (33) and (34). We use the historical infor-
mation from the latest 10 iterations.

The results of C ∈ {10−3, 1, 103} are shown in Figures 2-7.
We first examine the communication cost. For (53), L-CommDir-BFGS is

among the most communication-efficient, and performs worse only on KDD2010-
a with C = 1 and C = 103. Similar trends are observed for (54), but for (54)

8 Version 2.20, downloaded from http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/

distributed-liblinear/.

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/distributed-liblinear/
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/distributed-liblinear/

Limited-memory Common-directions Method 31

0 100 200 300
Running Time (Seconds)

10-10

10-5

100

D
iff

e
re

n
ce

 t
o
 O

p
t.

 F
u
n
.

V
a
lu

e

MPI-LIBLINEAR
L-BFGS
L-CommDir-BFGS
L-CommDir-Diag

0 500 1000 1500 2000
Rounds of Communication

10-10

10-5

100

D
iff

e
re

n
ce

 t
o
 O

p
t.

 F
u
n
.

V
a
lu

e

MPI-LIBLINEAR
L-BFGS
L-CommDir-BFGS
L-CommDir-Diag

(a) yahoo-japan

0 500 1000 1500
Running Time (Seconds)

10-5

100

D
iff

e
re

n
ce

 t
o
 O

p
t.

 F
u
n
.

V
a
lu

e

MPI-LIBLINEAR
L-BFGS
L-CommDir-BFGS
L-CommDir-Diag

0 1000 2000 3000
Rounds of Communication

10-5

100

D
iff

e
re

n
ce

 t
o
 O

p
t.

 F
u
n
.

V
a
lu

e

MPI-LIBLINEAR
L-BFGS
L-CommDir-BFGS
L-CommDir-Diag

(b) yahoo-korea

0 500 1000 1500 2000
Running Time (Seconds)

10-10

10-5

100

D
iff

e
re

n
ce

 t
o
 O

p
t.

 F
u
n
.

V
a
lu

e

MPI-LIBLINEAR
L-BFGS
L-CommDir-BFGS
L-CommDir-Diag

0 500 1000 1500 2000
Rounds of Communication

10-10

10-5

100

D
iff

e
re

n
ce

 t
o
 O

p
t.

 F
u
n
.

V
a
lu

e

MPI-LIBLINEAR
L-BFGS
L-CommDir-BFGS
L-CommDir-Diag

(c) epsilon

0 1000 2000 3000 4000 5000
Running Time (Seconds)

10-10

10-5

100

D
iff

e
re

n
ce

 t
o
 O

p
t.

 F
u
n
.

V
a
lu

e

MPI-LIBLINEAR
L-BFGS
L-CommDir-BFGS
L-CommDir-Diag

0 2000 4000 6000
Rounds of Communication

10-10

10-5

100

D
iff

e
re

n
ce

 t
o
 O

p
t.

 F
u
n
.

V
a
lu

e

MPI-LIBLINEAR
L-BFGS
L-CommDir-BFGS
L-CommDir-Diag

(d) url

0 1000 2000 3000 4000 5000
Running Time (Seconds)

10-10

10-5

100

D
iff

e
re

n
ce

 t
o
 O

p
t.

 F
u
n
.

V
a
lu

e

MPI-LIBLINEAR
L-BFGS
L-CommDir-BFGS
L-CommDir-Diag

0 500 1000
Rounds of Communication

10-10

10-5

100

D
iff

e
re

n
ce

 t
o
 O

p
t.

 F
u
n
.

V
a
lu

e

MPI-LIBLINEAR
L-BFGS
L-CommDir-BFGS
L-CommDir-Diag

(e) webspam

0 5000 10000
Running Time (Seconds)

10-4

10-2

100

D
iff

e
re

n
ce

 t
o
 O

p
t.

 F
u
n
.

V
a
lu

e

MPI-LIBLINEAR
L-BFGS
L-CommDir-BFGS
L-CommDir-Diag

0 1000 2000
Rounds of Communication

10-4

10-2

100

D
iff

e
re

n
ce

 t
o
 O

p
t.

 F
u
n
.

V
a
lu

e

MPI-LIBLINEAR
L-BFGS
L-CommDir-BFGS
L-CommDir-Diag

(f) KDD2010-a

Fig. 4: Comparison of different algorithms with C = 103 for (53). We show running time
(left) and rounds of communication (right) v.s. (55).

with C = 103, L-CommDir-BFGS always outperforms other methods in com-
munication efficiency. Likely this is because the generalized Hessian of (54) is
not as useful as the real Hessian of (53), especially for difficult problems, so
L-CommDir-Diag and MPI-LIBLINEAR do not perform that well. On the other
hand, L-CommDir-Diag is not as communication-efficient as L-CommDir-BFGS
in general, and it usually performs closer to existing methods, but for difficult
problems like KDD2010-a and url, it sometimes becomes the best method in
terms of the rounds of communication.

Next, regarding the running time, it and the round of communication are
positively correlated, but it is also dependent on the computational power of
the machines and the distributed environment. In particular, we see that L-
CommDir-Diag is relatively faster in the running time, because its amount of
computation per communication round is less (for every iteration it takes two
communication rounds while L-CommDir-BFGS takes only one). On the other
hand, MPI-LIBLINEAR is much faster than L-CommDir on epsilon, as epsilon
has a lower problem dimension, making the communication cost less significant
in the overall running time.

32 Lee, Wang, and Lin

0 2 4 6 8
Running Time (Seconds)

10-10

10-5

100

D
iff

e
re

n
ce

 t
o
 O

p
t.

 F
u
n
.

V
a
lu

e

MPI-LIBLINEAR
L-BFGS
L-CommDir-BFGS
L-CommDir-Diag

0 10 20 30 40
Rounds of Communication

10-10

10-5

100

D
iff

e
re

n
ce

 t
o
 O

p
t.

 F
u
n
.

V
a
lu

e

MPI-LIBLINEAR
L-BFGS
L-CommDir-BFGS
L-CommDir-Diag

(a) yahoo-japan

0 10 20 30 40
Running Time (Seconds)

10-10

10-5

D
iff

e
re

n
ce

 t
o
 O

p
t.

 F
u
n
.

V
a
lu

e

MPI-LIBLINEAR
L-BFGS
L-CommDir-BFGS
L-CommDir-Diag

0 10 20 30 40 50
Rounds of Communication

10-10

10-5

D
iff

e
re

n
ce

 t
o
 O

p
t.

 F
u
n
.

V
a
lu

e

MPI-LIBLINEAR
L-BFGS
L-CommDir-BFGS
L-CommDir-Diag

(b) yahoo-korea

0 10 20 30 40
Running Time (Seconds)

10-10

10-5

D
iff

e
re

n
ce

 t
o
 O

p
t.

 F
u
n
.

V
a
lu

e

MPI-LIBLINEAR
L-BFGS
L-CommDir-BFGS
L-CommDir-Diag

0 10 20 30 40
Rounds of Communication

10-10

10-5

D
iff

e
re

n
ce

 t
o
 O

p
t.

 F
u
n
.

V
a
lu

e

MPI-LIBLINEAR
L-BFGS
L-CommDir-BFGS
L-CommDir-Diag

(c) epsilon

0 100 200 300
Running Time (Seconds)

10-10

10-5

100

D
iff

e
re

n
ce

 t
o
 O

p
t.

 F
u
n
.

V
a
lu

e

MPI-LIBLINEAR
L-BFGS
L-CommDir-BFGS
L-CommDir-Diag

0 200 400 600
Rounds of Communication

10-10

10-5

100

D
iff

e
re

n
ce

 t
o
 O

p
t.

 F
u
n
.

V
a
lu

e

MPI-LIBLINEAR
L-BFGS
L-CommDir-BFGS
L-CommDir-Diag

(d) url

0 50 100 150 200 250
Running Time (Seconds)

10-10

10-5

100

D
iff

e
re

n
ce

 t
o
 O

p
t.

 F
u
n
.

V
a
lu

e

MPI-LIBLINEAR
L-BFGS
L-CommDir-BFGS
L-CommDir-Diag

0 20 40 60
Rounds of Communication

10-10

10-5

100

D
iff

e
re

n
ce

 t
o
 O

p
t.

 F
u
n
.

V
a
lu

e

MPI-LIBLINEAR
L-BFGS
L-CommDir-BFGS
L-CommDir-Diag

(e) webspam

0 1000 2000 3000
Running Time (Seconds)

10-10

10-5

100

D
iff

e
re

n
ce

 t
o
 O

p
t.

 F
u
n
.

V
a
lu

e

MPI-LIBLINEAR
L-BFGS
L-CommDir-BFGS
L-CommDir-Diag

0 200 400 600 800
Rounds of Communication

10-10

10-5

100

D
iff

e
re

n
ce

 t
o
 O

p
t.

 F
u
n
.

V
a
lu

e

MPI-LIBLINEAR
L-BFGS
L-CommDir-BFGS
L-CommDir-Diag

(f) KDD2010-a

Fig. 5: Comparison of different algorithms with C = 10−3 for (54). We show running time
(left) and rounds of communication (right) v.s. (55).

9 Conclusions

In this work, we present an efficient smooth optimization algorithm that in-
terpolates between first- and second-order methods by utilizing information
from previous iterations. Theoretical results show that our method possesses
the optimal convergence rates of first-order methods while being strictly de-
scent in the objective value. Empirical results also show that our method out-
performs optimal first-order methods and second-order methods on real-world
empirical risk minimization problems in single-core, multicore, and distributed
optimization. Future work includes extending our method to general regular-
ized problems by adding the regularization term to the subproblem, and to
consider nonlinear manifolds in the construction of G, possibly through Rie-
mannian optimization or partly smooth functions. Based on this work, we
have expanded the package MPI-LIBLINEAR, available at http://www.csie.

ntu.edu.tw/~cjlin/libsvmtools/distributed-liblinear/, to include the
proposed method.

Acknowledgement

Parts of this wok were done when Ching-pei was in the Department of Mathe-
matics of the National University of Singapore. The authors thank the support

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/distributed-liblinear/
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/distributed-liblinear/

Limited-memory Common-directions Method 33

0 20 40 60
Running Time (Seconds)

10-10

10-5

100

D
iff

e
re

n
ce

 t
o
 O

p
t.

 F
u
n
.

V
a
lu

e

MPI-LIBLINEAR
L-BFGS
L-CommDir-BFGS
L-CommDir-Diag

0 200 400
Rounds of Communication

10-10

10-5

100

D
iff

e
re

n
ce

 t
o
 O

p
t.

 F
u
n
.

V
a
lu

e

MPI-LIBLINEAR
L-BFGS
L-CommDir-BFGS
L-CommDir-Diag

(a) yahoo-japan

0 100 200 300 400
Running Time (Seconds)

10-10

10-5

100

D
iff

e
re

n
ce

 t
o
 O

p
t.

 F
u
n
.

V
a
lu

e

MPI-LIBLINEAR
L-BFGS
L-CommDir-BFGS
L-CommDir-Diag

0 200 400 600
Rounds of Communication

10-10

10-5

100

D
iff

e
re

n
ce

 t
o
 O

p
t.

 F
u
n
.

V
a
lu

e

MPI-LIBLINEAR
L-BFGS
L-CommDir-BFGS
L-CommDir-Diag

(b) yahoo-korea

0 100 200 300
Running Time (Seconds)

10-10

10-5

100

D
iff

e
re

n
ce

 t
o
 O

p
t.

 F
u
n
.

V
a
lu

e

MPI-LIBLINEAR
L-BFGS
L-CommDir-BFGS
L-CommDir-Diag

0 500 1000
Rounds of Communication

10-10

10-5

100

D
iff

e
re

n
ce

 t
o
 O

p
t.

 F
u
n
.

V
a
lu

e

MPI-LIBLINEAR
L-BFGS
L-CommDir-BFGS
L-CommDir-Diag

(c) epsilon

0 1000 2000 3000
Running Time (Seconds)

10-5

100

D
iff

e
re

n
ce

 t
o
 O

p
t.

 F
u
n
.

V
a
lu

e

MPI-LIBLINEAR
L-BFGS
L-CommDir-BFGS
L-CommDir-Diag

0 1000 2000 3000
Rounds of Communication

10-5

100

D
iff

e
re

n
ce

 t
o
 O

p
t.

 F
u
n
.

V
a
lu

e

MPI-LIBLINEAR
L-BFGS
L-CommDir-BFGS
L-CommDir-Diag

(d) url

0 500 1000 1500
Running Time (Seconds)

10-10

10-5

100

D
iff

e
re

n
ce

 t
o
 O

p
t.

 F
u
n
.

V
a
lu

e

MPI-LIBLINEAR
L-BFGS
L-CommDir-BFGS
L-CommDir-Diag

0 100 200 300 400
Rounds of Communication

10-10

10-5

100

D
iff

e
re

n
ce

 t
o
 O

p
t.

 F
u
n
.

V
a
lu

e

MPI-LIBLINEAR
L-BFGS
L-CommDir-BFGS
L-CommDir-Diag

(e) webspam

0 5000 10000
Running Time (Seconds)

10-6

10-4

10-2

100

D
iff

e
re

n
ce

 t
o
 O

p
t.

 F
u
n
.

V
a
lu

e

MPI-LIBLINEAR
L-BFGS
L-CommDir-BFGS
L-CommDir-Diag

0 1000 2000
Rounds of Communication

10-6

10-4

10-2

100

D
iff

e
re

n
ce

 t
o
 O

p
t.

 F
u
n
.

V
a
lu

e

MPI-LIBLINEAR
L-BFGS
L-CommDir-BFGS
L-CommDir-Diag

(f) KDD2010-a

Fig. 6: Comparison of different algorithms with C = 1 for (54). We show running time (left)
and rounds of communication (right) v.s. (55).

of HPC@NUS IT for the multicore experiment environment. This work was
supported in part by MOST of Taiwan grant 107-2221-E-002-167-MY3 and
109-2222-E-001-003-MY3.

References

1. Attouch H, Peypouquet J (2016) The rate of convergence of Nesterov’s accelerated
forward-backward method is actually faster than 1/kˆ2. SIAM Journal on Optimization
26(3):1824–1834

2. Barzilai J, Borwein JM (1988) Two-point step size gradient methods. IMA Journal of
Numerical Analysis 8:141–148

3. Bertsekas DP (2016) Nonlinear programming, 3rd edn. Athena Scientific, Belmont, MA
02178-9998

4. Burachik R, Graña Drummond L, Iusem AN, Svaiter B (1995) Full convergence of the
steepest descent method with inexact line searches. Optimization 32(2):137–146

5. Chambolle A, Dossal C (2015) On the convergence of the iterates of “FISTA”. Journal
of Optimization Theory and Applications 166(3):25

6. Chen W, Wang Z, Zhou J (2014) Large-scale L-BFGS using MapReduce. In: Advances
in Neural Information Processing Systems, pp 1332–1340

7. Hiriart-Urruty JB, Strodiot JJ, Nguyen VH (1984) Generalized Hessian matrix and
second-order optimality conditions for problems with C1,1 data. Applied Mathematics
& Optimization 11(1):43–56

8. Hsia CY, Chiang WL, Lin CJ (2018) Preconditioned conjugate gradient methods in
truncated Newton frameworks for large-scale linear classification. In: Proceedings of the

34 Lee, Wang, and Lin

0 500 1000 1500 2000
Running Time (Seconds)

10-5

100

D
iff

e
re

n
ce

 t
o
 O

p
t.

 F
u
n
.

V
a
lu

e

MPI-LIBLINEAR
L-BFGS
L-CommDir-BFGS
L-CommDir-Diag

0 0.5 1 1.5 2
Rounds of Communication#104

10-5

100

D
iff

e
re

n
ce

 t
o
 O

p
t.

 F
u
n
.

V
a
lu

e

MPI-LIBLINEAR
L-BFGS
L-CommDir-BFGS
L-CommDir-Diag

(a) yahoo-japan

0 2000 4000 6000
Running Time (Seconds)

10-5

100

D
iff

e
re

n
ce

 t
o
 O

p
t.

 F
u
n
.

V
a
lu

e

MPI-LIBLINEAR
L-BFGS
L-CommDir-BFGS
L-CommDir-Diag

0 5000 10000 15000
Rounds of Communication

10-5

100

D
iff

e
re

n
ce

 t
o
 O

p
t.

 F
u
n
.

V
a
lu

e

MPI-LIBLINEAR
L-BFGS
L-CommDir-BFGS
L-CommDir-Diag

(b) yahoo-korea

0 500 1000 1500 2000
Running Time (Seconds)

10-10

10-5

100

D
iff

e
re

n
ce

 t
o
 O

p
t.

 F
u
n
.

V
a
lu

e

MPI-LIBLINEAR
L-BFGS
L-CommDir-BFGS
L-CommDir-Diag

0 2000 4000 6000
Rounds of Communication

10-10

10-5

100

D
iff

e
re

n
ce

 t
o
 O

p
t.

 F
u
n
.

V
a
lu

e

MPI-LIBLINEAR
L-BFGS
L-CommDir-BFGS
L-CommDir-Diag

(c) epsilon

0 5000 10000
Running Time (Seconds)

100

D
iff

e
re

n
ce

 t
o
 O

p
t.

 F
u
n
.

V
a
lu

e

MPI-LIBLINEAR
L-BFGS
L-CommDir-BFGS
L-CommDir-Diag

0 5000 10000
Rounds of Communication

100

D
iff

e
re

n
ce

 t
o
 O

p
t.

 F
u
n
.

V
a
lu

e

MPI-LIBLINEAR
L-BFGS
L-CommDir-BFGS
L-CommDir-Diag

(d) url

0 5000 10000
Running Time (Seconds)

10-5

100

D
iff

e
re

n
ce

 t
o
 O

p
t.

 F
u
n
.

V
a
lu

e

MPI-LIBLINEAR
L-BFGS
L-CommDir-BFGS
L-CommDir-Diag

0 1000 2000
Rounds of Communication

10-5

100

D
iff

e
re

n
ce

 t
o
 O

p
t.

 F
u
n
.

V
a
lu

e

MPI-LIBLINEAR
L-BFGS
L-CommDir-BFGS
L-CommDir-Diag

(e) webspam

0 5000 10000
Running Time (Seconds)

10-2

100

102

D
iff

e
re

n
ce

 t
o
 O

p
t.

 F
u
n
.

V
a
lu

e

MPI-LIBLINEAR
L-BFGS
L-CommDir-BFGS
L-CommDir-Diag

0 1000 2000 3000
Rounds of Communication

10-2

100

102

D
iff

e
re

n
ce

 t
o
 O

p
t.

 F
u
n
.

V
a
lu

e

MPI-LIBLINEAR
L-BFGS
L-CommDir-BFGS
L-CommDir-Diag

(f) KDD2010-a

Fig. 7: Comparison of different algorithms with C = 103 for (54). We show running time
(left) and rounds of communication (right) v.s. (55).

Asian Conference on Machine Learning (ACML), URL http://www.csie.ntu.edu.tw/

~cjlin/papers/tron_pcg/precondition.pdf

9. Karimi H, Nutini J, Schmidt M (2016) Linear convergence of gradient and proximal-
gradient methods under Polyak- lojasiewicz condition. In: Joint European Conference
on Machine Learning and Knowledge Discovery in Databases

10. LEE Cp, Wright SJ (2019) First-order algorithms converge faster than O(1/k) on convex
problems. In: Proceedings of the 36th International Conference on Machine Learning
(ICML), URL http://proceedings.mlr.press/v97/lee19e.html

11. Lee CP, Wang PW, Chen W, Lin CJ (2017) Limited-memory common-directions
method for distributed optimization and its application on empirical risk minimiza-
tion. In: Proceedings of SIAM International Conference on Data Mining (SDM), URL
http://www.csie.ntu.edu.tw/~cjlin/papers/l-commdir/l-commdir.pdf

12. Lee MC, Chiang WL, Lin CJ (2015) Fast matrix-vector multiplications for large-
scale logistic regression on shared-memory systems. In: Proceedings of the IEEE In-
ternational Conference on Data Mining (ICDM), URL http://www.csie.ntu.edu.tw/

~cjlin/papers/multicore_liblinear_icdm.pdf

13. Lin CY, Tsai CH, Lee CP, Lin CJ (2014) Large-scale logistic regression and linear
support vector machines using Spark. In: Proceedings of the IEEE International Con-
ference on Big Data, pp 519–528, URL http://www.csie.ntu.edu.tw/~cjlin/papers/

spark-liblinear/spark-liblinear.pdf

14. Liu DC, Nocedal J (1989) On the limited memory BFGS method for large scale opti-
mization. Mathematical Programming 45(1):503–528

15. Lojasiewicz S (1963) Une propriété topologique des sous-ensembles analytiques réels.

In: Les Équations aus Dérivées Partielles, Éditions du centre National de la Recherche
Scientifique

http://www.csie.ntu.edu.tw/~cjlin/papers/tron_pcg/precondition.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/tron_pcg/precondition.pdf
http://proceedings.mlr.press/v97/lee19e.html
http://www.csie.ntu.edu.tw/~cjlin/papers/l-commdir/l-commdir.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/multicore_liblinear_icdm.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/multicore_liblinear_icdm.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/spark-liblinear/spark-liblinear.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/spark-liblinear/spark-liblinear.pdf

Limited-memory Common-directions Method 35

16. Mangasarian OL (2002) A finite Newton method for classification. Optimization Meth-
ods and Software 17(5):913–929

17. Nemirovsky AS, Yudin DB (1983) Problem complexity and method efficiency in opti-
mization. In: Wiley-Interscience Series in Discrete Mathematics, John Wiley & Sons,
New York

18. Nesterov YE (1983) A method of solving a convex programming problem with conver-
gence rate o(1/k2). Soviet Mathematics Doklady 27:372–376

19. Nesterov YE (2003) Introductory Lectures on Convex Optimization: A Basic Course.
Kluwer Academic Publishers

20. Nesterov YE (2013) Gradient methods for minimizing composite functions. Mathemat-
ical Programming 140(1):125–161

21. Nocedal J, Wright S (2006) Numerical Optimization, 2nd edn. Springer
22. Polyak BT (1963) Gradient methods for minimizing functionals. Zhurnal Vychislitel’noi

Matematiki i Matematicheskoi Fiziki 3(4):643–653
23. Salzo S, Villa S (2021) Parallel random block-coordinate forward–backward algorithm:

a unified convergence analysis. Mathematical Programming pp 1–45
24. Shi W, Ling Q, Wu G, Yin W (2015) Extra: An exact first-order algorithm for decen-

tralized consensus optimization. SIAM Journal on Optimization 25(2):944–966
25. Tseng P (2008) On accelerated proximal gradient methods for convex-concave optimiza-

tion. Tech. rep., Department of Mathematics, University of Washington
26. Wang PW, Lee CP, Lin CJ (2019) The common-directions method for regularized

empirical risk minimization. Journal of Machine Learning Research 20(58):1–49, URL
https://www.csie.ntu.edu.tw/~cjlin/papers/commdir/commdir.pdf

27. Zhang Y, Xiao L (2015) DiSCO: Distributed optimization for self-concordant empirical
loss. In: Proceedings of the Thirty Second International Conference on Machine Learning
(ICML), pp 362–370

28. Zhuang Y, Chin WS, Juan YC, Lin CJ (2015) Distributed Newton method for regu-
larized logistic regression. In: Proceedings of the Pacific-Asia Conference on Knowledge
Discovery and Data Mining (PAKDD)

A Proofs

A.1 Proof of Theorem 1

Proof The main idea of our proof follows from the estimating sequence by Nesterov [19],
but we also develop techniques to cope with inexact subproblem solutions and that there
is only one sequence of iterates in our algorithm. We will construct a sequence of functions
{φk} such that

φk+1 (w)− f (w) ≤
k∏
i=0

(1− αi) (φ0(w)− f (w)) , ∀k ≥ 0, (60)

φ∗k := min
w

φk(w) ≥ f (wk)−
k−1∏
i=0

(1− αi) Âk−1, (61)

where

Âk :=

{
0 if σ > 0 or k = 0,

Ak else,
(62)

and show that the convergence speed
∏k
i=0(1− αi) meets the optimal rates. Let w∗ be an

arbitrary point in the solution set. The convergence speed of f(wk)− f∗ is then established

https://www.csie.ntu.edu.tw/~cjlin/papers/commdir/commdir.pdf

36 Lee, Wang, and Lin

by

f (wk)− f∗
(61)

≤ φ∗k − f
∗ +

k−1∏
i=0

(1− αi) Âk−1 ≤ φk(w∗)− f(w∗) +

k−1∏
i=0

(1− αi) Âk−1

(60)

≤
k−1∏
i=0

(1− αi)
(
φ0(w∗)− f(w∗) + Âk−1

)
. (63)

This sequence of functions is constructed as follows.

φ0(w) :=
γ0

2
‖w −w0‖2 + f(w0), (64)

φk+1(w) := (1− αk)φk (w) (65)

+ αk

(
f (wk) +∇f (wk)> (w −wk) +

σ

2
‖w −wk‖2

)
, k ≥ 0.

I. Upper Bound for φk:
We can show (60) easily by the definition (65) as follows.

φk+1(w) = (1− αk)φk(w) + αk

(
f (wk) +∇f (wk)> (w −wk) +

σ

2
‖w −wk‖2

)
≤ (1− αk)φk(w) + αkf(w), (66)

where (66) is from the (strong) convexity of f . The result (60) then follows from deducting
f(w) from both sides of (66) and recursion.
II. φ∗k Bounds f(wk):

Next, we prove (61). It is straightforward from induction, the definition (64)-(65), and
the definition of γk in (8) that

∇2φk(w) = (1− αk−1)∇2φk−1(w) + αk−1σI

= (1− αk−1)γk−1I + αk−1σI = γkI, ∀k,

showing that φk are quadratic and strongly convex with modulus γk. Therefore, at the k-th
iteration, there is an optimal solution uk such that

φk(w) = φ∗k +
γk

2
‖w − uk‖2 , ∀w. (67)

By setting the derivative of (65) to zero and using (67), we get that

0 = ∇φk+1 (uk+1) = (1− αk)∇φk (uk+1) + αk (∇f (wk) + σ (uk+1 −wk))

= (1− αk) γk (uk+1 − uk) + αk (∇f (wk) + σ (uk+1 −wk)) .

Rearranging the above equation, we have

uk+1 =
1

(1− αk)γk + αkσ
((1− αk)γkuk + αkσwk − αk∇f(wk)) ,

which satisfies the definition of vk in (7) and (8) (notice that (1 − αk)γk + αkσ > 0 as
discussed when we define (7) so uk+1 is well-defined). Thus, we have

uk ≡ vk, and φ∗k = φk(vk), ∀k ≥ 0, (68)

for both cases of σ > 0 and σ = 0, and (67) can be written as

φk (w) = φk (vk) +
γk

2
‖w − vk‖2 ,∀k ≥ 0. (69)

First consider the case of σ > 0. From (7) and (10), we have

vk+1 = (1− α)vk + αwk −
α

σ
∇f(wk),

Limited-memory Common-directions Method 37

which can be written as the following two equivalent forms.

vk+1 − vk = −α(vk −wk)−
α

σ
∇f(wk), (70)

vk+1 −wk = (1− α)(vk −wk)−
α

σ
∇f(wk). (71)

We then obtain a recurrent relation of φ∗k+1 by using (69), (10), and (65).

φ∗k+1 = φk+1(vk+1)

= (1− α)
(
φk(vk) +

σ

2
‖vk+1 − vk‖2

)
+ α

(
f(wk) +∇f(wk)>(vk+1 −wk) +

σ

2
‖vk+1 −wk‖2

)
(72)

= (1− α)φk(vk) + αf(wk) (73)

+ α(1− α)
(
∇f(wk)>(vk −wk) +

σ

2
‖vk −wk‖2

)
−

1

2ρ
‖∇f(wk)‖2, (74)

where (72) is by (65), (10), and (69); and (73)-(74) are obtained from separately applying
(70)-(71), and applying (10) to the coefficient of ‖∇f(wk)‖2. Now with (68) and the defini-

tion that Âk = 0, ∀k ≥ 0, we are ready to prove an equivalent form of (61), φk(vk) ≥ f(wk),
∀k, by induction. From the definition (64), it is clear that φ0(v0) ≥ f(w0). For the induc-
tion, assume φk(vk) ≥ f(wk) for some k ≥ 0. For the next (k + 1)-th iteration, replacing
the first term in (73) with f(wk) leads to

φ∗k+1 ≥ f (wk)−
1

2ρ
‖∇f(wk)‖2 + α(1− α)

(
∇f(wk)>(vk −wk) +

σ

2
‖vk −wk‖2

)
,

which together with (15) leads to φk+1(vk+1) ≥ f(wk+1). Thus the bound (61) holds.
Next, we consider the case of σ = 0. From the recursion (8), we have

γk+1 = ρ

k∏
i=0

(1− αi) , ∀k ≥ 0. (75)

Further, in this case, (7) is reduced to

vk+1 = vk −
αk

γk+1
∇f(wk). (76)

We obtain the following recurrent relation of φ∗k+1.

φk+1(vk+1) (77)

(65),(69)
= (1− αk)

(
φk(vk) +

γk

2
‖vk+1 − vk‖2

)
+ αk

(
f(wk) +∇f(wk)>(vk+1 −wk)

)
Note that

1

2
(1− αk)γk ‖vk+1 − vk‖2

(76)
=

1

2
(1− αk)γk ·

α2
k

γ2k+1

‖∇f(wk)‖2 (8)
=

α2
k

2γk+1
‖∇f(wk)‖2 .

Applying the above result to (77), we have

φk+1(vk+1)
(76)
= (1− αk)φk(vk) + αkf(wk) +

α2
k

2γk+1
‖∇f(wk)‖2

+ αk∇f (wk)>
(
vk −wk −

αk

γk+1
∇f (wk)

)
(11)
= (1− αk)φ∗k + αkf(wk)−

‖∇f(wk)‖2

2ρ
+ αk∇f(wk)>(vk −wk). (78)

38 Lee, Wang, and Lin

We know that φ0(v0) ≥ f(w0) holds from the construction (64). Now we assume that (61)
holds for some k ≥ 0 and obtain for the (k + 1)-th iteration that

φ∗k+1

(78),(61)

≥ f(wk)−
1

2ρ
‖∇f(wk)‖2 − (1− αk)

k−1∏
i=0

(1− αi)Ak−1 + αk∇f(wk)T (vk −wk)

(17)

≥ f (wk)−
1

2ρ
‖∇f (wk)‖2 − (1− αk)

k−1∏
i=0

(1− αi)Ak−1 − αkψk

(17)

≥ f (wk+1)− (1− αk)

k−1∏
i=0

(1− αi)Ak−1 − αkψk

(75),(11)

≥ f (wk+1)−
k∏
i=0

(1− αi)
(
Ak−1 +

ψk

αk

)
(19)
= f (wk+1)−

k∏
i=0

(1− αi)Ak.

Thus we have shown by induction that (61) holds for all k ≥ 0.
III. Convergence Speed of φk(w∗)− f(w∗):

We proceed to show how fast
∏k
i=0(1 − αi) converges to zero. First consider the case

that σ > 0. Clearly, (10) shows that the term
∏k
i=0(1−αi) converges to zero at the desired

optimal linear convergence rate of (1 −
√
σ/ρ). With (63), Âk = 0, ∀k ≥ 0, and replacing

φ0(w∗) with the right-hand side of (64) and γ0 with σ via (8), this implies the optimal rate
for first-order methods on strongly convex problems shown in (16), and hence the desired
iteration complexity.

When σ = 0, from that αk > 0 and the fact that
√
a2 + b2 ≤ |a|+ |b|, we get

αk+1 =
−α2

k + αk

√
α2
k + 4

2
≤
−α2

k + αk(αk + 2)

2
= αk, ∀k ≥ 0.

Thus, the sequence of αk is decreasing. Further, we have αk ∈ (0, 1) for all k from the
decreasing property and that

0 =
−1 + 1

2
< α0 =

−1 +
√

5

2
<
−1 +

√
9

2
= 1.

Let us define λk := α−1
k . From the decreasing property of {αk} and (12), we have that

λk+1 − λk =
αk − αk+1

αkαk+1
=

α2
k − α

2
k+1

αkαk+1 (αk + αk+1)
≥
α2
k − α

2
k+1

2α2
kαk+1

=
α2
k(1− (1− αk+1))

2α2
kαk+1

=
1

2
.

Therefore, λk ≥ k/2 + λ0. This result, (13), and the definition of λk imply

α−1
k ≥

k

2
+ α−1

0 =
k

2
+

2
√

5− 1
=
k

2
+

2
(√

5 + 1
)

4
≥
k + 2

2
, ∀k ≥ 0. (79)

We therefore get that from (75), (11) and (79),

ρ

k∏
i=0

(1− αi) = γk+1 = ρα2
k ≤

4ρ

(k + 2)2
, ∀k ≥ 0, (80)

satisfying the optimal convergence speed of O(k−2). The form (18) is then obtained by first
inserting (64) and (80) into (63) to get

f (wk)− f∗ ≤
4

(k + 1)2

(γ0
2
‖w0 −w∗‖2 + f (w0)− f∗ + Âk−1

)
,

and then replacing γ0 with ρ by (8) and Âk with the values in (62) and (19). ut

Limited-memory Common-directions Method 39

A.2 Proof of Proposition 1

Proof From the strong convexity of f , even though there might be multiple possibilities
of t that are optimal for (2), they all result in the same iterate w∗k+1 after the mapping

wk + G(t). We first show that (21) holds at any optimal t∗ that maps to w∗k+1 and then

discuss its neighborhood. As G is linear, we have that there is P ∈ Rn×m such that

G(t) = P t, ∀t ∈ Rm.

Therefore, the optimality condition of the convex problem (2) gives

∂f(wk +G(t))

∂t>

∣∣∣∣
t=t∗

= ∇f(w∗k+1)>P = 0>,

for any t∗ that is optimal for (2), and thus

∇f(w∗k+1)>G (t∗) = ∇f(w∗k+1)>P t∗ = 0, (81)

∇f(w∗k+1)>ṽk+1 = 0, (82)

where (82) holds because the assumption ṽk+1 ∈ span (∇f(wk), ṽk+1) ⊆ Im(G) implies the
existence of some t̂ such that ṽk+1 = P t̂. By combining (82) and (81), we get

∇f (wk +G (t∗))> (ṽk+1 −G (t∗)) = 0, (83)

so (21a) holds at w∗k+1 because the first term is zero and the second term is nonnegative.

For (21b), it is clear from the Lipschitz continuity of the gradient of f that

f
(
w∗k+1

)
≤ f

(
wk −

1

ρ
∇f (wk)

)
≤ f (wk)−∇f (wk)>

(
1

ρ
∇f (wk)

)
+
ρ

2

∥∥∥∥1

ρ
∇f (wk)

∥∥∥∥2
= f (wk)−

1

2ρ
‖∇f (wk)‖2 . (84)

If w∗k+1 = wk + G(t∗) lies in the interior of (21) (i.e., w∗k+1 strictly satisfies the in-

equalities in (21)), by the continuity of f and ∇f , there is a neighborhood of w∗k+1 such

that every point of it satisfies (21). As G is also continuous, it means that for each optimal
solution t∗ there is a neighborhood of which all points satisfy (21).

Now we discuss the cases when w∗k+1 lies on the boundary of (21). When (21a) holds

in equality at w∗k+1, (82) and (81) from the optimality condition at w∗k+1 imply that

ṽk+1 = G(t∗).

When (21b) holds in equality at w∗k+1 = wk +G(t∗), (84) implies that

f

(
wk −

1

ρ
∇f(wk)

)
= f

(
w∗k+1

)
. (85)

By the assumption that ∇f(wk) ∈ Im(G), wk − 1
ρ
∇f(wk) is in the form of wk +G(t). We

have mentioned in the beginning of the proof that the optimal wk +G(t∗) for (2) is unique.
Thus (85) implies that

w∗k+1 = wk −
1

ρ
∇f(wk).

ut

40 Lee, Wang, and Lin

A.3 Proof of Proposition 2

Proof We note that (83) holds at any optimum t∗ as its required conditions are all satisfied.
Therefore, (22a) holds within a neighborhood of any optimal solution of (2) as long as
ψk+1 > 0 since the inequality in (22a) is strictly satisfied at w∗k+1. The part for (22b)

is similar to the argument in the proof of Proposition 1. Notice that when (22b) holds at
equality, G (t∗) = −∇f(wk)/ρ is an optimal solution and thus (83) holds at t∗ as well. Then
with ψk+1 > 0 the inequality in (22a) strictly holds. ut

A.4 Proof of Theorem 2

Proof The solution of (25) also solves the following linear system.

P>k HkPktk = −P>k ∇f(wk), (86)

where we recall that Pk is defined in (27). If qkj satisfies (28), then the right-hand side of

(86) is not all zero, hence tk 6= 0 and Pktk 6= 0. Therefore, from (86), we have

−p>k ∇f(wk) = (Pktk)>HkPktk ≥M2‖Pkt‖2 = M2‖pk‖2. (87)

We then have from Assumption 1 and (87) that

f(wk + θkpk) ≤ f(wk) + θk∇f(wk)>pk + θ2k
ρ

2
‖pk‖2 ≤ f(wk) + θk∇f(wk)>pk

(
1−

ρθk

2M2

)
.

From (87), ∇f(wk)>pk < 0. Therefore, when

1−
ρθk

2M2
≥ c1,

(24) is satisfied. Thus, by considering the possibility of overshoot, we obtain a lower bound
θ̄ of the final step size in (29), and the backtracking procedure takes at most dlogβ θ̄e steps.

ut

A.5 Proof of Theorem 3

Proof The j-th equation in the linear system (86) is

p>k Hkq
k
j = −∇f(wk)>qkj . (88)

By (26), (28), and (88),

‖pk‖‖qkj ‖ ≥
∣∣∣∣ 1

M1
(pk)>Hkq

k
j

∣∣∣∣ =

∣∣∣∣ 1

M1
∇f(wk)>qkj

∣∣∣∣ ≥ ‖∇f(wk)‖‖qkj ‖
δ

M1
.

Therefore,

‖pk‖ ≥
δ

M1
‖∇f(wk)‖. (89)

Combining (87) and (89), we can establish the following result.

−
p>k ∇f(wk)

‖pk‖‖∇f(wk)‖
≥

M2‖pk‖2

‖pk‖‖∇f(wk)‖
≥
δM2

M1
.

By (24), (87), and (89), we have

f(wk+1)− f(wk) ≤ θkc1∇f(wk)>pk ≤ −
M2δ2θkc1

M2
1

‖∇f(wk)‖2. (90)

Limited-memory Common-directions Method 41

Summing (90) up from 0 to k, we get

k∑
j=0

M2δ2c1 min0≤j≤k θj

M2
1

‖∇f(wj)‖2 ≤ f(w0)− f(wk+1) ≤ f(w0)− f∗,

where f∗ is the minimal objective value of f . Consequently, by (29),

gk := min
0≤J≤k

‖∇f(wJ)‖2 ≤
1

k + 1

k∑
J=0

‖∇f(wJ)‖2

≤
1

k + 1

M2
1

M2δ2c1 min0≤J≤k θJ
(f(w0)− f∗)

≤
1

k + 1

M2
1

M2δ2c1θ̄
(f(w0)− f∗).

Finally, the o(1/k) convergence follows from that gk is a decreasing, summable, and non-
negative sequence so Proposition 3.4 and Theorem 3.5 of [24] apply directly. Note that
since

k∑
J=0

‖∇f(wJ)‖2

is bounded, ‖∇f(wk)‖ converges to zero as k approaches infinity. ut

A.6 Proof of Theorem 4

Proof From convexity of f , we have that for any w∗ ∈ Ω,

f (w)− f∗ ≤ ∇f (w) (w −w∗) ≤ ‖∇f (w) ‖‖w −w∗‖.

From (30), we have that

f (w)− f∗ ≤ ‖∇f (w)‖R0. (91)

Define

∆k := f (wk)− f∗ (92)

and therefore from (91),

− ‖∇f(wk)‖ ≤
−(f(wk)− f∗)

R0
=
−∆k
R0

. (93)

By substituting (92) into (90) and using (93), we get

∆k+1 ≤ ∆k −
M2δ2θkc1

M2
1R

2
0

∆2
k. (94)

Now divide (94) by ∆k∆k+1 and note from (90) that ∆k is monotonically decreasing. We
get

1

∆k
≤

1

∆k+1
−
M2δ2θkc1

M2
1R

2
0

. (95)

By summing (95) from 0 to k, we obtain

1

∆0
≤

1

∆k+1
−
M2δ2c1

M2
1R

2
0

k∑
j=0

θj . (96)

42 Lee, Wang, and Lin

This together with (29) leads to

∆k+1 ≤
∆0M2

1R
2
0

M2
1R

2
0 +∆0M2δ2c1

∑k
j=0 θj

≤
∆0M2

1R
2
0

M2
1R

2
0 +∆0M2δ2c1 (k + 1) θ̄

. (97)

From Assumption 1, f is ρ-Lipschitz-continuously differentiable, and from (92) and (30) we
have

∆0 = f(w0)− f∗ ≤
ρ

2
‖w0 − w̄‖2 ≤

ρ

2
R2

0, (98)

where
w̄ = arg min

w∗∈Ω
‖w0 −w∗‖ , (99)

and R0 is finite. By noting that ∆0 ≥ 0 and that the differential of the right-hand side of
(97) with respect to ∆0 is nonnegative when ∆0 ≥ 0, we can use (98) to simplify (97) to

∆k ≤
ρM2

1R
2
0

2M2
1 + ρM2δ2c1(k + 1)θ̄

,

showing the desired O(1/k) rate. ut

A.7 Proof of Theorem 5

Proof Deducting f∗ from both sides of (90) and combining it with (32), we get that for all
k

f(wk+1)− f∗ ≤
(

1−
2σM2δ2θkc1

M2
1

)
(f(wk)− f∗) ≤

(
1−

2σM2δ2θ̄c1

M2
1

)
(f(wk)− f∗) ,

(100)
where the last inequality is from (29). Thus, we see that (100) gives a convergence rate that
is at least Q-linear. Note that our assumptions give c1 > 0, and σM2/M2

1 > 0. Therefore
the coefficient in the right-hand side of (100) is smaller than 1. ut

	Introduction
	Limited-memory Common-directions Method with Optimal Convergence Rates
	Practical Limited-memory Common-directions Method
	Convergence Analysis
	Implementation Details
	Numerical Experiments
	Multicore Parallelization
	Distributed Optimization
	Conclusions
	Proofs

