
Combination of Feature Engineering and Ranking Models
for Paper-Author Identification in KDD Cup 2013

Chun-Liang Li, Yu-Chuan Su, Ting-Wei Lin, Cheng-Hao Tsai, Wei-Cheng Chang, Kuan-Hao Huang,
Tzu-Ming Kuo, Shan-Wei Lin, Young-San Lin, Yu-Chen Lu, Chun-Pai Yang, Cheng-Xia Chang,
Wei-Sheng Chin, Yu-Chin Juan, Hsiao-Yu Tung, Jui-Pin Wang, Cheng-Kuang Wei, Felix Wu,

Tu-Chun Yin, Tong Yu, Yong Zhuang, Shou-de Lin, Hsuan-Tien Lin, Chih-Jen Lin.
National Taiwan University

{r01922001, r01922159, r01944011, r01922025, b99902019, b99902059, b99902073, b99902023, b97902055, b98902105,
b99902109, r01944041, d01944006, r01922136, b98901044, r01922165, b98901037, b99902090, d00922023, r01922141,

r01922139}@ntu.edu.tw, {sdlin, htlin, cjlin}@csie.ntu.edu.tw

ABSTRACT
The track 1 problem in KDD Cup 2013 is to discriminate be-
tween papers confirmed by the given authors from the other
deleted papers. This paper describes the winning solution
of team National Taiwan University for track 1 of KDD Cup
2013. First, we conduct the feature engineering to transform
the various provided text information into 97 features. Sec-
ond, we train classification and ranking models using these
features. Last, we combine our individual models to boost
the performance by using results on the internal validation
set and the official Valid set. Some effective post-processing
techniques have also been proposed. Our solution achieves
0.98259 MAP score and ranks the first place on the private
leaderboard of Test set.

1. INTRODUCTION
Track 1 of KDD Cup 2013 requires distinguishing whether

the assigned papers for a given author by Microsoft Aca-
demic Search are truly written by this author. The dataset [8],
which is provided by Microsoft Academic Search, contains
the information of confirmation and deletion of authors. The
confirmation means the authors acknowledge they are the
authors of the given paper; in contrast, the deletion means
the authors claim that they are not the authors of the given
paper. The confirmation and deletion information are split
by organizers into three parts, including Train, Valid, and
Test sets based on author IDs.

The Train set contains 3,739 authors. For each author,
the AuthorId, ConfirmedPaperIds, and DeletedPaperIds are
provided. The Valid set of 1,486 authors, each of which is
with a sequence of assigned paper IDs without confirmation
or deletion, is for public leaderboard evaluation. The an-
swers (confirmation/deletion) in the Valid set were released
two weeks before the end of the competition. Attenders were
allowed to refine their algorithms based on the released an-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

swers of the Valid set, and were required to submit their
models one week before the end of the competition. After
the submission, the Test set of 2,245 authors was released
for private leaderboard evaluation.

In addition to the Train set, other information is also
provided. Author.csv contains author names and their af-
filiations. Paper.csv contains paper titles, years, confer-
ence IDs, journal IDs, and keywords. PaperAuthor.csv

contains paper IDs, author IDs, author names, and affilia-
tions. The Journal.csv and Conference.csv contain short
names, full names, and home page information of journals
and conferences, respectively. Unfortunately, the provided
data are noisy and have missing values. For instance, Pa-
perAuthor.csv contains the relations of authors and papers,
but papers may be wrongly assigned to an author.

The goal of the competition is to predict which given pa-
pers are written by the given author. The evaluation crite-
rion is mean average precision (MAP), which is commonly
used for ranking problems. Before answers of the Valid set
were released, each team was allowed to submit their results
on the Valid set five times per day and MAP scores were
shown on the public leaderboard. During the last week of
the competition, each team was allowed to submit multiple
results on the Test set, and select one result for the final
standing.

The paper describes the approaches of team National Tai-
wan University. According to the announced result, our ap-
proach achieves the best result on the Test set with 0.98259
MAP score.

The paper is organized as follows. Section 2 outlines the
framework of our approaches. Section 3 introduces the ap-
proaches to transform the given text information into mean-
ingful features. Section 4 discusses the models we use. Sec-
tion 5 describes how we combine different models and post-
process the combined result to boost the performance. Fi-
nally, we conclude in Section 6. Our implementation is avail-
able at https://github.com/kdd-cup-2013-ntu/track1.

2. FRAMEWORK
This section first provides the architecture of our system.

Then it discusses the self-split internal validation set from
the Train set, which is a crucial component in the archi-
tecture. The internal validation is not only useful for off-
line validating the model performance and combining differ-
ent models, but also important for avoiding over-fitting the

Feature generation

Individual models

Combining models

Post-processing

Figure 1: The architecture of our approach

Valid set.

2.1 System Overview
Our system can be divided into four stages: generat-

ing features, training individual models, combining differ-
ent models, and post-processing as shown in Figure 1. In
the first stage, since the given data are all text files, we
explore different approaches to generate various features,
which capture different aspects of the given information. In
the second stage, we mainly employ three models, includ-
ing Random Forests, Gradient Boosting Decision Tree and
LambdaMART. For each individual model, to avoid over-
fitting, we carefully conduct the parameter selection by using
the internal validation set. In the third stage, we combine
the three different models by using results on the internal
validation set and the official Valid set. In the last stage,
we post-process the combined result to further improve the
performance by exploiting the characteristic of one feature
which is not fully utilized by the models.

2.2 Validation Set
A validation set is useful to evaluate models and avoid

over-fitting. Given that the answer of the official Valid set
is not available in the early stage of the competition, we
construct an internal validation set for verifying our mod-
els. It is also useful to avoid over-fitting leaderboard results
on the Valid set. In this competition, official Train, Valid
and Test sets are generated by randomly shuffling authors
with ratio 5:2:3. Therefore, we randomly split the Train set
to have 2,670 authors as the internal training set and 1,069
authors as the internal validation set. In our experiments,
the MAP score on the internal validation set is usually con-
sistent with the one computed by five-folds cross validation
on the official Train set.

3. FEATURE ENGINEERING
To determine the confirmation or deletion of each author-

paper pair, we transform Train.csv into a binary classifi-
cation training set. Each confirmation of an author-paper
pair is a training instance with label 1; each deletion of of an
author-paper pair is a training instance with label -1. We
then generate 97 features for each instance and apply the
learning algorithms described in Section 4. Subsequently,
in describing the feature generation for each author-paper
paper, we refer to the author and the paper as the target
author and target paper, respectively. In this section, we
describe our approaches of transforming the given informa-
tion into features. For the full feature list, please refer to

the Appendix.

3.1 Preprocessing
Since many features are mainly based on string match-

ing, we conduct simple preprocessing to clean the data. We
first remove or replace non-ascii characters. Then, we re-
move stop words in affiliations, titles and keywords, where
the stop-word list is obtained from the NLTK package [1].
Finally, we convert all characters into lowercase before com-
parison.

3.2 Features Using Author Information
This type of features stems from user profile, such as user

names or affiliations. Based on the information we try to
capture, these features can be classified into the following
three groups.

3.2.1 Confirmation of Author Profiles
An intuitive method to confirm that a paper is written

by a given author is to check whether the name appears in
the author section of the paper. However, a more careful
setting is to check also the consistency of other information
such as affiliations. In the competition, author affiliations
are provided in Author.csv and PaperAuthor.csv. One ba-
sic assumption about Author.csv and PaperAuthor.csv is
that Author.csv contains the author profiles maintained by
Microsoft Academic Search, while the author information in
PaperAuthor.csv is extracted from the paper without con-
firmation. The assumption is based on our observation on
the given files as well as the online system. When there exists
a conflict between Author.csv and PaperAuthor.csv, the
author information in the online system is usually the same
as that in Author.csv. Therefore, the features of author
profile confirmation comprise of comparisons of author name
and affiliation between Author.csv and PaperAuthor.csv.
The comparisons are done by string matching, and various
string distances are used as features, including Jaro distance,
Levenshtein distance, Jaccard distance (of words) and char-
acter match ratio. These features are simple but useful; for
example, by using only the affiliation Levenshtein distance
as a feature, we can achieve 0.94 MAP score on the Valid
set.

An issue in author-name matching is to handle abbrevi-
ated names, which are very common in PaperAuthor.csv.
In contrast, author names in Author.csv are usually in com-
plete format. The string distance between an abbreviated
name and a full name may be large even if the two names
are the same. Two different approaches are used to over-
come the problem. The first one is to convert all names
into an abbreviated format before the comparison; in our
approach, the conversion is done by retaining only the last
name and first character of first and middle names. The sec-
ond approach is to split the author name into first, last and
middle names, and compare each of them separately. The
two approaches are applied independently to obtain different
features.

Another challenge of name matching comes from the in-
consistency of the name order. There are two main name
orders in the provided data, the Western order and the East-
ern order. The Western-order means that given names pre-
cede surnames; in contrast, the Eastern-order means that
surnames precede given names. While most of the names
are in the Western order, names in the Eastern order also

frequently appear to cause failed comparisons. Although
it is possible to check the name order and transform the
Eastern-order names to Western-order ones before compar-
isons, such checking might be difficult and is prone to er-
ror. Instead, two different features are generated for the
same distance measure. One assumes that names from Au-

thor.csv and PaperAuthor.csv are in the same name order.
The other assumes that names are in opposite orders, so the
name order in Author.csv is changed before string compar-
isons. Specifically, the order change is done by exchanging
the first word and last word in the name. However, this set-
ting may wrongly consider two different author names as the
same; for example, Xue Yan (PID:1224852) and Yan Xue
(PID:482431) are considered as the same person given the
second feature. Fortunately, because the number of Eastern-
order name is relatively small in the data set, our approach
still improves the overall performance.

3.2.2 Coauthor Name Matching
Features matching coauthor names are inspired by an ob-

servation of the dataset: in many deleted papers, there ex-
ist coauthors with names similar to the target author. For
example, two authors (174432 and 1363357) of the deleted
paper 5633 are the same as the target author Li Zhang.
Therefore, having such coauthors is an important trait of
deleted papers. To capture the information, we take the
minimum string distance of names between the target au-
thor and his/her coauthors as a feature. Similar to the fea-
ture generation in Section 3.2.1, we also need to address the
issue of abbreviated names and name orders.

Another problem for matching coauthor names is to de-
cide names for comparison. For a given author identifier,
corresponding names may appear in both Author.csv and
PaperAuthor.csv. In fact, multiple names under this iden-
tifier may appear in PaperAuthor.csv. These names may
be different because of abbreviations, typos or even pars-
ing errors of the Microsoft system. For example, author
1149778 is Dariusz Adam Ceglarek in Author.csv, while
it corresponds to Dariusz Ceglarek and D. Ceglarek un-
der paper 770630 in PaperAuthor.csv. Besides, some au-
thors in PaperAuthor.csv do not appear in Author.csv. To
handle the problem, multiple features are generated, where
each feature is computed by using different combinations of
name sources. For instance, the target author name could
be from Author.csv and PaperAuthor.csv, and coauthor
names could be from PaperAuthor.csv. Then the distances
of all possible combinations of the author and each coauthor
names from different sources are computed. We select the
minimum distance among all possible combinations to rep-
resent the name distance between the author and his/her
coauthors.

3.2.3 Author Consistency
Understandably, information in the dataset should be con-

sistent across papers and authors. Author-consistency fea-
tures try to measure such information in author profiles. In
particular, we measure the coauthor-affiliation consistency
and research-topic consistency as features. Affiliation con-
sistency is based on the assumption that authors with the
same affiliation are more likely to co-work on a paper; there-
fore, we compute the affiliation string distance as well as the
number of coauthors with the same affiliation as the target
author. Similar to coauthor name matching, the affiliation

may come from different sources, so we compute multiple
features.

Research-topic consistency assumes that the author should
work on similar topics across different papers. Although the
research-topic or field information is not given in the dataset,
we infer it from the paper titles and keywords. Therefore, we
compute the title and keyword similarity between the target
paper and the target author’s other papers as features.

3.2.4 Missing Value Handling
The missing value problem is an important issue of string

matching. A common situation in comparing author affilia-
tions or author names is that both strings are empty. The
resulting zero string distance wrongly indicates an identical
match. Then papers with missing values tend to be ranked
higher in prediction. To conquer this problem, we consider
values other than zero in calculating the distance. If both
strings for comparison are empty, we define their Jaro dis-
tance as 0.5, Jaccard distance as 0.5 and Levenshtein dis-
tance as the average length of the field. Besides, we use
some indicators as features; examples include the number of
coauthors without affiliation information.

3.3 Features Using Publication Time
Publication-time features are related to the publication

year provided in Paper.csv. The intuition of these features
is that an author can be active in a specific period, and pa-
pers written outside this period are likely authored by oth-
ers. We include several features to capture the publication-
time information, such as the exact publication year, publication-
time span and publication year differences with other papers
of the target author.

To determine whether the provided year is valid is an is-
sue to resolve before we can generate year features. In the
dataset, some papers’ publication years are obviously in-
valid, such as 0, -1 and 800190. Besides, experiments on
the internal validation set show that excluding publication
years earlier than 1800 A.D. improves the overall perfor-
mance. Therefore, we set the valid interval to be between
1800 A.D. and 2013 A.D. and ignore publication years out-
side the interval.

Removing invalid publication years incurs the missing value
problem. To fill the missing year values, we utilize the
publication-year information of coauthors. The basic con-
cept is to replace a missing value with the average of the
mean publication years of all coauthors of the paper. This
average, however, is not computable because coauthors may
also have missing information on publication years. An iter-
ative process is used to solve the problem as follows. First,
papers with invalid years are ignored and mean of available
publication years is calculated for each author. The mean
value is then used to fill the missing value of the author.
These new values can be incorporated to calculate the new
mean value of the publication years. Therefore, the mean
publication years and missing values are computed alterna-
tively until convergence.

3.4 Features Using Heterogeneous Bibliographic
Networks

The work in [9] introduces the concept of Heterogeneous
Bibliographic Network which captures the different relations
between authors and papers, and demonstrates the effective-
ness of link prediction. In this competition, finding whether

a paper is written by a given author is the same as predicting
a link between an author and a paper. Inspired by [9], we
extract several useful features from the network to obtain
the relation between nodes.

Heterogeneous Bibliographic Network is a graph G = (V,E),
where V is the vertex set and E is the edge set. According
to the given data, the vertex set V = P ∪A∪C∪J contains
the set of papers P, the set of authors A, the set of con-
ferences C and the set of journals J . The set E consists of
two kinds of edges. Based on PaperAuthor.csv, if author ai

writes paper pj , then we create the edge eij ; based on Pa-

pers.csv, if paper pm belongs to conference cn or journal jn,
then we create the edge emn. Note that, because informa-
tion in PaperAuthor.csv may be incorrect, some links are
wrongly generated in the network.

After generating the network, we could extract basic fea-
tures, such as the number of publications of an author, and
the number of total coauthors of an author.

To utilize the heterogeneous bibliographic network, we
further define the“path”to describe node relationship. Given
the paper-author pair (pi, aj), a length k meta path is defined
as (pi ↔ v1 ↔ · · · ↔ vk−1 ↔ aj), where v1, · · · , vk−1 ∈ V
and ↔ means two nodes are connected by an edge. For ex-
ample, given (pi, aj), Sij = {(pi ↔ j ↔ p̄↔ aj)} is a set of
length-3 meta paths which captures all papers of author aj

published in the same journal j as pi. In Appendix A, we
list all kinds of meta paths we used for feature engineering.

On the other hand, given an author pair (ai, aj), a length-
k pseudo path is defined as (ai ∼ a1 ∼ · · · ∼ ak−1 ∼ aj),
where a1, · · · , ak−1 ∈ A. However, since there is no edge
between two author nodes in our network, ∼ is the pseudo-
edge. If author node aj is reachable from ai on the network
by traversing non-author nodes, then we consider there is a
pseudo-edge between ai and aj . In other words, the pseudo-
edge describes the possible co-authorship between two au-
thors. By considering the pseudo paths, we can grasp dif-
ferent co-authorship information.

4. MODELS
After generating features, we apply classification methods

to train the data set. To enhance the diversity, we explore
three state-of-the-art algorithms as described in this section.

4.1 Random Forests
Random Forests is a tree based learning method intro-

duced by Leo Breiman [2]. The algorithm constructs multi-
ple decision trees using randomly sub-sampled features and
outputs the result by averaging the prediction of individ-
ual trees. The use of multiple trees reduces the variance of
prediction, so Random Forests are robust and useful in this
competition.

We use the implementation in the scikit-learn package [7].
The package provides a parallel module to significantly speed
up the tree building process. Note that the scikit-learn im-
plementation combines classifiers by averaging probabilistic
prediction instead of a voting mechanism in [2].

In this competition, the variance may influence the stand-
ing on the leaderboard significantly. For example, with dif-
ferent random seeds and fewer trees, the performance of
Random Forests can vibrate from 0.981 to 0.985 on the Valid
set. On the public leaderboard, the scores of top 20 places
are from 0.98554 to 0.98130. Our experiments show that us-
ing more trees leads to better validation scores due to lower

variance. After some trials, we use 12,000 trees and a fix
random seed 1 in our Random Forests model, which could
achieve 0.983340 MAP score on the Valid set.

4.2 Gradient Boosting Decision Tree
Gradient Boosting Decision Tree (GBDT) [5] is also a tree-

based learning algorithm. We use the same package scikit-
learn [7]. The optimization goal of GBDT in [7] is to opti-
mize “deviance” which is same as logistic regression. Unlike
Random Forests, GBDT combines different tree estimators
in a boosting way. A GBDT model is built sequentially by
using weak decision tree learners on reweighted data. Then
it combines built trees to generate a powerful learner. The
main disadvantage of GBDT is that it cannot be trained in
parallel, so we only use 300 trees to build the final ensemble
model of GBDT. This is much smaller than 12,000 for Ran-
dom Forests. With the above parameters, the GBDT model
could achieve 0.983046 MAP score on the Valid set.

4.3 LambdaMart
We choose LambdaMART [3] because of its recent success

on Yahoo! Learning to Rank Challenge [4]. LambdaMART
is the combination of GBDT and LambdaRank. The main
advantage is that LambdaMART use LambdaRank gradi-
ents to consider highly non-smooth ranking metrics. We
use the implementation in the JForests [6], which optimizes
the NDCG metric. To avoid over-fitting, we train 10 Lamb-
daMART models with random seeds from 0 to 9, and average
the output confidence scores. The number of leaves is set
to 32, the feature sample rate is 0.3, the minimum instance
percentage per leaf is 0.01, and the learning rate is 0.1. With
the above parameters, the LambdaMART model could also
achieve 0.983047 MAP score on the Valid set.

5. ENSEMBLE AND POST-PROCESSING
To further boost our performance, we ensemble results of

different models and conduct a post-processing procedure.

5.1 Ensemble
In our system, we calculate the simple weighted average

after scaling the decision values to be between 0 and 1. Be-
cause only three models described in Section 4 were built,
we search a grid of weights to find the best setting.

To see the performance under a setting of weights, we
check the results on the internal validation set and the offi-
cial Valid set. We train three models on the internal train-
ing set, and predict on the internal validation set. Then we
combine the results according to the weights to check the
improvement. Similarly, we train three models on the Train
set (internal train set + internal valid set) and predict on
the Valid set. Then we check whether results are further
improved. The final weights are 1 for both Gradient Boost-
ing Decision Tree and LambdaMART, and 5 for Random
Forests.

5.2 Post-Processing

5.2.1 Using Strong Features
In Section 3.4, we describe the concept of Heterogeneous

Bibliographic Network. Even if there is an edge between
the author node a and the paper node p, a may not be
the author of p because of the incorrect information in Pa-

perAuthor.csv. To get confidence on each link, we ob-

serve from PaperAuthor.csv that there are some duplicated
paper-author pairs. For example, lines 147,035 and 147,036
record the same author-paper pair. We observe that du-
plicates highly correlate with the confirmation. Therefore,
we let the number of duplicates be the weight of the edge
between a paper and an author. We use weighted edges in
two ways. First, we add a feature to illustrate the number
of duplicates before the training procedure to obtain models
described in Section 4. Second, according to the number of
duplicates, we divide the given papers of each author into
two groups; those having more than one duplicate and those
having only one. Then in our prediction, we rank the first
group before the second. For each group, we rank its mem-
bers according to their decision values.

5.2.2 Duplicated Paper ID
In the Test set, the assigned papers of an author may

contain duplicates. For example, author 100 has five papers
1, 2, 2, 3 and 4 to be ranked, and confirmed papers are 1,
2, 2 and 4. According to the algorithm provided by Kaggle
for calculating MAP, only one of these duplicated paper IDs
will be calculated in MAP. Therefore, the list 1, 2, 4, 3, 2
has a higher MAP than the list 1, 2, 2, 4, 3 because the
second paper with ID 2 is treated as a deleted paper in the
evaluation algorithm of Kaggle. To handle this situation, we
put all duplicated paper IDs to the end of the ranked list as
deleted papers.

6. CONCLUSION
In this paper, we introduce the approaches of team Na-

tional Taiwan University for track 1 of KDD Cup 2013. We
successfully transform the given text information into sev-
eral useful features and propose techniques to address the
issue of noisy texts for making features robust. We then
apply several state-of-the-art algorithms on the generated
features. To further improve the performance, we conduct
a simple weighted average ensemble and a post-processing
procedure by utilizing some strong features. During each
stage, we cautiously use the internal validation or the offi-
cial Valid set to potentially avoid the over-fitting issue. This
step is crucial for us to get the best performance on the pri-
vate leaderboard for predicting data in the Test set.

7. ACKNOWLEDGMENT
We thank the organizers for holding this interesting com-

petition. We also thank the College of Electrical Engineer-
ing and Computer Science as well as the Department of
Computer Science and Information Engineering at National
Taiwan University for their supports and for providing a
stimulating research environment. The work was also sup-
ported by National Taiwan University under Grants NTU
102R7827, 102R7828, 102R7829, and by National Science
Council under Grants NSC 101-2221-E002-199-MY3, 101-
2628-E002-028-MY2, 101-2628-E002-029-MY2.

8. REFERENCES
[1] S. Bird, E. Klein, and E. Loper. Natural language

processing with Python, 2009.

[2] L. Breiman. Random forests. Machine Learning, 2001.

[3] C. J. C. Burges. From RankNet to LambdaRank to
LambdaMART: An Overview. 2010.

[4] O. Chapelle and Y. Chang. Yahoo! learning to rank
challenge overview. Journal of Machine Learning
Research - Proceedings Track, 2011.

[5] J. H. Friedman. Stochastic gradient boosting.
Computational Statistics and Data Analysis, 2002.

[6] Y. Ganjisaffar, R. Caruana, and C. Lopes. Bagging
gradient-boosted trees for high precision, low variance
ranking models. In Proceedings of the 34th international
ACM SIGIR conference on Research and development
in Information, 2011.

[7] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research, 2011.

[8] S. B. Roy, M. D. Cock, V. Mandava, S. Savanna,
B. Dalessandro, C. Perlich, W. Cukierski, and
B. Hamner. The microsoft academic search dataset and
kdd cup 2013. In KDD Cup 2013 workshop, 2013.

[9] Y. Sun, R. Barber, M. Gupta, C. C. Aggarwal, and
J. Han. Co-author relationship prediction in
heterogeneous bibliographic networks. In Advances in
Social Networks Analysis and Mining, 2011.

APPENDIX
A. FEATURE LIST

Since our team members are divided into several sub-
groups internally, some features are repeatedly generated.
For these features, we denote the n times repeats by (*n) at
the end of the description.

A.1 Features Using Author Information
Confirmation of Author Profile

1. The Levenshtein distance between the names of the tar-
get author in Author.csv and PaperAuthor.csv.

2. The Levenshtein distance between the affiliations of the
target author in Author.csv and PaperAuthor.csv (*2).

3. The ratio of matched substring between the names of
the target author in Author.csv and PaperAuthor.csv.

4. The ratio of matched substring between the affiliations
of the target author in Author.csv and PaperAuthor.csv.

5. The ratio of matched substring between the abbreviated
names of the target author in Author.csv and Paper-

Author.csv.

Coauthor Name Matching

1. The maximum Jaro distances between the target au-
thor’s name and each coauthor’s name. The names are
from PaperAuthor.csv under the target paper.

2. The maximum Jaro distances between the last names
of the target author and each coauthor. The names are
from PaperAuthor.csv under the target paper.

3. The maximum Jaro distances between the target au-
thor’s name and each coauthor’s name. The names are
from PaperAuthor.csv under the target paper. Coau-
thors having the same affiliation with the target author
are ignored during the comparison.

4. The minimum Levenshtein distances between the target
author’s name and each coauthor’s name. The names
are from PaperAuthor.csv under the target paper. Coau-
thors that are in the same affiliation of the target author
are ignored during comparison.

5. The number of authors having the same name as the
target author in the entire dataset.

6. The maximum Jaro distances between the abbreviated
names of the target author and each coauthor. The
names are from PaperAuthor.csv under the target pa-
per. Coauthors that are in the same affiliation of target
author are ignored during comparison.

7. The minimum among Levenshtein distances between the
abbreviated names of the target author and each coau-
thor. The names are from PaperAuthor.csv under the
target paper. Coauthors that are in the same affiliation
of target author are ignored during comparison.

8. The minimum substring matched ratios between the tar-
get author’s last name and each coauthor’s last name.
The author’s name is form Author.csv, and coauthors’
names are from PaperAuthor.csv under the target pa-
per. Coauthors that are in the same affiliation of target
author are ignored during comparison.

9. The minimum substring matched ratios between the tar-
get author’s first name and each coauthor’s first name.
The author’s name is form Author.csv, and coauthors’
names are from PaperAuthor.csv under the target pa-
per. Coauthors that are in the same affiliation of target
author are ignored during comparison.

10. The minimum substring matched ratios between the tar-
get author’s reversed name and each coauthor’s name.
Middle name is ignored, and the target author’s first
name and last name are exchanged before comparison.
The author’s name is form Author.csv, and coauthors’
names are from PaperAuthor.csv under the target pa-
per. Coauthors that are in the same affiliation of target
author are ignored during comparison.

11. The minimum substring matched ratios between the tar-
get author’s middle name and each coauthor’s middle
name. The author’s name is form Author.csv, and
coauthors’ names are from PaperAuthor.csv under the
target paper. Coauthors that are in the same affiliation
of target author are ignored during comparison.

12. The maximum Jaro distances between the target au-
thor’s last name and each coauthor’s last name. The
names are from PaperAuthor.csv under the target pa-
per. Coauthors in the same affiliation as the target au-
thor are ignored during comparison.

13. The maximum Jaro distances between the target au-
thor’s first name and each coauthor’s first name. The
names are from PaperAuthor.csv under the target pa-
per. Coauthors in the same affiliation as the target au-
thor are ignored during comparison.

14. The maximum Jaro distances between the target au-
thor’s name and each coauthor’s name. Middle name
is ignored, and the target author’s first name and last
name are exchanged before comparison. The names are
from PaperAuthor.csv under the target paper. Coau-
thors in the same affiliation as the target author are
ignored during comparison.

15. The maximum Jaro distances between the abbreviated
names of the target author and each coauthor. Mid-
dle name is ignored, and the target author’s first name
and last name are exchanged before abbreviation. The
names are from PaperAuthor.csv under the target pa-
per. Coauthors in the same affiliation as the target au-
thor are ignored during comparison.

16. The maximum Jaro distances between the abbreviated
names of the target author and each coauthor. Middle
name is ignored, and the coauthor’s first name and last

name are exchanged before abbreviation. The names are
from PaperAuthor.csv under the target paper. Coau-
thors in the same affiliation as the target author are
ignored during comparison.

17. The minimum Levenshtein distances between the tar-
get author’s last name and each coauthor’s last name.
The names are from PaperAuthor.csv under the target
paper. Coauthors in the same affiliation as the target
author are ignored during comparison.

18. The minimum Levenshtein distances between the tar-
get author’s first name and each coauthor’s first name.
The names are from PaperAuthor.csv under the target
paper. Coauthors in the same affiliation as the target
author are ignored during comparison.

19. The minimum Levenshtein distances between the target
author’s name and each coauthor’s name. Middle name
is ignored, and the target author’s first name and last
name are exchanged before comparison. The names are
from PaperAuthor.csv under the target paper. Coau-
thors in the same affiliation as the target author are
ignored during comparison.

20. The minimum Levenshtein distances between the abbre-
viated names of the target author and each coauthor.
Middle name is ignored, and the target author’s first
name and last name are exchanged before abbreviation.
The names are from PaperAuthor.csv under the target
paper. Coauthors in the same affiliation as the target
author are ignored during comparison.

21. The minimum Levenshtein distances between the ab-
breviated names of the target author and each coau-
thor. Middle name is ignored, and the coauthor’s first
name and last name are exchanged before abbreviation.
The names are from PaperAuthor.csv under the target
paper. Coauthors in the same affiliation as the target
author are ignored during comparison.

22. The maximum of affiliation Jaro distances times name
Levenshtein distances betweein target author and coau-
thors. Both author name and affiliation are from Pa-

perAuthor.csv.
23. The maximum Jaro distances between the target au-

thor’s name and each coauthor’s name. The name of
target author is from Author.csv, and that of coau-
thors are from PaperAuthor.csv under the target pa-
per. Coauthors that are in the same affiliation of target
author are ignored during comparison.

24. The minimum Levenshtein distances between the target
author’s name and each coauthor’s name. The name
of target author is from Author.csv, and that of coau-
thors are from PaperAuthor.csv under the target paper.
Coauthors that are in the same affiliation of target au-
thor are ignored during comparison.

Author Consistency

1. The maximum Jaro distance between the affiliation of
the target author and affiliations of coauthors in the
paper. The affiliations are from Author.csv.

2. The maximum Levenshtein distance between the affilia-
tion of the target author and affiliations of coauthors in
the paper. The affiliations are from Author.csv.

3. The maximum Jaro distance between the affiliation of
the target author and affiliations of coauthors in the
paper. The affiliations are from PaperAuthor.csv under
the target paper.

4. The minimum Levenshtein distance between the affilia-
tion of the target author and affiliations of coauthors in

the paper. The affiliations are from PaperAuthor.csv

under the target paper.
5. The maximum Jaro distance between the affiliation of

the target author and affiliations of coauthors in the
paper. The affiliations are from PaperAuthor.csv under
all papers published by a given author.

6. The maximum Levenshtein distance between the affilia-
tion of the target author and affiliations of coauthors in
the paper. The affiliations are from PaperAuthor.csv

under all papers published by a given author.
7. The maximum Jaccard distance between the affiliation

of the target author and affiliations of coauthors in the
paper. The affiliations are from PaperAuthor.csv under
all papers published by a given author.

8. The number of coauthors in the same affiliation as the
target author. The affiliations are from PaperAuthor.csv

under the target paper.
9. The number of authors with no affiliation information

in PaperAuthor.csv under the target paper.
10. The percentage of authors with no affiliation informa-

tion in PaperAuthor.csv under the target paper.
11. Maximum paper title Jaro distance of the target paper

and papers written by the author.
12. Minimum paper title Levenshtein distance of the target

paper and papers written by the author.
13. Maximum keywords Jaccard distance of the target paper

and papers written by the author.

A.2 Features Using Publication Time
1. Earliest publication year of the author (*2).
2. Latest publication year of the author (*3).
3. Publication year of the paper, and the invalid year is

replaced by 0 (*3).
4. Indicator to see if the publication year of the paper is

missing.
5. Publication year after filling missing value.
6. Mean publication year of all papers of the author.
7. Standard deviation of publication year of all papers of

the author.
8. Mean publication year of the authors’ papers in the same

conference as the target paper.
9. Standard deviation of the publication year of the au-

thors’ papers in the same conference as the target paper.
10. Mean publication year of the authors’ papers in the same

journal as the target paper.
11. Standard deviation of the publication year of the au-

thors’ papers in the same journal as the target paper.
12. Mean publication year of all papers in the same confer-

ence as the target paper.
13. Standard deviation of the publication year of all papers

in the same conference as the target paper.
14. Mean publication year of all papers in the same journal

as the target paper.
15. Standard deviation of the publication year of all papers

in the same journal as the target paper.
16. The difference between target author’s the latest publi-

cation year and the earliest publication year.
17. The difference between the target paper’s publication

year and the median of the publication year of all the
papers of the target author.

18. The maximum publication-year difference between the
target paper and papers of the target author.

A.3 Features Using Heterogeneous Bibliographic
Network

1. Total number of papers published by the target author
(*3).

2. Total number of coauthors of the target author (*4).
3. Number of authors of the target paper (*3).
4. Number of occurrences of the (PID,AID) pairs in Pa-

perAuthor.csv (*2, and used for post processing).
5. Number of papers the author published in the conference

of the target paper (*3).
6. Number of papers the author published in the journal

of the target paper (*3).
7. Number of conference papers of the author (*2).
8. Percentage of conference papers of the author.
9. Number of conferences the author has papers in.

10. Number of journal papers of the author (*2).
11. Percentage of journal papers of the author.
12. Number of journals the author has papers in.
13. Average paper number of the author in conferences he/she

has published in.
14. Average paper number of the author in journals he/she

has published in.
15. Total number of papers written by coauthors of the tar-

get author.
16. Average paper number of coauthors of the target author.
17. The variance of paper number of coauthors of the target

author.
18. Total number of papers written by coauthors in the tar-

get paper.
19. Average paper number of coauthors in the target paper.
20. The variance of paper number of coauthors in the target

paper.
21. Indicator of journal papers.
22. Indicator of conference papers.
23. The difference between the number of conference papers

and journal papers written by the target author.
24. The number of coauthors in the paper that have coau-

thored other papers with the target author.
25. The percentage of papers that are coauthored with at

least one of the coauthors of the target paper.
26. Maximum number of coauthored papers with coauthors

of the target paper.
27. Maximum percentage of coauthored papers (with re-

spect to total number of papers written by the target
author) with coauthors of the target paper.

28. Number of coauthors that appear more than once under
the target paper in PaperAuthor.csv.

29. Indicator of whether the paper has only one author.
30. Number of papers published by the author which has

duplicated (PID, AID) in PaperAuthor.csv.
31. Number of coauthored papers of the target author with

all the coauthors of the target paper.
32. Number of coauthored papers of the target author with

all the coauthors of the target paper, divided by the
total number of coauthored papers of the target author
with each coauthor of the target paper.

33. Number of coauthored papers of the target author with
all the coauthors of the target paper (excluding the tar-
get paper).

34. Number of coauthored papers of the target author with
all the coauthors of the target paper, divided by total
number of coauthored papers of the target author with
all coauthors of the target paper (excluding the target
paper).

35. Total number of coauthored papers of the target author
with all possible coauthors (*2).

36. Average number of coauthored papers of the target au-
thor with each coauthor of the target paper (*2).

37. Number of coauthored papers of the target author with
all the coauthors of the target paper.

