
Analysis of Switching Dynamics with Competing
Support Vector Machines

Ming-Wei Chang and Chih-Jen Lin
Department of Computer Science and Information Engineering

National Taiwan University, Taipei 106, Taiwan
E-mail: lincj@ccms.ntu.edu.tw

Ruby C. Weng
Department of Statistics

National Chenechi University
Taipei 116, Taiwan

Abstract - We present a framework for the unsu-
pervised segmentation of time series using support
vector regression. It applies to non-stationary time
series which alter in time. We follow the architecture
by Pawelzik et al. [13] which consists of competing
predictors. In [13] competing Neural Networks were
used while here we exploit the use of Support Vector
Machines, a new learning technique. Results indi-
cate that the proposed approach is as good as that
in [13]. Differences between the two approaches are
also discussed.

I. Introduction

Recently support vector machines (SVM) [17] has been
a promising method for data classification and regres-
sion. However, its use on other types of problems have
not been exploited much. In the paper we will apply it
to unsupervised segmentation of time series. We consider
the case in Pawelzik et al. [13] where different samples
(xt, yt) are generated by a number m of unknown func-
tions frt , rt ∈ {1, . . . ,m} which alternate according to
rt, i.e. yt = frt(xt). We then would like to determine
functions fr with their respective rt given time series
{xt, yt}lt=1. Therefore, it is likely that given points on
different function surfaces, the task is to separate these
points to different groups where each one corresponds to
points on one surface.

Practical applications of time-series segmentation in-
clude, for example, speech recognition [14], signal classi-
fication [5], and brain data [12].

As without any training information, this problem
must be considered in an unsupervised manner. In order
to correctly separate these points, we cannot only count
on the information of {xt, yt}. Previous approaches usu-
ally need some additional properties.

In [13], the authors assumed that time series have a low

switching rate. That is, in general data before and after
any given time point t are from the same time series.
Therefore, in addition to the spatial relation of xt, t =
1, . . . , l, such an assumption provides more connections
among xt. Another example by Feldkamp et al. [4] does
not consider {xt, yt} to be from slowly changing time
series. However, they assume, for example, there is a
binary sequence like

01001011 · · · ,

where each {xt, yt} is associated with one of the four
categories: 00, 01, 10, and 11. Hence if {xt, yt} is in
the 00 class, {xt+1, yt+1} must be in 00 or 01. Such
additional information are typically available based on
different applications. Here we will focus on time series
so the same condition on a slow changing rate is assumed.

Many papers have considered this issue by using neural
networks. See [13], [10], [6] and references therein. An-
other important approach is via hidden Markov models
where examples are [1], [7], [16]. Basically [13] proposed
to use several competing neural networks weighted by
their relative performance. Weights of different networks
are adjusted in an annealed manner where we gradually
increase the degree of competition. The neural network
used is a radius basis function network of the Moody-
Darken type [9]. Here we follow a similar framework but
discuss it more from a point of view of solving a global
minimization problem. In addition, instead of RBF net-
works we used SVM where their differences are also dis-
cussed.

This paper is organized as follows. In Section II, we
discuss our approach and present how SVM can be in-
corporated. An important parameter in our algorithm
is β whose calculation will be discussed in Section III.
Section IV demonstrates experimental results on some
data sets. We present some discussions in Section V.

II. Annealed Competition of Support Vector
Machines

If without considering noise, we have

yt = frt(xt), t = 1, . . . , l.

If we assign

pti =
{

1 if rt = i,
0 otherwise, (1)

then
l∑
t=1

m∑
i=1

pti(yt − fi(xt))2 = 0.

Therefore, pti, fi, i = 1, · · · ,m, t = 1, · · · , l is an op-
timal solution of the following non-convex optimization
problem:

min
p,f

l∑
t=1

m∑
i=1

pti(yt − fi(xt))2

m∑
i=1

pti = 1, pti ≥ 0, t = 1, . . . , l. (2)

Of course we can always find a single function which fits
all data so that the objective value of (2) is zero and
then it is already optimal. What we need is to avoid
overfitting and adjust values of pti so that (1) is obtained.
Then according to whether pti is zero or one, we can find
out which group a point (xt, yt) belongs to.

In [13], the authors consider an iterative process
where in each iteration pti are fixed first and m Radial-
Basis function (RBF) networks are used to minimize the
quadratic functions:

min
f̂i

l∑
t=1

pti(yt − f̂i(xt))2, i = 1, . . . ,m, (3)

where

f̂i(x) =
l̄∑
t=1

αte
− ||x−ct||

2

2σ2 (4)

is the ith approximate predictor. Here c1, . . . , cl̄ are the
“centers” used for constructing functions.

After new f̂i are obtained, they update pti by

pti =
exp (−β

∑∆
δ=−∆(et−δi)2)∑m

j=1 exp (−β
∑∆
δ=−∆(et−δj)2)

, (5)

where

eti = yt − f̂i(xt) (6)

and β is a parameter which controls the degree of com-
petition.

This updating rule on pti is from Bayes’ rule with
the assumption that ((xt−∆, yt−∆), · · · , (xt+∆, yt+∆))
are from the same time series. Therefore, using (5)
we can put subsequent time series data into the same
group. In addition, if β is large, then pti ≈ 1 for
i = argmaxj

∑∆
δ=−∆(et−δj)2. This is the so-called hard

competition (winner-takes-all).
Here instead of (2), we consider

min
p,f

l∑
t=1

m∑
i=1

pti|yt − fi(xt)|

m∑
i=1

pti = 1, pti ≥ 0, t = 1, . . . , l. (7)

When pti is fixed, by considering

f̂i(x) = wTi φ(x) + b,

we then solve

min
wi,bi

1
2
wTi wi + C

l∑
t=1

pti(ξ
t
i + ξt,∗i)

s.t.− ε− ξt,∗i ≤ yt − (wTi φ(xt) + b) ≤ ε+ ξti , (8)

ξti ≥ 0, ξt,∗i ≥ 0, t = 1, . . . , l,

which is a modification of the standard support vector
regression. Note that if without the term 1

2w
T
i wi, ε = 0,

and pti are fixed, (8) is equivalent to (7). The original idea
of support vector regression is to find a function which
approximates the hidden relationships of the given data.
Here data xt are mapped into a higher dimensional space
by the function φ. SVM uses the ε-insensitive loss func-
tion where data points in a tube with width ε are consid-
ered correctly approximated. Note that we have differ-
ent weights Cpti in each term of the objective function.
The original SVM usually considers a uniform penalty
parameter C for all data. It is essential to use the so
called “regularization term” 1

2w
T
i wi in (8). Otherwise, if

the kernel matrix K with Kto = φ(xt)Tφ(xo) is positive
definite, the solution of (8) will have

yt = wTi φ(xt) + bi, if pti > 0. (9)

That is, overfitting occurs and we are trapped at a local
minimum which is not what we want. Adding 1

2w
T
i wi

remedies this problem so (9) does not happen in early
iterations. Then we can calculate the error in (6) and
use them for updating pti in (5).

At the optimal solution of (8) we have

wi =
l∑
t=1

αtiφ(xt), (10)

where αti are obtained from the dual formulation de-
scribed later. So the ith predictor is

f̂i(x) =
l∑
t=1

αtiK(xi, x),

where K(xt, x) = φ(xt)Tφ(x) is usually called the kernel
function.

Next we compare the use of RBF networks and SVM.
If the RBF kernel is used for SVM,

K(xt, x) = e−
||xt−x||2

2σ2 .

Therefore if we choose l̄ = l, ct = xt in (4), ε = 0 in (8),
and use a quadratic loss function

C

l∑
t=1

pti((ξ
t
i)

2 + (ξt,∗i)2) (11)

in (8), then (11) is in fact the same as (3). Another
difference is on the regularization term. Usually RBF
is implemented with an additional regularization term
1
2

∑l̄
t=1(αti)

2. This is different from 1
2w

Tw in SVR which
can be rewritten as

1
2

l∑
t=1

l∑
o=1

αtiα
o
iK(xt, xo).

A possible advantage of SVM is that with the linear
ε-insensitive loss function, it automatically decides the
number of nonzero αti so that φ(xt) will be used to con-
struct f̂i. On the contrary, RBF networks have to decide
l̄ and ct in advance. An example on comparing RBF net-
works and SVM for classification problems is in [15]. Of
course how to set an appropriate ε is also an issue. More
discussions on the relation between the RBF networks
and SVM are in [3].

Implementations of RBF networks and SVM are also
different. As (3) is an unconstrained minimization where
its first derivative becomes a linear system, sometimes a
direct method such as Gaussian elimination is used. But
sometimes iterative methods using the steepest descent
direction are considered. For the modified form of SVR

(8), we usually consider its dual:

min
ᾱ,ᾱ∗

1
2

(ᾱ− ᾱ∗)TK(ᾱ− ᾱ∗) + ε
l∑
t=1

(ᾱt + ᾱ∗t)

+
l∑
t=1

yt(ᾱt − ᾱ∗t)

l∑
t=1

(ᾱt − ᾱ∗t) = 0, (12)

0 ≤ ᾱt, ᾱ∗t ≤ Cpti, t = 1, . . . , l, (13)

where K is a square matrix with Kt,o = K(xt, xo). Then
ᾱt − ᾱ∗t is the αti used in (10). The main difficulty on
solving (1) is that K is a large dense matrix. This issue
has occurred for the case of classification where some
methods such as the decomposition method (e.g. [11])
has been proposed. The decomposition method starts
from the zero vector and can avoid the memory problem
if the percentage of support vectors (i.e. αt − αt,∗ 6= 0)
is small. It has been extended to regression but we need
further modifications for handling different upper bounds
Cpti. Here we consider the decomposition method used by
the software LIBSVM [2] which can be easily modified for
our purpose. The modified code of LIBSVM is available
upon request.

When the RBF function is used, the parameter σ af-
fects how data are fitted. It adjusts the smoothness of
predictors. Thus if initially 1/(σ2) is not small, each
machine will fit some data and become saturated. That
is, we are trapped in a local minimum. Hence, we can
start from a small 1/(σ2) and gradually increase it. Then
in final steps when data have been correctly separated,
1/(σ2) becomes large so that predictors try to fit differ-
ent groups of data. Our experience also shows that if
we use a fixed σ which in some sense is not too small
or too large, the algorithm can also work. Of course the
choice of such a σ depends on the smoothness of all func-
tions fi, i = 1, . . . ,m. For example, if a random sample
of points on these functions has a high degree of nonlin-
earity, we are safe to use a large fixed 1/(σ2) from the
beginning.

The stopping criterion of our algorithm is as follows

| ˆobj − obj|
|obj|

≤ 0.05,

where ˆobj and obj are the objective values of two consec-
utive iterations. Here the objective function is defined
as

l∑
t=1

m∑
i=1

pti|yt − fi(xt)|.

Fig. 1. First four iterations (data without noise)

III. The Adjustment of β

In this section we describe our method for adjusting β,
an important parameter which controls the update of pti.
From (6) we have that

yt = f̂i(xt) + eti, i = 1, . . . ,m, t = 1, . . . , l.

Assume that eti are i.i.d. N(0, τ).
Define ai to be the percentage of data in the ith group:

ai ≡
data with rt = i

l
;

that is, ai = p(rt = i). The log-likelihood function of y
is

L(τ) =
l∑
t=1

logp(yt|xt, τ),

where

p(yt|xt, τ) =
m∑
i=1

p(yt, rt = i|xt, τ)

=
m∑
i=1

aipi(yt|xt, τ), (14)

with

pi(yt|xt, τ) ≡ p(yt|rt = i, xt, τ)

=
1√
2πτ

exp{−(yt − f̂i(xt))2/(2τ)}

=
1√
2πτ

exp{−(eti)
2/(2τ)}. (15)

Hence

p(yt, rt|xt, τ) = artprt(yt|xt, τ). (16)

Fig. 2. First six iterations (data with noise)

Let τ̂ be an estimate of τ . Then we can estimate pti by

p̂ti ≡ p(rt = i|xt, yt, τ̂)

=
p(yt, rt = i|xt, τ̂)∑m
k=1 p(yt, rt = k|xt, τ̂)

=
ai exp{−(eti)

2/(2τ̂)}∑m
k=1 ak exp{−(etk)2/(2τ̂)}

(17)

using (15) and (16). By comparing (5) and (17), we
suggest to choose 1/(2τ̂) as our next β. Since τ̂ is measure
of the variation of eti, it is intuitively clear that the next
τ̂ will decrease if f̂i in the next iteration can better fit the
data. So the new β is likely to increase (corresponding
to the fact that the temperature is decreasing).

Let τ (g) and p
t(g)
i ≡ p(rt = i|xt, yt, τ (g)) be the infor-

mation of the previous iteration. We shall show how to
obtain τ (g+1). Let X ≡ (x1, . . . , xl), Y ≡ (y1, . . . , yl),
and R ≡ (r1, . . . , rl). Denote Q(τ, τ (g)) as the condi-
tional log-likelihood function of (Y,R) given X,Y , and

τg. Then

Q(τ, τ (g)) (18)
≡ E[logp(Y,R|X, τ)|X,Y, τ (g)]

= E[log
∏
t

p(yt, rt|xt, τ)|X,Y, τ (g)] (19)

=
l∑
t=1

E[log p(yt, rt|xt, τ)|X,Y, τ (g)]

=
l∑
t=1

E[log(artprt(yt|xt, τ))|X,Y, τ (g)] (from (16))

=
l∑
t=1

m∑
i=1

log(aipi(yt|xt, τ))p(rt = i|X,Y, τ (g))

=
l∑
t=1

m∑
i=1

{(log ai)p(rt = i|X,Y, τ (g))}

+
l∑
t=1

m∑
i=1

{[log pi(yt|xt, τ)]p(rt = i|X,Y, τ (g))}

=
l∑
t=1

m∑
i=1

{(log ai)p
t(g)
i }

+
l∑
t=1

m∑
i=1

{[log pi(yt|xt, τ)]pt(g)
i }, (20)

where (19) and (20) follow from the independence of each
observation. Note that from (15)

log pi(yt|xt, τ) =
−1
2

[log(2π) + logτ +
(eti)

2

τ
]. (21)

Let
τ (g+1) = argmaxτQ(τ, τg).

Using (20), simple calculations show that the maximum
of (20) occurs at

τ (g+1) =
∑l
t=1

∑m
i=1{(eti)2p

t(g)
i }∑l

t=1

∑m
i=1 p

t(g)
i

=
∑l
t=1

∑m
i=1{(eti)2p

t(g)
i }

l
, (22)

where

p
t(g)
i = p(rt = i|xt, yt, τ (g))

=
ai exp{−(eti)

2/(2τ (g))}∑m
k=1 ak exp{−(etk)2/(2τ (g))}

(23)

can be obtained similarly to (17).
Therefore, at the (g + 1)st iteration of the implemen-

tation, we replace β in (5) by 1/(2τ (g+1)). Practically we

do not really calculate (23) and use (5) instead. There-
fore, we also do not have to worry about ai, which is
unknown in advance.

Because we are using a linear loss function in support
vector regression, we feel that in all formulations linear
instead of quadratic terms should be used. Therefore, in
(5), (22), and (23), all (eti)

2 is replaced by |eti|. In other
words, though the derivation in this section assumes that
eti is with a normal distribution, if we consider it to be
with a Laplace (double exponential) distribution, we will
get results using |eti|.

IV. Experiments

A. Four Chaotic Time Series

We test the extreme case of completely overlapping in-
put manifold used in [13]. For all (xt, yt), yt = frt(xt).
They consider all xt ∈ [0, 1] and four different functions:
f1(x) = 4x(1− x), f2(x) = 2x if x ∈ [0, 0.5) and 2(1− x)
if x ∈ [0.5, 1], f3(x) = f1(f1(x)), and f4 = f2(f2(x)). An
illustration of these functions is in Figure 1. It is easily
seen that all these functions map x from [0, 1] to [0, 1].

In the beginning we randomly assign pti to be 0 or
1 while keeping the condition

∑m
i=1 p

t
i = 1, t = 1, · · · , l.

We set 1/(2σ2) of the RBF kernel to be 50. For updating
pti, we consider ∆ = 3. Following [6], the four series are
activated consecutively, each for 100 time steps, giving
an overall 400 time steps. We use ten such periods so
totally there are 1,200 steps.

For this case the algorithm stops in five iterations. We
present the first four in Figure 1 where it can be seen
that points are well separated. We assume the number
of functions is unknown so we start from six competing
SVMs for this case. Our experience indicates that if we
use exactly four SVMs, sometimes it may fall into local
minima. Thus, using more SVMs may be necessary.

We also consider cases where groups possess different
number of data. Our implementation has been able to
handle such data with different ratios.

To further test our implementation, we add noise on
these four function using 0.1N(0, 0.5). The algorithm
stops in seven iterations where the first six iterations are
in Figure 2.

B. Mackey-Glass Time Series

Similar to earlier results, we also check time series ob-
tained from the Mackey-Glass delay-differential equation
[8]:

dx(t)
dt

= −0.1x(t) +
0.2x(t− td)

1 + x(t− td)10
.

Following earlier experiments, points are selected every
six time steps. Sequentially we generate 300 points in

each segment using the order of td = 23, 17, 23, 30. Thus,
totally there are 1,200 point for testing. The embedding
dimension is d = 6. That is, yt is the one-step ahead value
of six consecutive xt. For this problem we set 1/(2σ2) to
be 1. Other settings are the same as the implementation
in Section IV-A. Results are in Figure 3 where it can be
seen that different segments are well separated.

V. Discussion

For SVM, the number of support vectors directly af-
fects the training and testing time. A zero pti means that
αti in (10) is not necessary so the corresponding variables
in the dual problem can be removed. However, in theory
pti can never be zero due to (5). Thus, we use a thresh-
old 0.01 for removing points with small pti. Then the
computational time can be largely reduced.

One difference between SVR and neural networks is the
use of ε, the width of the insensitive tube in (8). SVR can
be smoother and tolerate more noise using appropriate
ε. In the above case with noise, setting ε = 0.05 results
in fewer support vectors and less running time.

Fig. 3. pti, i = 1, . . . , 3 at each time point t

References
[1] T. W. Cacciatore and S. J. Nowlan. Mixtures of controllers for

jump linear and non-linear plants. In J. D. Cowan, G. Tesauro,
and J. Alspector, editors, Advances in Neural Information
Processing Systems, volume 6, pages 719–726. Morgan Kauf-
mann Publishers, Inc., 1994.

[2] C.-C. Chang and C.-J. Lin. LIBSVM: a library for
support vector machines, 2001. Software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[3] T. Evgeniou, M. Pontil, and T. Poggio. Regularization net-
works and support vector machines. Advances in Computa-
tional Mathematics, 13:1–50, 2000.

[4] L. A. Feldkamp, T. M. Feldkamp, and D. V. Prokhorov. An
approach adaptive classification. In S. Haykin and B. Kosko,
editors, Intelligent signal processing, 2001.

[5] S. Haykin and D. Cong. Classification of radar clutter us-
ing neural networks. IEEE Transactions on Neural Networks,
2:589–600, 1991.

[6] A. Kehagias and V. Petridis. Time-series segmentation us-
ing predictive modular neural networks. Neural Computation,
9:1691–1709, 1997.

[7] S. Liehr, K. Pawelzik, J. Kohlmorgen, and K. R. Muller. Hid-
den markov mixtures of experts with an application to EEG
recordings from sleep. Theory in Biosci., 118(3-4):246–260,
1999.

[8] M. C. Mackey and L. Glass. Oscillation and chaos in physio-
logical control systems. Science, 197:287–289, 1977.

[9] J. Moody and C. J. Darken. Fast learning in networks of
locally–tuned processing units. Neural Computation, 1:281–
293, 1989.

[10] K.-R. Müller, J. Kohlmorgen, and K. Pawelzik. Analysis of
switching dynamics with competing neural networks. IEICE
Transactions on Fundamentals of Electronics, Communica-
tions and Computer Sciences, E78–A(10):1306–1315, 1995.

[11] E. Osuna, R. Freund, and F. Girosi. Training support vector
machines: An application to face detection. In Proceedings of
CVPR’97, 1997.

[12] K. Pawelzik. Detecting coherence in neuronal data. In
L. Van Hemmen and K. Schulten, editors, Physics of neural
networks. Springer, 1994.

[13] K. Pawelzik, J. Kohlmorgen, and K.-R. Muller. Annealed
competition of experts for a segmentation and classification of
switching dynamics. Neural Computation, 8(2):340–356, 1996.

[14] L. Rabiner. A tutorial on hidden markov models and selected
applications in speech recognition. Proceedings of the IEEE,
77(2):257–285, 1989.

[15] B. Schölkopf, K.-K. Sung, C. J. C. Burges, F. Girosi, P. Niyogi,
T. Poggio, and V. Vapnik. Comparing support vector ma-
chines with gaussian kernels to radial basis function classiers.
IEEE Transactions on Signal Processing, 45(11):2758–2765,
1997.

[16] S. Shi and A. Weigend. Taking time seriously: Hidden markov
experts applied to financial engineering. In CIFEr ’97: Proc.
of the Conf. on Computational Intelligence for Financial En-
gineering, pages 244–252. IEEE, 1997.

[17] V. Vapnik. Statistical Learning Theory. Wiley, New York,
NY, 1998.

