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Abstract

Decomposition methods are currently one of the major methods for traguipgort vector ma-
chines. They vary mainly according to different working set selecti@ghdsting implementations
and analysis usually consider some specific selection rules. This artidiestBequential Minimal
Optimization (SMO)-type decomposition methods under a general antliexay of choosing the
two-element working set. Main results include: 1) a simple asymptotic cgemee proof, 2) a general
explanation of the shrinking and caching techniques, and 3) the lineaemmmce of the methods.
Extensions to some SVM variants are also discussed.

I. INTRODUCTION
The support vector machines (SVMs) [1], [6] are useful d¢fasdion tools. Given training vectors

x; € R",i=1,...,1, in two classes, and a vectgrc R' such thaty; € {1, -1}, SVMs require the

solution of the following optimization problem:

1
min  f(a) = -a’Qa-e’a
@ 2
subject to 0<; <Cyi=1,...,1, (1)
y a=0,

wheree is the vector of all onesC' < o is the upper bound of all variables, adglis ani by I
symmetric matrix. Training vectorg; are mapped into a higher (maybe infinite) dimensional space
by the functiong, Q;; = viy; K (xi,x;) = yiy;¢(x:)? ¢(x;), and K (x;,x;) is the kernel function.
Then @ is a positive semi-definite (PSD) matrix. Occasionally saesearchers use kernel functions
not in the form ofg(x;)” ¢(x;), soQ may be indefinite. Here we also consider such cases and,,hence
require only@ to be symmetric.

Due to the density of the matrig, the memory problem causes that traditional optimizatiethods
cannot be directly applied to solve (1). Currently the deposition method is one of the major methods
to train SVM (e.g. [3], [10], [23], [25]). This method, an redive procedure, considers only a small
subset of variables per iteration. Denoted Bsthis subset is called the working set. Since each

iteration involves only|B| columns of the matrixQ, the memory problem is solved.



A special decomposition method is the Sequential Minimai®igation (SMO) [25], which restricts
B to only two elements. Then at each iteration one solves alsimyo-variable problem without

needing optimization software. It is sketched in the follogv

Algorithm 1 (SMO-type Decomposition methods)
1) Finda! as the initial feasible solution. Sét= 1.
2) If o* is an stationary point of (1), stop. Otherwise, fintha-elementvorking setB = {i,j} C
{1,...,1}. Define N = {1,...,1}\B and a% and a¥; as sub-vectors ofe* corresponding to
B and N, respectively.
3) Solve the following sub-problem with the variahies:

1 o «
min 5 {ag (a?\, T} Qs QBN B| {eg eJT\,} B
B Qne Qnn| ok ok,
=3 [ai a]} Qi Qi |+ (—ep + QBNa’fV)T ‘| + constant
Qij Qjj| | ;
subjectto 0 < a4, < C, (2)
Yioy + Yo = —yNak,

where [gfg gﬁﬂ is a permutation of the matrig).
Seta’:™ to be the optimal point of (2).

4) Seta®™ = ok, Setk — k + 1 and goto Step 2.

Note that the seB changes from one iteration to another. To simplify the notatwe useB
instead of B¥. Algorithm 1 does not specify how to choose the working Bets there are many
possible ways. Regarding the sub-problem (2§ ifs positive semi-definite, then it is convex and can
be easily solved. For indefinit@, the situation is more complicated, and this issue is addein
Section Il

If a proper working set is used at each iteration, the fumcti@ue f () strictly decreases. However,
this property does not imply that the sequerdeg®} converges to a stationary point of (1). Hence,
proving the convergence of decomposition methods is ysaatihallenging task. Under certain rules
for selecting the working set, the asymptotic convergena® lheen established (e.g. [16], [2], [9],
[20]). These selection rules may allow an arbitrary workseg size, so they reduce to SMO-type
methods when the size is limited to two.

This article provides a comprehensive study on SMO-typerhposition methods. The selection
rule of the two-element working sé? is under a very general setting. Thus, all results here ajply
any SMO-type implementation whose selection rule meetstiteria of this paper. In Section II, we
discuss existing working set selections for SMO-type mashand propose a general scheme. Section

[l proves the asymptotic convergence and gives a compatisdormer convergence studies.



Shrinking and caching are two effective techniques to spgethe decomposition methods. Earlier
research [18] gives the theoretical foundation of thesetegbniques, but requires some assumptions.
In Section 1V, we provide a better and a more general explamatithout these assumptions. Conver-
gence rates are another important issue and they indicatdasd the method approaches an optimal
solution. We establish the linear convergence of the prgorethod in Section V. All the above
results hold not only for support vector classification, bigo for regression and other variants of

SVM. Such extensions are presented in Section VI. FinalgtiSn VIl is the conclusion.

II. EXISTING AND NEW WORKING SET SELECTIONS FORSMO-TYPE METHODS

In this Section, we discuss existing working set selectiand then propose a general scheme for

SMO-type methods.

A. Existing Selections
Currently a popular way to select the working getis via the “maximal violating pair:”

WSS 1 (Working set selection via the “maximal violating pair”)

1) Select
| € — 4y, Vf(a®),,
i €arg max o~y fla®)e
j € ar min  —y Vf(ak),,
J gtellow(ak) YV f(a®):
where

Ipla)={t|ay <C,yy =1o0ray >0,y, = —1}, and
3)
Dow(a@)={t|ax < C,ys = =1 0ra; >0,y = 1}.
2) ReturnB = {i, j}.
This working set was first proposed in [14] and has been useuany software packages, for
example,LIBSVM [3].
WSS 1 can be derived through the Karush-Kuhn-Tucker (KKTinogiity condition of (1): A vector
« is a stationary point of (1) if and only if there is a numldeaind two nonnegative vectops and p

such that
Vi(a) +by = A —p,
A, =0, 1;(C —a); =0,0 >0, > 0,5 =1,...,1,
whereV f(a) = Qo — e is the gradient off (). This condition can be rewritten as
Vf(a); +by; >0 if a; <C, 4)

Vi(a)i+by; <0 if a; >0. (5)



Sincey; = %1, by definingI,,(a) and I,y () as in (3), and rewriting (4)-(5) to have the range of

b, a feasiblex is a stationary point of (1) if and only if
m(a) < M(a), (6)

where

m(a) = ier}mz(a) -y Vf(a);, andM(a) = iegm%a) -y Vf(a);.

Note thatm(a) and M («) are well defined except in a rare situation wheregal= 1 (or —1). In
this case the zero vector is the only feasible solution of &)the decomposition method stops at the
first iteration.

Following [14], we define a “violating pair” of the conditiof®) as:

Definition 1 (Violating pair) If i € Ly,(a),j € Liow(ax), and —y; Vf(a); > —y;Vf(a);, then

{i,j} is a “violating pair”

From (6), the indiceq:, j} which most violate the condition are a natural choice of tlweking set.
They are called a “maximal violating pair” in WSS 1.

Violating pairs play an important role in making the decoisifion methods work, as demonstrated

by:

Theorem 1 ([9]) Assumé) is positive semi-definite. The decomposition method hastticedecrease
of the objective function value (i.¢(a**1) < f(a*), Vk) if and only if at each iteration3 includes

at least one violating pair.

For SMO-type methods, if) is PSD, this theorem implies tha® must be a violating pair.
Unfortunately, having a violating pair i and then the strict decrease ffa*) do not guarantee
the convergence to a stationary point. An interesting exanmom [13] is as follows: Given five
datax! = [1,0,0]7,x%2 = [0,1,0]7,x* = [0,0,1]T,x* = [0.1,0.1,0.1]F, and x® = [0,0,0]T. If
1= =ys=—1,y5 = 1, C = 100, and the linear kernek (x;,x;) = x!x; is used, then the
optimal solution of (1) ig0, 0, 0,200/3,200/3]" and the optimal objective value is200/3.

Starting witha® = [0,0,0,0,0]%, if in the first iteration the working set i§1,5}, we havea! =
[2,0,0,0,2]7 with the objective value-2. Then if we choose the following working sets at the next

three iterations:
{1,2} = {2,3} — {3,1}, @)

the next threex are:

[1,1,0,0,2]7 — [1,0.5,0.5,0,2]7 — [0.75,0.5,0.75,0, 2] .



If we continue as in (7) for choosing the working set, the &t requires an infinite number of
iterations. In addition, the sequence converges to a ndmappoint [2/3,2/3,2/3,0,2]7 with the
objective value—10/3. All working sets used are violating pairs.

A careful look at the above procedure reveals why it fails doverge to the optimal solution. In

(7), we have the following for the three consecutive itenadi

—yVflaF),t=1,....5 —yV(a®) +y;VIar);, m(ar)—M(ak)
0,0, -1, -0.8,1]7 1 2
[0,-0.5,—0.5, —0.8,1]7 0.5 1.8
[-0.25,—0.5, —0.25, 0.8, 1] 0.25 1.8

Clearly, the selected3 = {4, j}, though a violating pair, does not lead to the reduction & th
maximal violationm(a*) — M (a*). This discussion shows the importance of the maximal \iigat
pair in the decomposition method. When such a pair is used easvtiiking set (i.e. WSS 1), the
convergence has been fully established in [16] and [17]. él@w if B is not the maximal violating
pair, it is unclear whether SMO-type methods still convetgea stationary point. Motivated from
the above analysis, we conjecture that a “sufficiently ‘eada pair is enough and propose a general

working set selection in the following subsection.

B. A General Working Set Selection for SMO-type Decompaosiethods

We propose choosing a “constant-factor” violating pair laes working set. That is, the difference
between the two selected indices is larger than a constiidn of that between the maximal violating
pair.

WSS 2 (Working set selection: constant-factor violating paj

1) Consider a fixed < o <1 for all iterations.

2) Select anyi € I, (a*), j € Liow(a®) satisfying

~yiVf(@")i +y;Vf(ab); > a(m(a’) — M(a¥)) > 0. ®)
3) ReturnB = {i,j}.
Clearly (8) ensures the quality of the selected pair by figkit to the maximal violating pair. We

can consider an even more general relationship betweemwthedirs:

WSS 3 (Working set selection: a generalization of WSS 2)
1) Leth: R' — R! be any function satisfying
a) h strictly increases om > 0,
b) h(xz) <z,Vz>0,h(0)=0.



2) Select anyi € I,,,(ak),j € Low(a¥) satisfying
Y F(a), +y;VF(@b); > him(ak) - M(ak)) > 0. ©)
3) ReturnB = {i,j}.

The conditionh(z) < z ensures that there is at least one gaiy } satisfying (9). Clearlyh(z) = oz
with 0 < ¢ < 1 fulfills all required conditions and WSS 3 reduces to WSS 2. Turestion 4 can be

in a more complicated form. For example, if

h(m(a®) — M(a)) = min (m(ak) — M(a"), \/m(ak) — M(a’“)) , (10)

then (10) also satisfies all requirements.
Subsequently, we mainly analyze the SMO-type method using B/fr the working set selection.

The only exception is the linear convergence analysis, vhansiders WSS 2.

I11. AsYMPTOTIC CONVERGENCE

The decomposition method generates a sequéndg. If it is finite, then a stationary point is
obtained. Hence we consider only the case of an infinite segueThis section establishes the
asymptotic convergence of using WSS 3 for the working setctele First we discuss the sub-

problem in Step 3) of Algorithm 1 with indefinit§. Solving it relates to the convergence proof.

A. Solving the sub-problem

Past convergence analysis usually requires an importapepy, the function value is sufficiently

decreased: There s > 0 such that
f(af ) < f(aF) = N|a**t — aF||?, for all k. (11)

If @ is positive semi-definite and the working sgt j} is a violating pair, [17] has proved (11).
However, it is difficult to obtain the same result(fis indefinite. Some such kernels are, for example,
the sigmoid kernelK (x;,x;) = tanh(yx!x; + r) [19] and the edit-distance kerné{ (x;,x;) =
exp~ %) whered(x;, x;) is the edit distance of two strings; andx; [5]. To obtain (11), [24]
modified the sub-problem (2) to the following form:
min  f([af]) + 7l - o)
subject to yEap = —yLak, (12)
0< o < C, 1€ B,

wherer > 0 is a constant. Clearly, an optimad’j;rl of (12) leads to

Fla ) +rlla™ — af|® < f(af)



and then (11). However, this change also causes differeiocasost SVM implementations, which
consider positive semi-definit@ and use the sub-problem (2). Moreover, (12) may still be camsex
and possess more than one local minimum. Then for implertiensa convex and non-convex cases
may have to be handled separately. Therefore, we proposkeediveay to solve the sub-problem where
1) The same sub-problem (2) is used whrns positive definite (PD), and
2) The sub-problem is always convex.
An SMO-type decomposition method with special handling rhefinite @ is in the following algo-

rithm.
Algorithm 2 (Algorithm 1 with specific handling on indefinite Q)

Steps 1), 2), and 4) are the same as those in Algorithm 1.

Step 3’) Letr > 0 be a constant throughout all iterations, and define
a = Qi + Qj; — 2yiy;Qij- 13)

a) If a > 0, then solve the sub-problem (2). Sef;fl to be the optimal point of (2).

b) If a <0, then solve a modified sub-problem:

min %[ai %} Qoo +(—ep + Qprak)” “
an Qij  Qjj| | @

—((ai = ab)? + (a5 —ab)?)

subjectto 0 < oy, < C, (14)

T _k
Yioy +yjo5 = —yNO-

Seta’;™ to be the optimal point of (14).
The additional term in (14) has a coefficight—a)/4 related to the matrix), but that in (12) does
not. We will show later that our modification leads (14) to angex optimization problem.

Next we discuss how to easily solve the two sub-problems if@) (44). Considery; = of + y;d;

anda; = af + y;d;. The sub-problem (2) is equivalent to

. 1 Qii Yy Qi | | di Yid;
min 2 [di d] T (s + (Qa)s)”

e vy Qi; @y
subject to di+d; =0,

0 < af +yids, o +y;d; <C. (15)
Substitutingd; = —d; into the objective function leads to a one-variable optatian problem:

min 9(d;) = f(a) — f(ak)

= %(Qn + Q5 — 25 Qij)d; + (—yV f (&) + y,; V f(aF);)d; (16)

subject to L<d; <U,



whereL andU are lower and upper bounds @&f after including information od; : d; = —d; and0 <
o +y.d; < C. As a defined in (13) is the leading coefficient of the quadraticcfion (16),a > 0
if and only if the sub-problem (2) is strictly convex.
We then claim that
L<0andU > 0. a7

If Yi =Y; = 1,0< O[i»c + yldz,af + yjdj <C |mp||eS

L= max(faf,af —C) <d; <min(C — af,af) =U.

Clearly, U > 0. Sincei € I,p(a) andj € Liow(a), we havea® > 0 andaf < C. Thus, L < 0.
For other values of;; andy;, the situations are similar.

When the sub-problem (2) is not strictly convex, we considé) (via adding an additional term.
With d; = —d;,

T—a T—a

Thus, by defining
a ifa>0,
a) = (19)
7 otherwise,
and
az = —yVf(@"); +y;Vf(a*); >0, (20)
problems (2) and (14) are essentially the following styictbnvex optimization problem:
1
Iréin 5&1(1? + (lgdj
subject to L<d; <U. (22)

Moreover,a; > 0, as > 0, L < 0, andU > 0. The quadratic objective function is shown in Figure 1

and the optimum is

d; = max(_a—aQ, L) <0. (22)
1

Therefore, once:; is defined in (19) according to whether> 0 or not, the two sub-problems can
be easily solved by the same method as in (22).
To check the decrease of the function value, the definitiotheffunctiong in (16), Jj < 0 and
ard; + ay > 0 from (22), and|a**! — oF||2 = 24, imply
f@™h) = fleh) = g(d)
1 - -
= ialde + agdj
— — a1 -
= (aldj + (Ig)dj — ?ldj2
ay 72
,Edj
ax

- %o

E+1 k2
1 o’



(@)L <=2 (b) L > =22

~

Fig. 1.  Solving the convex sub-problem (21)

Therefore, by defining

1 . .
A= 1 min(7, min{ Qs + Qj; — 2yiy; Qij | Qi + Qj5 — 2yiy;Qij > 0}), (23)

we have the following lemma:

Lemma 1 Assume at each iteration of Algorithm 2 the working set isdating pair and let{a*}

be the sequence generated. THgh) holds with A defined in(23).

The above discussion is related to [19], which examines lwgotve (2) when it is non-convex.
Note thata = 0 may happen as long a3 is not PD (i.e.,@ is PSD or indefinite). Then, (16),

becoming a linear function, is convex but not strictly conveo have (11), an additional term makes it

guadratic. Given that the function is already convex, weafrse hope that there is no need to modify

(2) to (14). The following theorem shows that(fis PSD andr < 2/C, the two sub-problems indeed

have the same optimal solution. Therefore, in a sense, fbr @ he sub-problem (2) is always used.

Theorem 2 AssumeQ is PSD, the working set of Algorithm 2 is a violating pair, and< % If

a = 0, then the optimal solution of14) is the same as that of2).

Proof: From (16) andaz > 0 in (20), if a = 0, (2) has optimald; = L. For (14) and the

transformed problem (21} = 0 implies a; = 7. Moreover, sinc&) is PSD,
a=0=Qi+Qj; — 2yy;Qij = ||d(x:) — ¢(x;)]|%,
and hences(x;) = ¢(x;). Therefore,K;; = K;;,Vt implies
—yiV (@) +y;V(a®);
= - iytKitozf +yi+ i yeljear =y
t=1 t=1

= Yi—Yj-
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Since{i, j} is a violating pair,y; — y; > 0 indicates that, = y; —y; = 2. As 7 < % (22) implies
that cij = L is the optimal solution of (14). Thus, we have shown that (&) &14) have the same

optimal point. The derivation of, = 2 was first developed in [17]. ]

B. Proof of Asymptotic Convergence

Using (11), we then have the following lemma:

Lemma 2 Assume the working set at each iteration of Algorithm 2 isodating pair. If a sub-sequence
{a*}, k € K converges tox, then for any given positive integer the sequencda**s} k € K

converges tax as well.

Proof: The lemma was first proved in [16, Lemma IV.3]. For completsneie give details
here. For the sub-sequen¢e**!} k € K, from Lemma 1 and the fact thdtf(a*)} is a bounded

decreasing sequence, we have

lim [ — @&
ke]C,kHoo
< lim  (||a"*! — o[ +[la" — al))
kGIC,kHoo
1
< lim \/(f(a’“) — f(a*+1)) + [lo* — &
kel k—oo A
= 0.
Thus
lim off!=a.
k—00,kelC

From {a**'} we can provéim, ___, i a*** = & too. Thereforelim, ___, 1 a"** = a for any
given s. ]

Since the feasible region of (1) is compact, there is at leastconvergent sub-sequence{of*}.
The following theorem shows that the limit point of any coment sub-sequence is a stationary point
of (1).

Theorem 3 Let {a*} be the infinite sequence generated by the SMO-type methodtAtg 2 using
WSS 3. Then any limit point ¢ix*} is a stationary point of(1).

Proof: Assume thaix is the limit point of any convergent sub-sequeree®}, k € K. If & is
not a stationary point of (1), it does not satisfy the optitgatondition (6). Thus, there is at least one
maximal “violating pair”:

icargm(a) j€argM(a) (24)

such that
= -y V(@) +y;Vf(a); > 0. (25)
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We further define
A’ = min (A, %min{l — V(@) +ysVf(a)s|| —uVf(a) # —ysz(a)s}) >0. (26)

Lemma 2, the continuity oV f(«), and h(%) > 0 from (26) imply that for any givenr, there is
k € K such that for allk € K, k > k:

Foru=0,...,r, —y V(") + y; V(e > A (27)
If i € Ip(@), theni € I,(a¥),... i€ Lp(a®t). (28)
If i € Low(@), theni € Ngy(ak),... i € Loy (a®t). (29)

If —y,Vf(a);>—y;Vf(a),, thenforu=0,...,r,

A/
—y V(@) > —y; VF(aF ), + 7 (30)

If — yzvf(d)z = —ijf(d)j, then foru = 0,...,r,
| =y V(@) + g V(@) ] < h(A"). (31)
Foru=20,...,r—1,
(7_ _ d)HaHuH _ ak+"|\ < A/7 (32)
wherea = min{Qii + ij - 2yiijij | Qi + ij - 2yiijij < 0}.
If —y,Vf(a);>—y;Vf(a); and{i,j} is the working set at thék + «)th iteration
0<u<r—1, theni ¢ Ly(a"™ ) or j ¢ Loy (e th). (33)
The derivation of (27)-(32) is similar, so only the detaif27) are shown. Lemma 2 implies sequences
{ak}, {a**1}, ... {a**"}, k € K all converge tax. The continuity ofV f(a) and (26) imply that for
any given0 < u < r and the corresponding sequerfeg"**}, k € K, there isk,, such that (27) holds
for all k£ > k., k € K. As r is finite, by selecting: to be the largest of thedg,,u = 0,...,r, (27) is
valid for all w = 0, ..., r. Next we derive (33) [16, Lemma IV.4]. Similar to the optintyglcondition

(6) for problem (1), for the sub-problem at tlie + w)th iteration, if problem (14) is considered and

ap is a stationary point, then

max —yVf ([ﬁ;ﬁubt - M(at —ay)

telup(as) 2
. a yi (T — a) k
< i, ot ([50]), - 25 o
- tehr:‘lvl(nas) wVf oy’ t 2 (e at)

Now B = {i,j} and a’f;“*l is a stationary point of the sub-problem satisfying the a&bioequality.
If

i € Lp(a*T* 1) andj € Loy (T th),
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then from (32) and (18)

—yiV fla e,
< gttty ¢ BT iy BT 20 iy
T et
!/
vz

However,—y;V f(&); > —y;V f(a); implies (30) fora**t“+1, so there is a contradiction. & > 0

< -y VM) +

< —yVfah); + (34)

and the sub-problem (2) is considered, (34) has no t%mso immediately we have a contradiction
to (30).

For the convenience of writing the proof, we reorder indioégx so that

—nVf(a) < < —yVi(a). (35)
We also define
Si(k)=> {ilie Lp(a®)} andSy(k) =D {I—i|i€ Now(a®)}. (36)
Clearly,
1< Sy (k) + Sa(k) <1(1—1). 37)

If {4,;} is selected at thék + u)th iteration ¢ = 0,...,r), then we claim that

—yiVf(a); > —y;Vf(a);. (38)
It is impossible that-y;V(a); < —y,;V(a); as —y;V(a*tt);, < —y;V(aFTv),; from (30) then
violates (9). If—y; V(&) = —y; V(&);, then
—yiV (@) +y; V(@) < (AT < h(—y V(@) 4y V(e ;)
< h(m(aft) — M(akt)). (39)

With the property that is strictly increasing, the first two inequalities come fr¢8d) and (27), while
the last is fromi € I, (@), j € Liow(@), (28), and (29). Clearly, (39) contradicts (9), so (38) iidia
Next we use a counting procedure to obtain the contradiafai24) and (25). From théth to the
(k 4 1)st iteration, (38) and then (33) show that
i ¢ Lip(@® 1) or j ¢ Loy (afTh).
For the first case, (28) implies¢ I,,(&) and hence € I, (&). From (29) and the selection rule

(9), i € Low(a®) N Ip(ak). Thus,

i € Dow (@) N Ip(a®) andi ¢ I, ("),
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With j € Liow(a®),
Si(k+1) < Si(k)—i+j<S1(k)—1, Sa(k +1) < So(k), (40)
where—i + 5 < —1 comes from (35). Similarly, for the second case,
§ € Low(@®) NIy (a®) andj ¢ Loy (aFT).
With i € I,,,(a¥),
Si(k+1) < S1(k), So(k+1) < Sa(k)—(1—7)+ (1 —1i) < Sa(k)—1. (41)

From iteration(k + 1) to (k + 2), we can repeat the same argument. Note that (33) can still be
used because (38) holds for working sets selected duringtidesk to &£ + r. Using (40) and (41),
atr = [(I — 1) iterations,S1 (k) + Sz2(k) is reduced to zero, a contradiction to (37). Therefore, the
assumptions (24) and (25) are wrong and the proof is complete [ ]
Moreover, if (1) has a unique optimal solution, then the vehetquencéa’} globally converges.

This happens, for example, whénis PD.

Corollary 1 If @ is positive definite{a*} globally converges to the unique minimum (.

Proof: Since( is positive definite, (1) has a unique solution and we denoges &x. Assume
{a*} does not globally converge t&. Then there ise > 0 and an infinite subsek’ such that
|a* — @l > ¢,Vk € K. Since{a*},k € K are in a compact space, there is a further sub-sequence
converging toa* and ||a* — &| > €. Sincea* is an optimal solution according to Theorem 3, this
contradicts thaix is the unique global minimum. [ ]

For example, if the RBF kerndl (x;, x;) = e~ II<i=xill” is used and alk; # x;, thenQ is positive
definite [22] and we have the result of Corollary 1.

We now discuss the difference between the proof above anidreapnvergence work. The work
[16] considers a working set selection which allows morenth&o elements. When the size of the
working set is restricted to two, the selection is reduced®8S 1, the maximal violating pair. This
proof in [17] has used a counting procedure by considering $ets related tdi,;}, the maximal

violating pair ata:

I, (k) {t|teLp(a"),~uVf(@) > —y;Vf(a);}, and

I (k) {t|t€ Low(a"), —yVf(a) < —yVfia)}

Clearly, if WSS 1 is usedi € I,,(a¥) andj € I (aF) imply that the selectedi,j} must
satisfy: € I (k) andj € I(k). Using (33) to show thatl; (k)| + |I2(k)| decreases to zero, we
obtain a contradiction to the fact thak; (k)| + |I2(k)| > 2 from i € I,(aF) andj € Loy (aF).

However, now we do not havec I (k) andj € I,(k) any more since our selection may not be the
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maximal violating pair. Therefore, a new counting schemeeigeloped. By arrangingy;V f(&); in

an ascending (descending) order, in (36), we count the sutineaf ranks.

IV. STOPPINGCONDITION, SHRINKING AND CACHING

In this section we discuss other important properties ofroathod. In previous section§) is any
symmetric matrix, but here we further require it to be pusittemi-definite. To begin, the following

theorem depicts some facts about the problem (1).

Theorem 4 Assumey is positive semi-definite.

1) If & # & are any two optimal solutions oft), then

and
M(&) = m(a) = M(&) = m(&). (43)

2) If there is an optimal solutiom satisfyingm(a) < M (&), thena is the unique optimal solution
of (1).

3) The following set is independent of any optimal soluian
I'={i|-yVf(a)>M@a) or —yVf(a), <m(a)}. (44)
Moreover, problen(1) has unique and bounded optimal solutionsngti € 1.

Proof: Since is positive semi-definite, (1) is a convex programming peablanda and &
are both global optima. Then
flay=f(&)=fAa+(1-Na), forall 0 <\ <1,
implies
(@—&)TQa—a)=0.

As @ is PSD,Q can be factorized td.LT. Thus,||LT(a — &)|| = 0 and henceQa = Qé&. Then
(42) follows.

To prove (43), we will show that
m(&) > M(a) andm(a) > M(&). (45)

With optimality conditionsM (&) > m(a) and M (&) > m(&), (43) holds.

Due to the symmetry, it is sufficient to show the first case &).(4f it is wrong, then

m(&) < M(&). (46)
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We then investigate different situations by comparing V f (&); with M (&) andm(&). If
—y; V@), > M(a) > m(é), theni ¢ I, (&) and

0 |f yz = —17
& = (47)
C ifyi=1.
With 0 < a; < C,
Yily — Y0 > 0. (48)

If —y;Vf(a); <m(&) < M(&), theni ¢ L, (&) and
C ify =-1,
a; = (49)
Hence, (48) still holds.
Other indices are in the following set

S={ilm(a) < —yVf(a); = —yVf(a), < M(a)}

If i €S, theni ¢ I,,(&) andi ¢ I,y (&). Hence (47) and (49) imply

Yit; — yia; = C. (50)
Thus,
0 = de — de
= ) (yitu —yiai) + C|S|.
¢S

Since (48) implies each term in the above summation is ngathe,
‘S| =0 anddi =q;, Vi ¢ S.

Therefore,& = &. However, this contradicts the assumption tiatand & are different optimal
solutions. Hence (46) is wrong and we hawg&) > M (&) in (45). The proof of (43) is thus
complete.

The second result of this theorem and the validity of thelsetrectly come from (43). Moreover,
1 is independent of any optimal solution.

For any optimale, if ¢ € I and —y;Vf(a); > M(a) > m(a), then,: ¢ I,,(a) and e; is the
same as (47). Thus, the optima) is unique and bounded. The situation fey;V f(a); < m(a) is
similar. ]

Lemma 3 in [12] shows a result similar to (43), but the proofriere complicated. It involves
both primal and dual SVM formulations. Using Theorem 4, ia thst of this section we derive more

properties of the proposed SMO-type methods.
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A. Stopping Condition and Finite Termination

As the decomposition method only asymptotically approa@reoptimum, in practice, it terminates
after satisfying a stopping condition. For example, we cagpecify a small stopping toleranee- 0
and check if

m(a®) — M(a®) < e (51)

is satisfied. Though one can consider other stopping comditi(51) is commonly used due to its
closeness to the optimality condition (6). To justify itdigldy as a stopping condition, we must make
sure that under any given stopping tolerarce 0, the proposed decomposition method stops in a
finite number of iterations. Thus, an infinite loop never hexpp To have (51), one can prove a stronger
condition:

lim m(a®) — M(a*) = 0. (52)

k—o0
This condition is not readily available as from the respectiefinitions ofm(a) and M (), it is
unclear whether they are continuous functionscof Proving (52) will be the main result of this
subsection.

The first study on the stopping condition of SMO-type methizdfl1]. They consider a selection
rule which involves the stopping tolerance, so the workiegis a so-called — violating pair. Since
our selection rule is independent gftheir analysis cannot be applied here. Another work [18\es
(52) for WSS 1 under the assumption that the sequee®} globally converges. Here, for more

general selection WSS 3, we prove (52) with positive seminitefi).

Theorem 5 Assume) is positive semi-definite and the SMO-type decompositiaghadeAlgorithm 2
using WSS 3 generates an infinite sequefwe&}. Then

lim m(a®) — M(a*) =0. (53)

k—oo
Proof: We prove the theorem by contradiction and assume that thit (&8) is wrong. Then,
there is an infinite se and a valueA > 0 such that
Im(a®) — M(a®)| > A,Vk € K. (54)
Since in the decomposition methed(a*) > M (a¥),Vk, (54) can be rewritten as
m(a®) — M(a®) > A VEk € K. (55)

In this C there is a further sub-sequenkeso that

lim of =a.
ke k—o0

As Q is positive semi-definite, from Theorem ¥,f(a*) globally converges:

Jim Vi), =Vf(a),i=1,...,1 (56)
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We then follow a similar counting strategy in Theorem 3. Fivge rewrite (55) as
m(a®) > M(a®) + A',Vk € K, (57)
where

& = win (A guin{] - u @+ 1Tl | -uT@ £ —n.H@} ) 69)

We still require (27)-(33), but use (56) and (58) to extend) @nd (31) for allk > & (i.e., not only
k€ K):

It~y V(@) > —ysVf(e)s then — 5V f(ak), > y,Vf(ab),. (59)

If —yVf(@) # -y VF(@)s, then| -y Vf(a®): +yVf(ab),| > A (60)

If —y V(@) =~y V(@) then| -y Vf(a®), +yVf(a")| <h(a).  (61)

Then the whole proof follows Theorem 3 except (39), in whioh needm (a*+%) — M (ak*+v) >
A’,Yu = 0,...,r. This condition does not follow from (57), which holds forlgra sub-sequence.

Thus, in the following we further prove

m(a®) — M(a®) > A/, Yk > k. (62)

Assume at oné’ > k, 0 < m(a*') — M(a*') < A’ and {i, j} is the working set of this iteration.
Asi € I,(a*') andj € L,y (*') from the selection rule, we have

’

M) < —y,; Vi), < =y V(") <m(a®). (63)

Then according to (60){i, } and indices achieving:(a*') and M(a*’) have the same value of

-y Vf(a);. They are all from the following set:
{t] v V(@) =y Vf(a)=—y;Vf(a);}. (64)
For elements not in this set, (59), (60), and (63) imply that
If —u.Vf(a)>—-y:;Vf(a);, then
— V(@) > —y; V(@) + A’ > m(a") and hence ¢ I, (a*). (65)
Similarly,
If —y, V(@) < -4V (@), thent ¢ Loy (ak). (66)

As we have explained, the working set is from the set (64)erttomponents remain the same
from iteration &’ to &’ + 1. Therefore, indices satisfying (65) and (66) have Iup(a’“'“) and
t ¢ Low(a® 1), respectively. Furthermore, indices in (65) have largesV f(a*' 1), than others
according to (59). Thus, the'HLytVf(a’“'“)t are greater thamn(a’“'“). Similarly, elements in

(66) are smaller tha/ (a* 1), With the fact thatn(a* ') > M(a*'*1), indices which achieve
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m(a* 1) and M (a*'+1) are again from the set (64). This situation holds forkalt &’. Using (61)

and the condition ok, we have
m(a®) — M(a) < h(A") < A Yk > I,

a contradiction to (57). Thus, the required condition (68)dk. [ ]

B. Shrinking and Caching

Shrinking and caching are two effective techniques to mhakedecomposition method faster. If an

af remains at0 or C for many iterations, eventually it may stay at the same vaBesed on this
principle, the shrinking technique [10] reduces the sizthefoptimization problem without considering
some bounded variables. The decomposition method thenswmrka smaller problem which is less
time consuming and requires less memory. In the end we pltthacemoved components and check
if an optimal solution of the original problem is obtained.

Another technique to reduce the training time is cachingc&@Q may be too large to be stored,
its elements are calculated as they are needed. We cantallsome space (called cache) to store
recently usel);; [10]. If during final iterations only few columns @ are still needed and the cache
contains them, we can save many kernel evaluations. [18réhe1l.3] has proved that during the
final iterations of using WSS 1, only a small subset of variglales still updated. Such a result supports
the use of shrinking and caching techniques. However, tlusfpconsiders only any convergent sub-

sequence ofa*} or assumes the global convergence. In this subsection, ewdpra more general

theory without these two assumptions.

Theorem 6 Assume®) is positive semi-definite and the SMO-type method Algorhuses WSS 3.
Let I be the set defined i(44).

1) There isk such that afterk > k, everya¥ i € I has reached the unique and bounded optimal
solution. It remains the same during all subsequent itersiand: € I is not in the following
set:

{t| M(a") < =y Vf(ah) < m(ah)}. (67)

2) If (1) has an optimal solutiomx satisfyingm(a) < M(&), thena is the unique solution and
the decomposition method reaches it at a finite number odititars.

3) If {«*} is an infinite sequence, then the following two limits exied are equal:
klim m(ak) = klim M(a*) =m(a) = M(a), (68)

wherea is any optimal solution. Thug68) is independent of any optimal solution.

Proof:
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1) If the result is wrong, there is an indéxc I and an infinite se such that

2)

of £ é;, vk € K, (69)

where &; is the unique optimal component according to Theorem 4. Frbeorem 3, there is
a further subsekC of K such that
lim of=a (70)
kE’C,k—)oc
is a stationary point. Moreover, Theorem 4 implies #hati € I are unique optimal components.

Thus,&; = &;.

As i € I, we first consider one of the two possible situations:
—yVf(a); > M(a). (71)
Thus,i ¢ L,,(a). (69) then implies
i€ Ip(ab),vk e K. (72)
For eachj € arg M (&), we havej € I, (&). From (70), there ig such that
§ € Now(a®),Vk € K,k > k. (73)
Thus, (72) and (73) imply
m(a) = M(a") 2 —yV f(o"); +;V (o), Yk € K,k = k. (74)
With (70), the continuity ofV f(«), and (53), taking the limit on both sides of (74) obtains
0= —yVf(a)y +y;Vi(a); = —yVf(a)y - Ma).

This inequality violates (71), so there is a contradictibor the other situation-y;V f(&);
< m(a), the proof is the same.

The proof thati € I is not in the set (67) is similar. If the result is wrong, thésean index
1 € I such thatvk € K, 7 is in the set (67). Then (74) holds and causes a contradiction

If the result does not hold, thefx*} is an infinite sequence. From Theorems 3 and4s the
unique optimal solution anda*} globally converges to it.

Define
L ={i| -y Vf(a); =M(a)},
I ={i| —y:Vf(a); =m(a)}.
Using the first result of this theorem, aftéris sufficiently large arg m(a®) and arg M (a*)

must be subsets aof; U I,. Moreover, using (53), the continuity &7 f(«), and the property

limj,_. . af = &, there isk such that for allk > k&,

argm(a®) and arg M (a*) are both subsets df (or I»). (75)
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If at the kth iteration,arg m(a*) and arg M (a*) are both subsets af;, then following the

same argument in (63)-(64), we have
the working setB C I. (76)

As the decomposition method maintains feasibility,
Z yiak = Z YL, 77)
i€EB i€B
From (76) and the assumption thata) < M (&), everya;, ¢ € B satisfiesi ¢ I,,(a). Thus,
a;, 1 € B is the same as (47). This and (77) then imply

le** — &y
k _ k k
= Z‘%H—QH‘F Z (C—ai*h) + Z (i —0)
i¢B 1€B,y;=1 1€B,yi=—1
k=~ k k
= Z‘ai_ai|+ Z (C—a7)+ Z (o —0)
i¢B i€B,y;=1 t€B,y;=—1
= lla* —als. (78)

If argm(a®) andarg M () are both subsets df, (78) still holds. Therefore,
0# [l —ali =l —alh =,

a contradiction to the fact thdin*} converges tax. Thus, the decomposition method must stop
in a finite number of iterations.
3) Since{a*} is an infinite sequence, using the result of 2), problem (&) @ optimal solution

a satisfying M (&) > m(a). From Theorem 4, we have
M(a) =m(a) = -y Vf(a),Vt ¢ I, (79)

and this is independent of different optimal solutiaiis From the result of 1), there i such

that for all k > k, i € I is not in the set (67). Thus,

r'={1,...;0}\I (80)
is a superset of (67) and hence
I‘IéiII’l —yiVf(ar); < M(a¥) < m(a®) < max —yiVf(a®),. (81)

Though{a*} may not be globally convergenf—y;V f(a*);}, i = 1,...,1, are according to
(42). The limit of both sides of (81) are equal using (79), 8)(follows.
|
Theorem 6 implies that in many iterations, the SMO-type metimvolves only indices id’. Thus,
caching is very effective. This theorem also illustrates possible shrinking implementations:

1) Elements not in the set (67) are removed.
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2) Any «; which has stayed at the same bound for a certain number afidgas is removed.

The softwareLIBSVM [3] considers the former approach, whitd” M9 [10] uses the latter.

V. CONVERGENCERATE

Though we proved the asymptotic convergence, it is impbit@mnvestigate how fast the method
converges. Under some assumptions, [15] was the first toeptio® linear convergence of certain
decomposition methods. The work [15] allows the working teehave more than two elements and
WSS 1 is a special case. Here we show that when the SMO-typengoskt selection is extended
from WSS 1 to WSS 2, the same analysis holds. Since [15] was rdispad, we include here all
details of the proof.

Note that WSS 3 uses a functidnto control the quality of the selected pair. We will see in the
proof that it may affect the convergence rate. Proving thedi convergence requires the condition
(8), so results established in this section are for WSS 2 buwWw®s 3.

First we make a few assumptions.

Assumption 1 @ is positive definite.

Then (1) is a strictly convex programming problem and here® d unique global optimur.

By Theorem 6, after large enough iterations working setsafirérom the setl’ defined in (80).
From the optimality condition (6), the scalasatisfiesh = m(a) = M (&), and the sef’ corresponds
to elements satisfying

V(@) + by = 0. (82)

From (4)-(5), another form of the optimality condition,df is not at a bound, (82) holds. We further

assume that this is the only case that (82) happens.

Assumption 2 (Nondegeneracy)For the optimal solutionr, V f(&); + by; = 0 if and only if 0 <
a; < C.

This assumption, commonly used in optimization analysiglies that indices of all bounde®; are
exactly the setl. Therefore, after enough iterations, Theorem 6 and Assom@ imply that all
bounded variables are fixed and are not included in the workit. By treating these variables as

constants, essentially we solve a problem with the follgniorm:

1
min fla) = iaTQa +pla

subjectto  yla = A, (83)

wherep is a vector by combining-e and other terms related to the bounded components. Moreover

0 < aF < C for all i even though we do not explicitly write down inequality camagtts in (83). Then
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the optimal solutionx with the corresponding can be obtained by the following linear system:

R y||a
yr' 0 b
k+1

In each iteration, we consider minimizinfya%; +d), whered is the direction froma%; to ;" so

-p
A

(84)

the sub-problem (2) is written as
min d"Qpsd + V(ah)hd
subjectto  yLd =0, (85)

where Vf(a*) = Qa* + p. If an optimal solution of (85) isd*, then o™ = o¥ + d* and

ok = ok With the corresponding”, this sub-problem is solved by the following equation:

QBB Y¥YB d* _ —Vf(ak)B (86)
yL 0| [k 0 '
Using (84),
Qor—a) = Qa*+p+by
= Vf(a") +by. (87)

By definingY = diag(y) to be a diagonal matrix with elements gf on the diagonal, and using
yi = £1,
-YQ(a" —a) = -YVf(aF) - be. (88)

The purpose of checkin@(a* — &) is to see how close the current solution is to the optimal one.
Then (88) links it to—Y'V f(a*), a vector used for the working set selection. Remember trat f
finding violating pairs, we first sort-y; V f(a*); in an ascending order.

The following two theorems are the main results on the lirmavergence.

Theorem 7 Assume the SMO-type decomposition method uses WSS 2 foorttiegnset selection.

If problem (1) satisfies Assumptions 1 and 2, then there @re 1 and k such that for allk > k&
(@ —a)TQ(a — &) < ¢l — @) Q" — ). (89)

Proof: First, Theorem 6 implies that there issuch that aftek > %, the problem is reduced to
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(83). We then directly calculate the difference between(fhe- 1)st and thekth iterations:
(@~ @) Q! — &) — (" — a)TQ(a" — &) (90)

= 2(d)"(Q(a* — a))p + (d")TQppd"®

= (d""2Q(c* —a))s - Vf(a*)s —byp) (91)
= (d""((Q(e* —a))s+ (b—b")ys) (92)
= @)"(Qe* —a))p + (V" —byn) (93)

= —[-(Qa" —a)p + (0 - ")ys]" Qpp[-(Q(a* — &))s + (b~ b")y5],

where (91) is from (86), (92) is from (87), (93) is by using faet y5d* = 0 from (86), and the last
equality is from (86) and (87). If we define

Q =YpQpLYs andv = —Y(Q(a* — &)), (94)
whereYs = diag(ys), thenvg = —Y5(Q(a* — &))5 and (90) becomes
—[vp + (b—b")es]"Qlvy + (b — bF)ep]. (95)
From (88), we define
o' = max(v) = m(a*) — b,
ol = min(v;) = M(a®) —b. (96)
Thus, the selection rule (8) of WSS 2 implies
Jvi = vj] > o(v" =), (97)

where{i, j} is the working set of théth iteration.

We denote thatin(eig(-)) andmax(eig(-)) to be the minimal and maximal eigenvalues of a matrix,
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respectively. A further calculation of (95) shows

Ve + (b—b")ep)TQlvs + (b — b*)ep]

> min(eigQ))[vs + (b— b )ep) [vi + (b - b)es]
> min(eig(Q)) max(vy + (b — by))?
> min(eig(Q))( i;”f)% where {i, j} is working set (98)
’Ul _ ’Ul
> min(eig(Q))o”( 5 )? (99)
> min(eig@))(%>%Qmax<|v1|,|vl|>2 (100)
min(eig(Q Q-1
> (ellg(Q))(ng Q|Q}_’1)202(Q(ak . d))TQ(ak —-a) (101)
min(eig(Q)) y'Q 1y 72(0(a* —aNTo1o(e* — &
> (e ) 23,0 (e @~
min(eig(Q)) y'Q 1y 2k —a)To(ek — a
= Imax(eig(Q~ ))(221&5‘621551') (e )l o) (102

where (98) is from Lemma 3, (99) is from (97), (100) is from Lram4, and (101) follows from (96).
Note that both lemmas are given in Appendix A.

Next we give more details about the derivation of (100)s'f! < 0, then of course
ot — o] > max(|v!], |o']).

With y; = +1, % < 1 so (100) follows. In contrast, ib'v! > 0, we considerv =

(YQY)(-Y(a* — @&)) from (94). Since—e’Y(a* — &) = —yT(a® — @) = 0, we can apply
Lemma 4: With
(YQY);;'| = Qi viy;| = 1Q3;'| and

e’ (YQY) le=y"Q 'y,

we have
o' =o' = max(|o'], [v']) — min(jv'], [v"])
TNH—1
y Q 'y TN
> (S =) max(fv |, [v'])
Zt,s'Qtsl| 7 7

which implies (100).
Finally we can define a constaatas follows:
. . —-1 T _
c=1_ min( min(eig(@zp)) ( Q! yl )202) <1,
I max(eig(Q—1)) ZEt < Q|
where B is any two-element subset é1,...,1}. Combining (95) and (102), aftdr > k, (89) holds.
|
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The condition (8) of Algorithm 2 is used in (97) and then (99)WSS 3 is considered, in (99) we
will have a termh((v! —v')/2)2. Thus, the functiorh affects the convergence rate. Sireer) < =,
linear rate is the best result using our derivation.

The linear convergence of the objective function is as Yedlo

Theorem 8 Under the same assumptions of Theorem 7, there arel and k such that for allk > F,
f(@ ) = f(@) < e(f(a¥) = f(a)).

Proof: We show that for any: > k,
1
flek) - fl@) = 5(e* - @) Q(a* - a)

and the proof immediately follows from Theorem 7. Using (84)

f@®) = f(@)
- (@@t +pTat — (@) Qa - pTa
= (@7 Qok + (~Qa—by)Tok — (a)"Qa— (~Qa —by)"a
- @M@k — (@) Qa" + (@) Qa (103)
= L@t —a)Qt - a)
Since we always keep the feasibility of*, (103) comes frony”a* = yTa. [

VI. EXTENSIONS

In this section we show that the same SMO-type methods capfdeed to some variants of SVM.

A. Support Vector Regression and One-class SVM

First we extend (1) to the following general form:

1
min  f(a) = iaTQa +pla

subject to Li<oa; <Upi=1,...,1, (104)
yia=A,
where—oco < L; < U; < 00,i=1,...,1, are lower and upper bounds, a@dis an! by [ symmetric

matrix. Clearly, if L; = 0,U; = C, andp = —e, then (104) reduces to (1). The optimality condition
is the same as (3) though in the definition [gf,(a) and Iy (cx), 0 and C' must be replaced by,
and U;, respectively. Therefore, SMO-type decomposition meshasing WSS 2 or 3 can be applied
to solve (104). A careful check shows that all results in Best!ll-V hold for (104).
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Problem (104) covers some SVM formulations such as suppmtov regression (SVR) [28] and
one-class SVM [26]. Next we discuss SVR in detail. Given adelata points{(x1, 21),. ., (x1,2)}
such thatx; € R™ is an input vector and; € R' is a target output, support vector regression solves

the following optimization problem:

! !
min  f(a,a*) = %(a—a*)TK(a—a*)—&—eZ(ai—l—af)—l—Zzi(ai—af)

o,o*
i=1 =1

MN

subject to (; — ) =0,

1

.
Il

o
IA

a,a <Cli=1,...,1, (105)

where K;; = ¢(x;)T ¢(x;), ande > 0 is the width of thee-insensitive tube.

We can rewrite (105) as

) 1 K -K « «
min  f(a,a*) = = [aT,a*T} + |eel + 27, ee” — ZT:|
Rt 2 -K K o o*
. T a
subject to y =0,
a*
0<aq;,af <Cii=1,...,1, (106)

wherey is a2l by 1 vector withy; = 1,i =1,...,l andy; = —1,i =1+ 1,...,2l. Thus (106) is
in the form of (104) and an SMO-type method with WSS 3 can beiagpMoreover, the procedure
asymptotically converges and possesses all propertieedtio IV. An interesting issue is about
Corollary 1, which requires the Hessian mat[iﬁ( ‘Iﬂ to be positive definite. This condition never
holds as| . ¥ is only positive semi-definite. Note that in Corollary 1, fhesitive definite Hessian
is used to have a unique optimal solution. For SVR, [4, Lemihardves that ife > 0 and K is
positive definite, then (106) has a unique solution. Thus, ¥R, Corollary 1 can be modified to
require only thatK is positive definite.

For the linear convergence result in Section V, Assumpticiods not hold as now . -] is not
positive definite. However, we will show that similar to Clhaoy 1, a positive definitd( is sufficient.
Note that in Section V, the Hessian matrix of (83) is in fét;» as«;, i € I can be removed after
large enough iterations, whefeand I’ are defined as in (44) and (80) except that the{set.. !}
is replaced by{1,...,2(}. Then in the linear convergence proof we ne&ggd;  to be invertible and
this condition holds ifQ is positive definite (i.e., Assumption 1). For SVR, this me@rﬁ( }f]l,l,
should be invertible. To prove it, we first claim that for ahy ¢ </,

i andi + [ are not both in the set’. (107)
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As e > 0 implies
-y Vila,a"), = —(K(aa—a")); + €+ 2
# —(K(a" —a))i —e+ 2z = —yiuVf(a,a")iu, (108)
the definition ofI’ directly leads to (107). We further define
I' = an index vector by replacing artyl <t < 2l in I’ with ¢ — 1.

From (107),I’ and I’ have the same number of elements and furthermore,
K -K
-K K

=YrKqpYp, (109)
r
whereY; = diag(y) is a diagonal matrix. Clearly, (109) indicates thathifis positive definite, so

K —-K

is K77 and [7K i Therefore, by replacing Assumption 1 on the Hessian maiilx that on

]I'I"
the kernel matrix, the linear convergence result holds RS

B. Extension ta-SVM

v-SVM [27] is another SVM formulation which has a parameteinstead ofC'. Its dual form is

1
min  fla)= -a’Qa
o 2
subject to yla =0,
ela=v,
0<a; <1/li=1,...,1, (110)

wheree is the vector of all ones. Note that some uSen > v as a constraint, but [4] and [7] have
shown that decision functions are the same. Moreover, [@yqut that (110) is equivalent to problem
(1) with certainC. It also discusses the decomposition method for traimir&gvM.

Via the KKT condition, a vectotx is a stationary point of (110) if and only if there are two seal

p andb such that
V@) —p+by; >0 if a; <1/,
Vf(a)l —p+by; <0 if a; > 0.

By separating the case gf = 1 andy; = —1, we obtain two conditions or-p + b and —p — b,

respectively. Thus, similar to (6), there is the followingtimnality condition:

my(a) < My(a) andmy, (o) < My (a), (111)
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= —y;V iy M = i —y;V i and
p(0) = M YV () W)= V)
my (o) = max —uiV f(a)s, My (a) = min —uiV f(a);.
ie[up(a)yyiz_l ie[low(a)ﬂyi:_l

One can also define a violating pair as the following:

Definition 2 (Violating pair of (111) If ¢ € Iyp(a),j € Tow(a), yi = y;, and —y; Vf(a); >
—y;Vf(a);, then{i, j} is a “violating pair”

Clearly, the conditiony; = y; is the main difference from Definition 1. In fact the selecieair
B = {i,j} must satisfyy; = y;. If y; # y;, then the two linear equalities result in the sub-problem
having only one feasible poinrt},. For the samey; andy;, the two equations in the sub-problem are
identical, so we could move;, to a better point. In addition, the sub-problem is then in shene
form of (2), so the procedure in Section IlI-A directly works

All working set selections discussed in Section Il can besreded here. We modify WSS 3 as an

example:

WSS 4 (Extension of WSS 3 for-SVM)
1) Select anyi € I, (@), j € Low(a®), y; = y; satisfying

—yi V()i +y;Vf(a); > h(D(a*)) >0, (112)

where

D(a*) = max(m,(a®) — M,(a®), m,(a*) — M, (a")). (113)
2) ReturnB = {i, j}.

Results in Sections 1lI-IV hold with minor modifications. & are listed in the following without

detailed proofs. For easier description, we let

aP (a™) be the sub-vector ofx corresponding to positive (negative) samples

Theorem 9 Let{a*} be the infinite sequence generated by the SMO-type decdinpasithod using
WSS 4 for the working set selection. Then any limit poinfaf} is a stationary point of(110)

Theorem 10 Assume?) is positive semi-definite.

1) If & # & are any two optimal solutions ofL10), then
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If a? # &P (@™ # &™), then
Mp(a) = my(a) = My(&) = my(a) (115)
(M (&) =mp(@) = M, (&) = my(&)). (116)
2) If there is an optimal solutiorex satisfyingm, (&) < M,(&), then&® is unique for(110)
Similarly, if m, (&) < M, (&), thena™ is unique.
3) The following sets are independent of any optimal solution
I, ={ilyi=1,-Vf(a); > My(a) or —Vf(a); <my(a)}, (117)
Ly ={ilyi=-1,Vf(a); > M,(a) or Vf(a); <mu(a)}. (118)

Moreover, problen(110) has unique and bounded optimal solutionsegf i € I, U I,,.

Theorem 11 AssumeQ is positive semi-definite. Lgin*} be the infinite sequence generated by the
SMO-type decomposition method using WSS 4(df*)?} ({(a*)"}) is updated in infinitely many

iterations, then
limy,, 00 My (®) — My (a®) =0 (119)

(im0 mn (@) — M, () = 0). (120)

Theorem 12 Assume() is positive semi-definite and the SMO-type method Algorhmses WSS 4.
Let I, and I,, be the sets defined {117) and (118). DefineX? and K" to be iterations in which the
working set is from positive and negative samples, resgayti
1) There isk such that afterk > k, everya¥, i € I, U I,, has reached the unique and bounded
optimal solution. For anyi € I, there isk such that afterk > k, k € KP, i is not in the

following set
{t|ye =1, Mp(aF) < =y V() < my(ak)}. (121)

The same result holds for the negative part.
2) If (110) has an optimal solutiorx satisfyingm, (&) < M,(&) (m,(&) < M,(&)), thena?
(a™) is unique for(110)and the decomposition method reaches it in a finite numbéeations.
3) If {(a*)P} is updated in infinitely many iterations, then the followitvgp limits exist and are

equal:
limy, 00 My (F) = limg 0o My(ak) = m,(a&) = M,(&) (122)

wherea is any optimal solution. The same result holds f¢e*)"}.
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VIl. DISCcUsSSION ANDCONCLUSIONS

This paper provides a comprehensive study on SMO-type deasition methods. Below we discuss

some issues for future investigation.

A. Faster Training via a Better Selection Rule

Under the general framework discussed in this paper, we esigm various selection rules for prac-
tical implementations. Among them, the one using the makuigdating pair has been widely applied
in SVM software. Developing better rules from the proposeaniework is important. Otherwise, this
article has only theoretical values. A working set selectidhich leads to faster training should:

1) reduce the number of iterations of the decomposition otktin other words, the convergence

is faster, and

2) keep the cost of identifying the working sBt similar to that of finding the maximal violating

pair.

The challenge is that these two goals are often at odds. Famphe, fewer iterations may not
reduce the training time if the cost of working set seledi@®higher. We proposed some rules with
the above properties in [8]. This work shows that the “maxinialating pair” uses only the first-
order information of the objective function, and derivesedtdr selection rule using the second-order
information. The new rule is a special case of WSS 2. The trgitime is generally shorter than that

by using the “maximal violating pair.”

B. Necessary Conditions for the Convergence

Previous studies and the discussion in Section Il prov&idficient conditions” for the convergence
of decomposition methods. That is, under given working ségctions, we prove the convergence.
Investigating the “necessary conditions” is also intengstWhen the decomposition method converges,
which conditions does its working set selection satisfy?

We may think that WSS 3 is general enough so that every come®&dO-type method satisfies
the condition (9). However, this may not be right. We suspleat even if some iterations selefat j}
without enough violation (i.e—y; V f(a*); + vV f(aF); < h(m(ak) — M(a*))), the method may
still converge if other iterations have used appropriateking sets. Therefore, finding useful necessary
conditions may be a challenging task.

It is worth mentioning another working set selection prambsn [21]. This work requires the

following condition:

There isN > 0 such that for allk,

any violating pair ofa* is selected at least once in iteratiohgo & + . (123)
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Clearly, a cyclic selection ofi,j} in everyl(l — 1)/2 iterations satisfies (123):

(1,2}, {13}, ... {10}, {2,3},.... {1 - 1,1},

where! is the number of data instances. With (123), the converggngef in Theorem 3 becomes
very simple. For the limit pointx assumed not stationary, its maximal violating pgirj} is also a
violating pair at iterationk, wherek € KC, k > k. According to (123), this paifi, j} of & must be
selected at iteratior’, wherek < k' < k+ N. Then at the(k’ + 1)st iteration, (28) and (29) imply

i € Iyp(@®*1) andj € Loy (e th),

but (33) indicates that

i € Lip(a” 1) or j & Loy (a? 1),

Thus, immediately there is a contradiction. In a sense,)(i22 rule “designed” for the convergence
proof.

The two conditions (9) and (123) on the working set selectiom quite different, so neither is a
necessary condition. From the counter-example in Sectiarelobserved that the selectéd j} has
a much smaller violation tham(a*) — M(a*), and hence proposed WSS 2 and 3. This example
also has a violating paif4,5} never selected, a situation opposite to (123). Thus both W&®13he
condition (123) attempt to remedy problems imposed froms tiwunter-example, but they take very
different directions. One focuses on issues related to #venmal violating pair, but the other requires
that all current violating pairs are selected later in a dimtimber of iterations. In general, we think
the former leads to faster convergence as it more aggréssi@uces the violation. However, this
also complicates the convergence proof as a counting puoedd Theorem 3 must be involved in

order to obtain the contradiction.
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APPENDIX
A. Proof of Two Lemmas Used in Section V

Lemma 3 If v; > --- > v, then
U1 — U

1) >
max(|u) > =
Proof: We notice thatmax;(|v;|) must happen at;, or v;. It is easy to see

v — v fon| + o
2 - 2

< max(foy |, [or]).

Lemma 4 If Q is invertible, then for anyk such that
1) e'x =0,
2) v = Qx, max;((Qx);) = v! > v! = min;((Qx);), andv'v! > 0,

we have
eTQ—l
>, Q5

Proof: Sincev! > o' andvv! > 0, we have eithew! > o' > 0 or 0 > v! > »'. For the first

min(Jo'], |o']) < (1 - ) max([v*, [v']).

case, if the result is wrong,
TQ e
Z’L ,J |Q131‘

vl > (1— ot

soforj=1,...,[,

vt — v; < vl — o
Q!
ZZ] |QL]1|

< (=——— ) (124)

With x = Qv and (124),
e'x = e'Q7'v
= ZQ;jlv
ij
= Z%l(vl — (v = ;)
feTQfle — (v =) Z Q7'

1 TH-1.
> v (e Q e E,J|Q”1| ZIQ:] >
=0

\Y

causes a contradiction. The case0cf v! > ! is similar. [ |



