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Abstract

Decomposition methods are currently one of the major methods for trainingsupport vector ma-

chines. They vary mainly according to different working set selections. Existing implementations

and analysis usually consider some specific selection rules. This article studies Sequential Minimal

Optimization (SMO)-type decomposition methods under a general and flexible way of choosing the

two-element working set. Main results include: 1) a simple asymptotic convergence proof, 2) a general

explanation of the shrinking and caching techniques, and 3) the linear convergence of the methods.

Extensions to some SVM variants are also discussed.

I. I NTRODUCTION

The support vector machines (SVMs) [1], [6] are useful classification tools. Given training vectors

xi ∈ Rn, i = 1, . . . , l, in two classes, and a vectory ∈ Rl such thatyi ∈ {1,−1}, SVMs require the

solution of the following optimization problem:

min
α

f(α) =
1

2
αT Qα− eT α

subject to 0 ≤ αi ≤ C, i = 1, . . . , l, (1)

yT α = 0,

wheree is the vector of all ones,C < ∞ is the upper bound of all variables, andQ is an l by l

symmetric matrix. Training vectorsxi are mapped into a higher (maybe infinite) dimensional space

by the functionφ, Qij ≡ yiyjK(xi,xj) = yiyjφ(xi)
T φ(xj), andK(xi,xj) is the kernel function.

ThenQ is a positive semi-definite (PSD) matrix. Occasionally someresearchers use kernel functions

not in the form ofφ(xi)
T φ(xj), soQ may be indefinite. Here we also consider such cases and, hence,

require onlyQ to be symmetric.

Due to the density of the matrixQ, the memory problem causes that traditional optimization methods

cannot be directly applied to solve (1). Currently the decomposition method is one of the major methods

to train SVM (e.g. [3], [10], [23], [25]). This method, an iterative procedure, considers only a small

subset of variables per iteration. Denoted asB, this subset is called the working set. Since each

iteration involves only|B| columns of the matrixQ, the memory problem is solved.
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A special decomposition method is the Sequential Minimal Optimization (SMO) [25], which restricts

B to only two elements. Then at each iteration one solves a simple two-variable problem without

needing optimization software. It is sketched in the following:

Algorithm 1 (SMO-type Decomposition methods)

1) Find α1 as the initial feasible solution. Setk = 1.

2) If αk is an stationary point of (1), stop. Otherwise, find atwo-elementworking setB = {i, j} ⊂
{1, . . . , l}. DefineN ≡ {1, . . . , l}\B and αk

B and αk
N as sub-vectors ofαk corresponding to

B andN , respectively.

3) Solve the following sub-problem with the variableαB :

min
αB

1

2

[

αT
B (αk

N )T
]





QBB QBN

QNB QNN









αB

αk
N



−
[

eT
B eT

N

]





αB

αk
N





=
1

2

[

αi αj

]





Qii Qij

Qij Qjj









αi

αj



+ (−eB + QBNαk
N )T





αi

αj



+ constant

subject to 0 ≤ αi, αj ≤ C, (2)

yiαi + yjαj = −yT
Nαk

N ,

where
[

QBB QBN

QNB QNN

]

is a permutation of the matrixQ.

Setαk+1
B to be the optimal point of (2).

4) Setαk+1
N ≡ αk

N . Setk ← k + 1 and goto Step 2.

Note that the setB changes from one iteration to another. To simplify the notation, we useB

instead ofBk. Algorithm 1 does not specify how to choose the working setB as there are many

possible ways. Regarding the sub-problem (2), ifQ is positive semi-definite, then it is convex and can

be easily solved. For indefiniteQ, the situation is more complicated, and this issue is addressed in

Section III.

If a proper working set is used at each iteration, the function valuef(αk) strictly decreases. However,

this property does not imply that the sequence{αk} converges to a stationary point of (1). Hence,

proving the convergence of decomposition methods is usually a challenging task. Under certain rules

for selecting the working set, the asymptotic convergence has been established (e.g. [16], [2], [9],

[20]). These selection rules may allow an arbitrary workingset size, so they reduce to SMO-type

methods when the size is limited to two.

This article provides a comprehensive study on SMO-type decomposition methods. The selection

rule of the two-element working setB is under a very general setting. Thus, all results here applyto

any SMO-type implementation whose selection rule meets thecriteria of this paper. In Section II, we

discuss existing working set selections for SMO-type methods and propose a general scheme. Section

III proves the asymptotic convergence and gives a comparison to former convergence studies.
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Shrinking and caching are two effective techniques to speedup the decomposition methods. Earlier

research [18] gives the theoretical foundation of these twotechniques, but requires some assumptions.

In Section IV, we provide a better and a more general explanation without these assumptions. Conver-

gence rates are another important issue and they indicate how fast the method approaches an optimal

solution. We establish the linear convergence of the proposed method in Section V. All the above

results hold not only for support vector classification, butalso for regression and other variants of

SVM. Such extensions are presented in Section VI. Finally, Section VII is the conclusion.

II. EXISTING AND NEW WORKING SET SELECTIONS FORSMO-TYPE METHODS

In this Section, we discuss existing working set selectionsand then propose a general scheme for

SMO-type methods.

A. Existing Selections

Currently a popular way to select the working setB is via the “maximal violating pair:”

WSS 1 (Working set selection via the “maximal violating pair”)

1) Select

i ∈ arg max
t∈Iup(αk)

−yt∇f(αk)t,

j ∈ arg min
t∈Ilow(αk)

−yt∇f(αk)t,

where

Iup(α) ≡ {t | αt < C, yt = 1 or αt > 0, yt = −1}, and

Ilow(α) ≡ {t | αt < C, yt = −1 or αt > 0, yt = 1}.
(3)

2) ReturnB = {i, j}.

This working set was first proposed in [14] and has been used inmany software packages, for

example,LIBSVM [3].

WSS 1 can be derived through the Karush-Kuhn-Tucker (KKT) optimality condition of (1): A vector

α is a stationary point of (1) if and only if there is a numberb and two nonnegative vectorsλ andµ

such that

∇f(α) + by = λ− µ,

λiαi = 0, µi(C −α)i = 0, λi ≥ 0, µi ≥ 0, i = 1, . . . , l,

where∇f(α) ≡ Qα− e is the gradient off(α). This condition can be rewritten as

∇f(α)i + byi ≥ 0 if αi < C, (4)

∇f(α)i + byi ≤ 0 if αi > 0. (5)
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Sinceyi = ±1, by definingIup(α) and Ilow(α) as in (3), and rewriting (4)-(5) to have the range of

b, a feasibleα is a stationary point of (1) if and only if

m(α) ≤M(α), (6)

where

m(α) ≡ max
i∈Iup(α)

−yi∇f(α)i, andM(α) ≡ min
i∈Ilow(α)

−yi∇f(α)i.

Note thatm(α) and M(α) are well defined except in a rare situation where allyi = 1 (or −1). In

this case the zero vector is the only feasible solution of (1), so the decomposition method stops at the

first iteration.

Following [14], we define a “violating pair” of the condition(6) as:

Definition 1 (Violating pair) If i ∈ Iup(α), j ∈ Ilow(α), and −yi∇f(α)i > −yj∇f(α)j , then

{i, j} is a “violating pair.”

From (6), the indices{i, j} which most violate the condition are a natural choice of the working set.

They are called a “maximal violating pair” in WSS 1.

Violating pairs play an important role in making the decomposition methods work, as demonstrated

by:

Theorem 1 ([9]) AssumeQ is positive semi-definite. The decomposition method has thestrict decrease

of the objective function value (i.e.f(αk+1) < f(αk),∀k) if and only if at each iterationB includes

at least one violating pair.

For SMO-type methods, ifQ is PSD, this theorem implies thatB must be a violating pair.

Unfortunately, having a violating pair inB and then the strict decrease off(αk) do not guarantee

the convergence to a stationary point. An interesting example from [13] is as follows: Given five

data x1 = [1, 0, 0]T ,x2 = [0, 1, 0]T ,x3 = [0, 0, 1]T ,x4 = [0.1, 0.1, 0.1]T , and x5 = [0, 0, 0]T . If

y1 = · · · = y4 = −1, y5 = 1, C = 100, and the linear kernelK(xi,xj) = xT
i xj is used, then the

optimal solution of (1) is[0, 0, 0, 200/3, 200/3]T and the optimal objective value is−200/3.

Starting withα0 = [0, 0, 0, 0, 0]T , if in the first iteration the working set is{1, 5}, we haveα1 =

[2, 0, 0, 0, 2]T with the objective value−2. Then if we choose the following working sets at the next

three iterations:

{1, 2} → {2, 3} → {3, 1}, (7)

the next threeα are:

[1, 1, 0, 0, 2]T → [1, 0.5, 0.5, 0, 2]T → [0.75, 0.5, 0.75, 0, 2]T .
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If we continue as in (7) for choosing the working set, the algorithm requires an infinite number of

iterations. In addition, the sequence converges to a non-optimal point [2/3, 2/3, 2/3, 0, 2]T with the

objective value−10/3. All working sets used are violating pairs.

A careful look at the above procedure reveals why it fails to converge to the optimal solution. In

(7), we have the following for the three consecutive iterations:

−yt∇f(αk)t, t = 1, . . . , 5 −yi∇f(αk)i + yj∇f(αk)j m(αk)−M(αk)

[0, 0,−1,−0.8, 1]T 1 2

[0,−0.5,−0.5,−0.8, 1]T 0.5 1.8

[−0.25,−0.5,−0.25,−0.8, 1]T 0.25 1.8

Clearly, the selectedB = {i, j}, though a violating pair, does not lead to the reduction of the

maximal violationm(αk)−M(αk). This discussion shows the importance of the maximal violating

pair in the decomposition method. When such a pair is used as the working set (i.e. WSS 1), the

convergence has been fully established in [16] and [17]. However, if B is not the maximal violating

pair, it is unclear whether SMO-type methods still convergeto a stationary point. Motivated from

the above analysis, we conjecture that a “sufficiently violated” pair is enough and propose a general

working set selection in the following subsection.

B. A General Working Set Selection for SMO-type Decomposition Methods

We propose choosing a “constant-factor” violating pair as the working set. That is, the difference

between the two selected indices is larger than a constant fraction of that between the maximal violating

pair.

WSS 2 (Working set selection: constant-factor violating pair)

1) Consider a fixed0 < σ ≤ 1 for all iterations.

2) Select anyi ∈ Iup(αk), j ∈ Ilow(αk) satisfying

−yi∇f(αk)i + yj∇f(αk)j ≥ σ(m(αk)−M(αk)) > 0. (8)

3) ReturnB = {i, j}.

Clearly (8) ensures the quality of the selected pair by linking it to the maximal violating pair. We

can consider an even more general relationship between the two pairs:

WSS 3 (Working set selection: a generalization of WSS 2)

1) Let h : R1 → R1 be any function satisfying

a) h strictly increases onx ≥ 0,

b) h(x) ≤ x,∀x ≥ 0, h(0) = 0.
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2) Select anyi ∈ Iup(αk), j ∈ Ilow(αk) satisfying

−yi∇f(αk)i + yj∇f(αk)j ≥ h(m(αk)−M(αk)) > 0. (9)

3) ReturnB = {i, j}.

The conditionh(x) ≤ x ensures that there is at least one pair{i, j} satisfying (9). Clearly,h(x) = σx

with 0 < σ ≤ 1 fulfills all required conditions and WSS 3 reduces to WSS 2. The functionh can be

in a more complicated form. For example, if

h(m(αk)−M(αk)) ≡ min

(

m(αk)−M(αk),
√

m(αk)−M(αk)

)

, (10)

then (10) also satisfies all requirements.

Subsequently, we mainly analyze the SMO-type method using WSS 3 for the working set selection.

The only exception is the linear convergence analysis, which considers WSS 2.

III. A SYMPTOTIC CONVERGENCE

The decomposition method generates a sequence{αk}. If it is finite, then a stationary point is

obtained. Hence we consider only the case of an infinite sequence. This section establishes the

asymptotic convergence of using WSS 3 for the working set selection. First we discuss the sub-

problem in Step 3) of Algorithm 1 with indefiniteQ. Solving it relates to the convergence proof.

A. Solving the sub-problem

Past convergence analysis usually requires an important property, the function value is sufficiently

decreased: There isλ > 0 such that

f(αk+1) ≤ f(αk)− λ‖αk+1 −αk‖2, for all k. (11)

If Q is positive semi-definite and the working set{i, j} is a violating pair, [17] has proved (11).

However, it is difficult to obtain the same result ifQ is indefinite. Some such kernels are, for example,

the sigmoid kernelK(xi,xj) = tanh(γxT
i xj + r) [19] and the edit-distance kernelK(xi,xj) =

exp−d(xi,xj), whered(xi,xj) is the edit distance of two stringsxi andxj [5]. To obtain (11), [24]

modified the sub-problem (2) to the following form:

min
αB

f
([

αB

α
k
N

])

+ τ‖αB −αk
B‖2

subject to yT
BαB = −yT

Nαk
N , (12)

0 ≤ αi ≤ C, i ∈ B,

whereτ > 0 is a constant. Clearly, an optimalαk+1
B of (12) leads to

f(αk+1) + τ‖αk+1
B −αk

B‖2 ≤ f(αk)
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and then (11). However, this change also causes differencesto most SVM implementations, which

consider positive semi-definiteQ and use the sub-problem (2). Moreover, (12) may still be non-convex

and possess more than one local minimum. Then for implementations, convex and non-convex cases

may have to be handled separately. Therefore, we propose another way to solve the sub-problem where

1) The same sub-problem (2) is used whenQ is positive definite (PD), and

2) The sub-problem is always convex.

An SMO-type decomposition method with special handling on indefiniteQ is in the following algo-

rithm.

Algorithm 2 (Algorithm 1 with specific handling on indefinite Q)

Steps 1), 2), and 4) are the same as those in Algorithm 1.

Step 3’) Letτ > 0 be a constant throughout all iterations, and define

a ≡ Qii + Qjj − 2yiyjQij . (13)

a) If a > 0, then solve the sub-problem (2). Setαk+1
B to be the optimal point of (2).

b) If a ≤ 0, then solve a modified sub-problem:

min
αi,αj

1

2

[

αi αj

]





Qii Qij

Qij Qjj









αi

αj



+ (−eB + QBNαk
N )T





αi

αj



+

τ − a

4
((αi − αk

i )2 + (αj − αk
j )2)

subject to 0 ≤ αi, αj ≤ C, (14)

yiαi + yjαj = −yT
Nαk

N .

Setαk+1
B to be the optimal point of (14).

The additional term in (14) has a coefficient(τ −a)/4 related to the matrixQ, but that in (12) does

not. We will show later that our modification leads (14) to a convex optimization problem.

Next we discuss how to easily solve the two sub-problems (2) and (14). Considerαi ≡ αk
i + yidi

andαj ≡ αk
j + yjdj . The sub-problem (2) is equivalent to

min
di,dj

1

2

[

di dj

]





Qii yiyjQij

yiyjQij Qjj









di

dj



+ (−eB + (Qα)B)T





yidi

yjdj





subject to di + dj = 0,

0 ≤ αk
i + yidi, α

k
j + yjdj ≤ C. (15)

Substitutingdi = −dj into the objective function leads to a one-variable optimization problem:

min
dj

g(dj) ≡ f(α)− f(αk)

=
1

2
(Qii + Qjj − 2yiyjQij)d

2
j + (−yi∇f(αk)i + yj∇f(αk)j)dj (16)

subject to L ≤ dj ≤ U,
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whereL andU are lower and upper bounds ofdj after including information ondi : di = −dj and0 ≤
αk

i + yidi ≤ C. As a defined in (13) is the leading coefficient of the quadratic function (16),a > 0

if and only if the sub-problem (2) is strictly convex.

We then claim that

L < 0 andU ≥ 0. (17)

If yi = yj = 1, 0 ≤ αk
i + yidi, α

k
j + yjdj ≤ C implies

L = max(−αk
j , αk

i − C) ≤ dj ≤ min(C − αk
j , αk

i ) = U.

Clearly, U ≥ 0. Sincei ∈ Iup(αk) and j ∈ Ilow(αk), we haveαk
j > 0 and αk

i < C. Thus,L < 0.

For other values ofyi andyj , the situations are similar.

When the sub-problem (2) is not strictly convex, we consider (14) via adding an additional term.

With di = −dj ,
τ − a

4
‖αB −αk

B‖2 =
τ − a

2
d2

j . (18)

Thus, by defining

a1 ≡







a if a > 0,

τ otherwise,
(19)

and

a2 ≡ −yi∇f(αk)i + yj∇f(αk)j > 0, (20)

problems (2) and (14) are essentially the following strictly convex optimization problem:

min
dj

1

2
a1d

2
j + a2dj

subject to L ≤ dj ≤ U. (21)

Moreover,a1 > 0, a2 > 0, L < 0, andU ≥ 0. The quadratic objective function is shown in Figure 1

and the optimum is

d̄j = max(
−a2

a1
, L) < 0. (22)

Therefore, oncea1 is defined in (19) according to whethera > 0 or not, the two sub-problems can

be easily solved by the same method as in (22).

To check the decrease of the function value, the definition ofthe functiong in (16), d̄j < 0 and

a1d̄j + a2 ≥ 0 from (22), and‖αk+1 −αk‖2 = 2d̄j
2

imply

f(αk+1)− f(αk) = g(d̄j)

=
1

2
a1d̄j

2
+ a2d̄j

= (a1d̄j + a2)d̄j −
a1

2
d̄j

2

≤ −a1

2
d̄j

2

= −a1

4
‖αk+1 −αk‖2.
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Fig. 1. Solving the convex sub-problem (21)

Therefore, by defining

λ ≡ 1

4
min(τ,min{Qii + Qjj − 2yiyjQij | Qii + Qjj − 2yiyjQij > 0}), (23)

we have the following lemma:

Lemma 1 Assume at each iteration of Algorithm 2 the working set is a violating pair and let{αk}
be the sequence generated. Then(11) holds withλ defined in(23).

The above discussion is related to [19], which examines how to solve (2) when it is non-convex.

Note thata = 0 may happen as long asQ is not PD (i.e.,Q is PSD or indefinite). Then, (16),

becoming a linear function, is convex but not strictly convex. To have (11), an additional term makes it

quadratic. Given that the function is already convex, we of course hope that there is no need to modify

(2) to (14). The following theorem shows that ifQ is PSD andτ < 2/C, the two sub-problems indeed

have the same optimal solution. Therefore, in a sense, for PSD Q, the sub-problem (2) is always used.

Theorem 2 AssumeQ is PSD, the working set of Algorithm 2 is a violating pair, andτ ≤ 2
C . If

a = 0, then the optimal solution of(14) is the same as that of(2).

Proof: From (16) anda2 > 0 in (20), if a = 0, (2) has optimald̄j = L. For (14) and the

transformed problem (21),a = 0 implies a1 = τ . Moreover, sinceQ is PSD,

a = 0 = Qii + Qjj − 2yiyjQij = ‖φ(xi)− φ(xj)‖2,

and henceφ(xi) = φ(xj). Therefore,Kit = Kjt,∀t implies

−yi∇f(αk)i + yj∇f(αk)j

= −
l
∑

t=1

ytKitα
k
t + yi +

l
∑

t=1

ytKjtα
k
t − yj

= yi − yj .
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Since{i, j} is a violating pair,yi − yj > 0 indicates thata2 = yi − yj = 2. As τ ≤ 2
C , (22) implies

that d̄j = L is the optimal solution of (14). Thus, we have shown that (2) and (14) have the same

optimal point. The derivation ofa2 = 2 was first developed in [17].

B. Proof of Asymptotic Convergence

Using (11), we then have the following lemma:

Lemma 2 Assume the working set at each iteration of Algorithm 2 is a violating pair. If a sub-sequence

{αk}, k ∈ K converges toᾱ, then for any given positive integers, the sequence{αk+s}, k ∈ K
converges tōα as well.

Proof: The lemma was first proved in [16, Lemma IV.3]. For completeness we give details

here. For the sub-sequence{αk+1}, k ∈ K, from Lemma 1 and the fact that{f(αk)} is a bounded

decreasing sequence, we have

lim
k∈K,k→∞

‖αk+1 − ᾱ‖

≤ lim
k∈K,k→∞

(‖αk+1 −αk‖+ ‖αk − ᾱ‖)

≤ lim
k∈K,k→∞

(

√

1

λ
(f(αk)− f(αk+1)) + ‖αk − ᾱ‖

)

= 0.

Thus

lim
k→∞,k∈K

αk+1 = ᾱ.

From{αk+1} we can provelimk→∞,k∈K αk+2 = ᾱ too. Therefore,limk→∞,k∈K αk+s = ᾱ for any

given s.

Since the feasible region of (1) is compact, there is at leastone convergent sub-sequence of{αk}.
The following theorem shows that the limit point of any convergent sub-sequence is a stationary point

of (1).

Theorem 3 Let {αk} be the infinite sequence generated by the SMO-type method Algorithm 2 using

WSS 3. Then any limit point of{αk} is a stationary point of(1).

Proof: Assume thatᾱ is the limit point of any convergent sub-sequence{αk}, k ∈ K. If ᾱ is

not a stationary point of (1), it does not satisfy the optimality condition (6). Thus, there is at least one

maximal “violating pair”:

ī ∈ arg m(ᾱ) j̄ ∈ arg M(ᾱ) (24)

such that

∆ ≡ −yī∇f(ᾱ)̄i + yj̄∇f(ᾱ)j̄ > 0. (25)
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We further define

∆′ ≡ min

(

∆,
1

2
min

{

| − yt∇f(ᾱ)t + ys∇f(ᾱ)s|
∣

∣

∣
−yt∇f(ᾱ)t 6= −ys∇f(ᾱ)s

}

)

> 0. (26)

Lemma 2, the continuity of∇f(α), andh(∆′

2 ) > 0 from (26) imply that for any givenr, there is

k̄ ∈ K such that for allk ∈ K, k ≥ k̄:

For u = 0, . . . , r, −yī∇f(αk+u)̄i + yj̄∇f(αk+u)j̄ > ∆′. (27)

If i ∈ Iup(ᾱ), then i ∈ Iup(αk), . . . , i ∈ Iup(αk+r). (28)

If i ∈ Ilow(ᾱ), then i ∈ Ilow(αk), . . . , i ∈ Ilow(αk+r). (29)

If − yi∇f(ᾱ)i > −yj∇f(ᾱ)j , then foru = 0, . . . , r,

−yi∇f(αk+u)i > −yj∇f(αk+u)j +
∆′
√

2
. (30)

If − yi∇f(ᾱ)i = −yj∇f(ᾱ)j , then foru = 0, . . . , r,

| − yi∇f(αk+u)i + yj∇f(αk+u)j | < h(∆′). (31)

For u = 0, . . . , r − 1,

(τ − â)‖αk+u+1 −αk+u‖ ≤ ∆′, (32)

whereâ ≡ min{Qii + Qjj − 2yiyjQij | Qii + Qjj − 2yiyjQij < 0}.

If − yi∇f(ᾱ)i > −yj∇f(ᾱ)j and{i, j} is the working set at the(k + u)th iteration,

0 ≤ u ≤ r − 1, then i /∈ Iup(αk+u+1) or j /∈ Ilow(αk+u+1). (33)

The derivation of (27)-(32) is similar, so only the details of (27) are shown. Lemma 2 implies sequences

{αk}, {αk+1}, . . . , {αk+r}, k ∈ K all converge tōα. The continuity of∇f(α) and (26) imply that for

any given0 ≤ u ≤ r and the corresponding sequence{αk+u}, k ∈ K, there isku such that (27) holds

for all k ≥ ku, k ∈ K. As r is finite, by selectinḡk to be the largest of theseku, u = 0, . . . , r, (27) is

valid for all u = 0, . . . , r. Next we derive (33) [16, Lemma IV.4]. Similar to the optimality condition

(6) for problem (1), for the sub-problem at the(k + u)th iteration, if problem (14) is considered and

αB is a stationary point, then

max
t∈Iup(αB)

−yt∇f
([

αB

α
k+u
N

])

t
− yt(τ − a)

2
(αt − αk

t )

≤ min
t∈Ilow(αB)

−yt∇f
([

αB

α
k+u
N

])

t
− yt(τ − a)

2
(αt − αk

t ).

Now B = {i, j} andαk+u+1
B is a stationary point of the sub-problem satisfying the above inequality.

If

i ∈ Iup(αk+u+1) and j ∈ Ilow(αk+u+1),
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then from (32) and (18)

−yi∇f(αk+u+1)i

≤ −yj∇f(αk+u+1)j +
yi(τ − a)

2
(αk+u+1

i − αk+u
i )− yj(τ − a)

2
(αk+u+1

j − αk+u
j )

≤ −yj∇f(αk)j +
τ − a√

2
‖αk+u+1 −αk+u‖

≤ −yj∇f(αk)j +
∆′
√

2
. (34)

However,−yi∇f(ᾱ)i > −yj∇f(ᾱ)j implies (30) forαk+u+1, so there is a contradiction. Ifa > 0

and the sub-problem (2) is considered, (34) has no term∆′

√
2
, so immediately we have a contradiction

to (30).

For the convenience of writing the proof, we reorder indicesof ᾱ so that

−y1∇f(ᾱ)1 ≤ · · · ≤ −yl∇f(ᾱ)l. (35)

We also define

S1(k) ≡
∑

{i | i ∈ Iup(αk)} andS2(k) ≡
∑

{l − i | i ∈ Ilow(αk)}. (36)

Clearly,

l ≤ S1(k) + S2(k) ≤ l(l − 1). (37)

If {i, j} is selected at the(k + u)th iteration (u = 0, . . . , r), then we claim that

−yi∇f(ᾱ)i > −yj∇f(ᾱ)j . (38)

It is impossible that−yi∇(ᾱ)i < −yj∇(ᾱ)j as−yi∇(αk+u)i < −yj∇(αk+u)j from (30) then

violates (9). If−yi∇(ᾱ)i = −yj∇(ᾱ)j , then

−yi∇(αk+u)i + yj∇(αk+u)j < h(∆′) < h(−yī∇f(αk+u)̄i + yj̄∇f(αk+u)j̄)

≤ h(m(αk+u)−M(αk+u)). (39)

With the property thath is strictly increasing, the first two inequalities come from(31) and (27), while

the last is from̄i ∈ Iup(ᾱ), j̄ ∈ Ilow(ᾱ), (28), and (29). Clearly, (39) contradicts (9), so (38) is valid.

Next we use a counting procedure to obtain the contradictionof (24) and (25). From thekth to the

(k + 1)st iteration, (38) and then (33) show that

i /∈ Iup(αk+1) or j /∈ Ilow(αk+1).

For the first case, (28) impliesi /∈ Iup(ᾱ) and hencei ∈ Ilow(ᾱ). From (29) and the selection rule

(9), i ∈ Ilow(αk) ∩ Iup(αk). Thus,

i ∈ Ilow(αk) ∩ Iup(αk) and i /∈ Iup(αk+1).
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With j ∈ Ilow(αk),

S1(k + 1) ≤ S1(k)− i + j ≤ S1(k)− 1, S2(k + 1) ≤ S2(k), (40)

where−i + j ≤ −1 comes from (35). Similarly, for the second case,

j ∈ Ilow(αk) ∩ Iup(αk) and j /∈ Ilow(αk+1).

With i ∈ Iup(αk),

S1(k + 1) ≤ S1(k), S2(k + 1) ≤ S2(k)− (l − j) + (l − i) ≤ S2(k)− 1. (41)

From iteration(k + 1) to (k + 2), we can repeat the same argument. Note that (33) can still be

used because (38) holds for working sets selected during iterationsk to k + r. Using (40) and (41),

at r ≡ l(l − 1) iterations,S1(k) + S2(k) is reduced to zero, a contradiction to (37). Therefore, the

assumptions (24) and (25) are wrong and the proof is complete.

Moreover, if (1) has a unique optimal solution, then the whole sequence{αk} globally converges.

This happens, for example, whenQ is PD.

Corollary 1 If Q is positive definite,{αk} globally converges to the unique minimum of(1).

Proof: SinceQ is positive definite, (1) has a unique solution and we denote it as ᾱ. Assume

{αk} does not globally converge tōα. Then there isǫ > 0 and an infinite subsetK such that

‖αk − ᾱ‖ ≥ ǫ,∀k ∈ K. Since{αk}, k ∈ K are in a compact space, there is a further sub-sequence

converging toα∗ and‖α∗ − ᾱ‖ ≥ ǫ. Sinceα∗ is an optimal solution according to Theorem 3, this

contradicts that̄α is the unique global minimum.

For example, if the RBF kernelK(xi,xj) = e−γ‖xi−xj‖2

is used and allxi 6= xj , thenQ is positive

definite [22] and we have the result of Corollary 1.

We now discuss the difference between the proof above and earlier convergence work. The work

[16] considers a working set selection which allows more than two elements. When the size of the

working set is restricted to two, the selection is reduced toWSS 1, the maximal violating pair. This

proof in [17] has used a counting procedure by considering two sets related to{̄i, j̄}, the maximal

violating pair atᾱ:

I1(k) ≡ {t | t ∈ Iup(αk),−yt∇f(ᾱ)t ≥ −yj̄∇f(ᾱ)j̄}, and

I2(k) ≡ {t | t ∈ Ilow(αk),−yt∇f(ᾱ)t ≤ −yī∇f(ᾱ)̄i}.

Clearly, if WSS 1 is used,̄i ∈ Iup(αk) and j̄ ∈ Ilow(αk) imply that the selected{i, j} must

satisfy i ∈ I1(k) and j ∈ I2(k). Using (33) to show that|I1(k)| + |I2(k)| decreases to zero, we

obtain a contradiction to the fact that|I1(k)| + |I2(k)| ≥ 2 from ī ∈ Iup(αk) and j̄ ∈ Ilow(αk).

However, now we do not havei ∈ I1(k) and j ∈ I2(k) any more since our selection may not be the
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maximal violating pair. Therefore, a new counting scheme isdeveloped. By arranging−yi∇f(ᾱ)i in

an ascending (descending) order, in (36), we count the sum oftheir ranks.

IV. STOPPINGCONDITION, SHRINKING AND CACHING

In this section we discuss other important properties of ourmethod. In previous sections,Q is any

symmetric matrix, but here we further require it to be positive semi-definite. To begin, the following

theorem depicts some facts about the problem (1).

Theorem 4 AssumeQ is positive semi-definite.

1) If ᾱ 6= α̂ are any two optimal solutions of(1), then

−yi∇f(ᾱ)i = −yi∇f(α̂)i, i = 1, . . . , l, (42)

and

M(ᾱ) = m(ᾱ) = M(α̂) = m(α̂). (43)

2) If there is an optimal solution̄α satisfyingm(ᾱ) < M(ᾱ), thenᾱ is the unique optimal solution

of (1).

3) The following set is independent of any optimal solutionᾱ:

I ≡ {i | −yi∇f(ᾱ)i > M(ᾱ) or − yi∇f(ᾱ)i < m(ᾱ)}. (44)

Moreover, problem(1) has unique and bounded optimal solutions atαi, i ∈ I.

Proof: SinceQ is positive semi-definite, (1) is a convex programming problem andᾱ and α̂

are both global optima. Then

f(ᾱ) = f(α̂) = f(λᾱ + (1− λ)α̂), for all 0 ≤ λ ≤ 1,

implies

(ᾱ− α̂)T Q(ᾱ− α̂) = 0.

As Q is PSD,Q can be factorized toLLT . Thus,‖LT (ᾱ − α̂)‖ = 0 and henceQᾱ = Qα̂. Then

(42) follows.

To prove (43), we will show that

m(α̂) ≥M(ᾱ) andm(ᾱ) ≥M(α̂). (45)

With optimality conditionsM(ᾱ) ≥ m(ᾱ) andM(α̂) ≥ m(α̂), (43) holds.

Due to the symmetry, it is sufficient to show the first case of (45). If it is wrong, then

m(α̂) < M(ᾱ). (46)
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We then investigate different situations by comparing−yi∇f(ᾱ)i with M(ᾱ) andm(α̂). If

−yi∇f(ᾱ)i ≥M(ᾱ) > m(α̂), theni /∈ Iup(α̂) and

α̂i =











0 if yi = −1,

C if yi = 1.

(47)

With 0 ≤ ᾱi ≤ C,

yiα̂i − yiᾱi ≥ 0. (48)

If −yi∇f(ᾱ)i ≤ m(α̂) < M(ᾱ), theni /∈ Ilow(ᾱ) and

ᾱi =











C if yi = −1,

0 if yi = 1.

(49)

Hence, (48) still holds.

Other indices are in the following set

S ≡ {i | m(α̂) < −yi∇f(α̂)i = −yi∇f(ᾱ)i < M(ᾱ)}.

If i ∈ S, theni /∈ Iup(α̂) and i /∈ Ilow(ᾱ). Hence (47) and (49) imply

yiα̂i − yiᾱi = C. (50)

Thus,

0 = yT α̂− yT ᾱ

=
∑

i:i/∈S

(yiα̂i − yiᾱi) + C|S|.

Since (48) implies each term in the above summation is non-negative,

|S| = 0 and α̂i = ᾱi,∀i /∈ S.

Therefore,ᾱ = α̂. However, this contradicts the assumption thatᾱ and α̂ are different optimal

solutions. Hence (46) is wrong and we havem(α̂) ≥ M(ᾱ) in (45). The proof of (43) is thus

complete.

The second result of this theorem and the validity of the setI directly come from (43). Moreover,

I is independent of any optimal solution.

For any optimalα, if i ∈ I and−yi∇f(α)i > M(α) ≥ m(α), then, i /∈ Iup(α) and αi is the

same as (47). Thus, the optimalαi is unique and bounded. The situation for−yi∇f(α)i < m(α) is

similar.

Lemma 3 in [12] shows a result similar to (43), but the proof ismore complicated. It involves

both primal and dual SVM formulations. Using Theorem 4, in the rest of this section we derive more

properties of the proposed SMO-type methods.
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A. Stopping Condition and Finite Termination

As the decomposition method only asymptotically approaches an optimum, in practice, it terminates

after satisfying a stopping condition. For example, we can pre-specify a small stopping toleranceǫ > 0

and check if

m(αk)−M(αk) ≤ ǫ (51)

is satisfied. Though one can consider other stopping conditions, (51) is commonly used due to its

closeness to the optimality condition (6). To justify its validity as a stopping condition, we must make

sure that under any given stopping toleranceǫ > 0, the proposed decomposition method stops in a

finite number of iterations. Thus, an infinite loop never happens. To have (51), one can prove a stronger

condition:

lim
k→∞

m(αk)−M(αk) = 0. (52)

This condition is not readily available as from the respective definitions ofm(α) and M(α), it is

unclear whether they are continuous functions ofα. Proving (52) will be the main result of this

subsection.

The first study on the stopping condition of SMO-type methodsis [11]. They consider a selection

rule which involves the stopping tolerance, so the working set is a so-calledǫ− violating pair. Since

our selection rule is independent ofǫ, their analysis cannot be applied here. Another work [18] proves

(52) for WSS 1 under the assumption that the sequence{αk} globally converges. Here, for more

general selection WSS 3, we prove (52) with positive semi-definite Q.

Theorem 5 AssumeQ is positive semi-definite and the SMO-type decomposition method Algorithm 2

using WSS 3 generates an infinite sequence{αk}. Then

lim
k→∞

m(αk)−M(αk) = 0. (53)

Proof: We prove the theorem by contradiction and assume that the result (53) is wrong. Then,

there is an infinite set̄K and a value∆ > 0 such that

|m(αk)−M(αk)| ≥ ∆,∀k ∈ K̄. (54)

Since in the decomposition methodm(αk) > M(αk),∀k, (54) can be rewritten as

m(αk)−M(αk) ≥ ∆,∀k ∈ K̄. (55)

In this K̄ there is a further sub-sequenceK so that

lim
k∈K,k→∞

αk = ᾱ.

As Q is positive semi-definite, from Theorem 4,∇f(αk) globally converges:

lim
k→∞

∇f(αk)i = ∇f(ᾱ)i, i = 1, . . . , l. (56)
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We then follow a similar counting strategy in Theorem 3. First we rewrite (55) as

m(αk) ≥M(αk) + ∆′,∀k ∈ K̄, (57)

where

∆′ ≡ min

(

∆,
1

2
min

{

| − yt∇f(ᾱ)t + ys∇f(ᾱ)s|
∣

∣

∣
−yt∇f(ᾱ)t 6= −ys∇f(ᾱ)s

}

)

. (58)

We still require (27)-(33), but use (56) and (58) to extend (30) and (31) for allk ≥ k̄ (i.e., not only

k ∈ K):

If − yt∇f(ᾱ)t > −ys∇f(ᾱ)s, then − yt∇f(αk)t > ys∇f(αk)s. (59)

If − yt∇f(ᾱ)t 6= −ys∇f(ᾱ)s, then | − yt∇f(αk)t + ys∇f(αk)s| > ∆′. (60)

If − yt∇f(ᾱ)t = −ys∇f(ᾱ)s, then | − yt∇f(αk)t + ys∇f(αk)s| < h(∆′). (61)

Then the whole proof follows Theorem 3 except (39), in which we needm(αk+u)−M(αk+u) ≥
∆′,∀u = 0, . . . , r. This condition does not follow from (57), which holds for only a sub-sequence.

Thus, in the following we further prove

m(αk)−M(αk) ≥ ∆′,∀k ≥ k̄. (62)

Assume at onek′ ≥ k̄, 0 < m(αk′

) −M(αk′

) < ∆′ and {i, j} is the working set of this iteration.

As i ∈ Iup(αk′

) and j ∈ Ilow(αk′

) from the selection rule, we have

M(αk′

) ≤ −yj∇f(αk′

)j < −yi∇f(αk′

)i ≤ m(αk′

). (63)

Then according to (60),{i, j} and indices achievingm(αk′

) and M(αk′

) have the same value of

−yt∇f(ᾱ)t. They are all from the following set:

{t | −yt∇f(ᾱ)t = −yi∇f(ᾱ)i = −yj∇f(ᾱ)j}. (64)

For elements not in this set, (59), (60), and (63) imply that

If − yt∇f(ᾱ)t > −yi∇f(ᾱ)i, then

−yt∇f(αk′

) > −yi∇f(αk′

)i + ∆′ > m(αk′

) and hencet /∈ Iup(αk′

). (65)

Similarly,

If − yt∇f(ᾱ)t < −yi∇f(ᾱ)i, then t /∈ Ilow(αk′

). (66)

As we have explained, the working set is from the set (64), other components remain the same

from iteration k′ to k′ + 1. Therefore, indices satisfying (65) and (66) havet /∈ Iup(αk′+1) and

t /∈ Ilow(αk′+1), respectively. Furthermore, indices in (65) have larger−yt∇f(αk′+1)t than others

according to (59). Thus, their−yt∇f(αk′+1)t are greater thanm(αk′+1). Similarly, elements in

(66) are smaller thanM(αk′+1). With the fact thatm(αk′+1) > M(αk′+1), indices which achieve
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m(αk′+1) andM(αk′+1) are again from the set (64). This situation holds for allk ≥ k′. Using (61)

and the condition onh, we have

m(αk)−M(αk) < h(∆′) ≤ ∆′,∀k ≥ k′,

a contradiction to (57). Thus, the required condition (62) holds.

B. Shrinking and Caching

Shrinking and caching are two effective techniques to make the decomposition method faster. If an

αk
i remains at0 or C for many iterations, eventually it may stay at the same value. Based on this

principle, the shrinking technique [10] reduces the size ofthe optimization problem without considering

some bounded variables. The decomposition method then works on a smaller problem which is less

time consuming and requires less memory. In the end we put back the removed components and check

if an optimal solution of the original problem is obtained.

Another technique to reduce the training time is caching. Since Q may be too large to be stored,

its elements are calculated as they are needed. We can allocate some space (called cache) to store

recently useQij [10]. If during final iterations only few columns ofQ are still needed and the cache

contains them, we can save many kernel evaluations. [18, Theorem II.3] has proved that during the

final iterations of using WSS 1, only a small subset of variables are still updated. Such a result supports

the use of shrinking and caching techniques. However, this proof considers only any convergent sub-

sequence of{αk} or assumes the global convergence. In this subsection, we provide a more general

theory without these two assumptions.

Theorem 6 AssumeQ is positive semi-definite and the SMO-type method Algorithm2 uses WSS 3.

Let I be the set defined in(44).

1) There isk̄ such that afterk ≥ k̄, everyαk
i , i ∈ I has reached the unique and bounded optimal

solution. It remains the same during all subsequent iterations andi ∈ I is not in the following

set:

{t |M(αk) ≤ −yt∇f(αk)t ≤ m(αk)}. (67)

2) If (1) has an optimal solution̄α satisfyingm(ᾱ) < M(ᾱ), thenᾱ is the unique solution and

the decomposition method reaches it at a finite number of iterations.

3) If {αk} is an infinite sequence, then the following two limits exist and are equal:

lim
k→∞

m(αk) = lim
k→∞

M(αk) = m(ᾱ) = M(ᾱ), (68)

whereᾱ is any optimal solution. Thus,(68) is independent of any optimal solution.

Proof:
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1) If the result is wrong, there is an indexī ∈ I and an infinite set̂K such that

αk
ī 6= α̂ī,∀k ∈ K̂, (69)

whereα̂ī is the unique optimal component according to Theorem 4. FromTheorem 3, there is

a further subsetK of K̂ such that

lim
k∈K,k→∞

αk = ᾱ (70)

is a stationary point. Moreover, Theorem 4 implies thatᾱi, i ∈ I are unique optimal components.

Thus, ᾱī = α̂ī.

As ī ∈ I, we first consider one of the two possible situations:

−yī∇f(ᾱ)̄i > M(ᾱ). (71)

Thus, ī /∈ Iup(ᾱ). (69) then implies

ī ∈ Iup(αk),∀k ∈ K. (72)

For eachj ∈ arg M(ᾱ), we havej ∈ Ilow(ᾱ). From (70), there is̄k such that

j ∈ Ilow(αk),∀k ∈ K, k ≥ k̄. (73)

Thus, (72) and (73) imply

m(αk)−M(αk) ≥ −yī∇f(αk )̄i + yj∇f(αk)j ,∀k ∈ K, k ≥ k̄. (74)

With (70), the continuity of∇f(α), and (53), taking the limit on both sides of (74) obtains

0 ≥ −yī∇f(ᾱ)̄i + yj∇f(ᾱ)j = −yī∇f(ᾱ)̄i −M(ᾱ).

This inequality violates (71), so there is a contradiction.For the other situation−yī∇f(ᾱ)̄i

< m(ᾱ), the proof is the same.

The proof thati ∈ I is not in the set (67) is similar. If the result is wrong, thereis an index

ī ∈ I such that∀k ∈ K, ī is in the set (67). Then (74) holds and causes a contradiction.

2) If the result does not hold, then{αk} is an infinite sequence. From Theorems 3 and 4,ᾱ is the

unique optimal solution and{αk} globally converges to it.

Define

I1 ≡ {i | −yi∇f(ᾱ)i = M(ᾱ)},

I2 ≡ {i | −yi∇f(ᾱ)i = m(ᾱ)}.

Using the first result of this theorem, afterk is sufficiently large,arg m(αk) and arg M(αk)

must be subsets ofI1 ∪ I2. Moreover, using (53), the continuity of∇f(α), and the property

limk→∞ αk = ᾱ, there isk̄ such that for allk ≥ k̄,

arg m(αk) and arg M(αk) are both subsets ofI1 (or I2). (75)
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If at the kth iteration,arg m(αk) and arg M(αk) are both subsets ofI1, then following the

same argument in (63)-(64), we have

the working setB ⊂ I1. (76)

As the decomposition method maintains feasibility,

∑

i∈B

yiα
k
i =

∑

i∈B

yiα
k+1
i . (77)

From (76) and the assumption thatm(ᾱ) < M(ᾱ), everyᾱi, i ∈ B satisfiesi /∈ Iup(α). Thus,

ᾱi, i ∈ B is the same as (47). This and (77) then imply

‖αk+1 − ᾱ‖1

=
∑

i/∈B

|αk+1
i − ᾱi|+

∑

i∈B,yi=1

(C − αk+1
i ) +

∑

i∈B,yi=−1

(αk+1
i − 0)

=
∑

i/∈B

|αk
i − ᾱi|+

∑

i∈B,yi=1

(C − αk
i ) +

∑

i∈B,yi=−1

(αk
i − 0)

= ‖αk − ᾱ‖1. (78)

If arg m(αk) andarg M(αk) are both subsets ofI2, (78) still holds. Therefore,

0 6= ‖αk − ᾱ‖1 = ‖αk+1 − ᾱ‖1 = · · · ,

a contradiction to the fact that{αk} converges tōα. Thus, the decomposition method must stop

in a finite number of iterations.

3) Since{αk} is an infinite sequence, using the result of 2), problem (1) has no optimal solution

ᾱ satisfyingM(ᾱ) > m(ᾱ). From Theorem 4, we have

M(ᾱ) = m(ᾱ) = −yt∇f(ᾱ)t,∀t 6∈ I, (79)

and this is independent of different optimal solutionsᾱ. From the result of 1), there is̄k such

that for all k ≥ k̄, i ∈ I is not in the set (67). Thus,

I ′ ≡ {1, . . . , l} \ I (80)

is a superset of (67) and hence

min
i∈I′

−yi∇f(αk)i ≤M(αk) < m(αk) ≤ max
i∈I′

−yi∇f(αk)i. (81)

Though{αk} may not be globally convergent,{−yi∇f(αk)i}, i = 1, . . . , l, are according to

(42). The limit of both sides of (81) are equal using (79), so (68) follows.

Theorem 6 implies that in many iterations, the SMO-type method involves only indices inI ′. Thus,

caching is very effective. This theorem also illustrates two possible shrinking implementations:

1) Elements not in the set (67) are removed.
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2) Any αi which has stayed at the same bound for a certain number of iterations is removed.

The softwareLIBSVM [3] considers the former approach, whileSV M light [10] uses the latter.

V. CONVERGENCERATE

Though we proved the asymptotic convergence, it is important to investigate how fast the method

converges. Under some assumptions, [15] was the first to prove the linear convergence of certain

decomposition methods. The work [15] allows the working setto have more than two elements and

WSS 1 is a special case. Here we show that when the SMO-type working set selection is extended

from WSS 1 to WSS 2, the same analysis holds. Since [15] was not published, we include here all

details of the proof.

Note that WSS 3 uses a functionh to control the quality of the selected pair. We will see in the

proof that it may affect the convergence rate. Proving the linear convergence requires the condition

(8), so results established in this section are for WSS 2 but not WSS 3.

First we make a few assumptions.

Assumption 1 Q is positive definite.

Then (1) is a strictly convex programming problem and hence has a unique global optimum̄α.

By Theorem 6, after large enough iterations working sets areall from the setI ′ defined in (80).

From the optimality condition (6), the scalarb̄ satisfies̄b = m(ᾱ) = M(ᾱ), and the setI ′ corresponds

to elements satisfying

∇f(ᾱ)i + b̄yi = 0. (82)

From (4)-(5), another form of the optimality condition, ifᾱi is not at a bound, (82) holds. We further

assume that this is the only case that (82) happens.

Assumption 2 (Nondegeneracy)For the optimal solutionᾱ, ∇f(ᾱ)i + b̄yi = 0 if and only if 0 <

ᾱi < C.

This assumption, commonly used in optimization analysis, implies that indices of all bounded̄αi are

exactly the setI. Therefore, after enough iterations, Theorem 6 and Assumption 2 imply that all

bounded variables are fixed and are not included in the working set. By treating these variables as

constants, essentially we solve a problem with the following form:

min
α

f(α) =
1

2
αT Qα + pT α

subject to yT α = ∆, (83)

wherep is a vector by combining−e and other terms related to the bounded components. Moreover,

0 < αk
i < C for all i even though we do not explicitly write down inequality constraints in (83). Then
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the optimal solutionᾱ with the correspondinḡb can be obtained by the following linear system:




Q y

yT 0









ᾱ

b̄



 =





−p

∆



 . (84)

In each iteration, we consider minimizingf(αk
B +d), whered is the direction fromαk

B to αk+1
B , so

the sub-problem (2) is written as

min
d

1

2
dT QBBd +∇f(αk)T

Bd

subject to yT
Bd = 0, (85)

where∇f(αk) = Qαk + p. If an optimal solution of (85) isdk, then αk+1
B = αk

B + dk and

αk+1
N = αk

N . With the correspondingbk, this sub-problem is solved by the following equation:




QBB yB

yT
B 0









dk

bk



 =





−∇f(αk)B

0



 . (86)

Using (84),

Q(αk − ᾱ) = Qαk + p + b̄y

= ∇f(αk) + b̄y. (87)

By defining Y ≡ diag(y) to be a diagonal matrix with elements ofy on the diagonal, and using

yi = ±1,

−Y Q(αk − ᾱ) = −Y∇f(αk)− b̄e. (88)

The purpose of checkingQ(αk − ᾱ) is to see how close the current solution is to the optimal one.

Then (88) links it to−Y∇f(αk), a vector used for the working set selection. Remember that for

finding violating pairs, we first sort−yi∇f(αk)i in an ascending order.

The following two theorems are the main results on the linearconvergence.

Theorem 7 Assume the SMO-type decomposition method uses WSS 2 for the working set selection.

If problem (1) satisfies Assumptions 1 and 2, then there arec < 1 and k̄ such that for allk ≥ k̄

(αk+1 − ᾱ)T Q(αk+1 − ᾱ) ≤ c(αk − ᾱ)T Q(αk − ᾱ). (89)

Proof: First, Theorem 6 implies that there is̄k such that afterk ≥ k̄, the problem is reduced to
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(83). We then directly calculate the difference between the(k + 1)st and thekth iterations:

(αk+1 − ᾱ)T Q(αk+1 − ᾱ)− (αk − ᾱ)T Q(αk − ᾱ) (90)

= 2(dk)T (Q(αk − ᾱ))B + (dk)T QBBdk

= (dk)T (2(Q(αk − ᾱ))B −∇f(αk)B − bkyB) (91)

= (dk)T ((Q(αk − ᾱ))B + (b̄− bk)yB) (92)

= (dk)T ((Q(αk − ᾱ))B + (bk − b̄)yB) (93)

= −[−(Q(αk − ᾱ))B + (b̄− bk)yB ]T Q−1
BB [−(Q(αk − ᾱ))B + (b̄− bk)yB ],

where (91) is from (86), (92) is from (87), (93) is by using thefact yT
Bdk = 0 from (86), and the last

equality is from (86) and (87). If we define

Q̂ ≡ YBQ−1
BBYB andv ≡ −Y (Q(αk − ᾱ)), (94)

whereYB ≡ diag(yB), thenvB = −YB(Q(αk − ᾱ))B and (90) becomes

−[vB + (b̄− bk)eB ]T Q̂[vB + (b̄− bk)eB ]. (95)

From (88), we define

v1 ≡ max
t

(vt) = m(αk)− b̄,

vl ≡ min
t

(vt) = M(αk)− b̄. (96)

Thus, the selection rule (8) of WSS 2 implies

|vi − vj | ≥ σ(v1 − vl), (97)

where{i, j} is the working set of thekth iteration.

We denote thatmin(eig(·)) andmax(eig(·)) to be the minimal and maximal eigenvalues of a matrix,
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respectively. A further calculation of (95) shows

[vB + (b̄− bk)eB ]T Q̂[vB + (b̄− bk)eB ]

≥ min(eig(Q̂))[vB + (b̄− bk)eB ]T [vB + (b̄− bk)eB ]

≥ min(eig(Q̂))max
t∈B

(vt + (b̄− bk))2

≥ min(eig(Q̂))(
vi − vj

2
)2, where{i, j} is working set (98)

≥ min(eig(Q̂))σ2(
v1 − vl

2
)2 (99)

≥ min(eig(Q̂))(
yT Q−1y

2
∑

i,j |Q−1
ij |

)2σ2 max(|v1|, |vl|)2 (100)

≥ min(eig(Q̂))

l
(

yT Q−1y

2
∑

t,s |Q−1
ts |

)2σ2(Q(αk − ᾱ))T Q(αk − ᾱ) (101)

≥ min(eig(Q̂))

l max(eig(Q−1))
(

yT Q−1y

2
∑

t,s |Q−1
ts |

)2σ2(Q(αk − ᾱ))T Q−1Q(αk − ᾱ)

≥ min(eig(Q̂))

l max(eig(Q−1))
(

yT Q−1y

2
∑

t,s |Q−1
ts |

)2σ2(αk − ᾱ)T Q(αk − ᾱ), (102)

where (98) is from Lemma 3, (99) is from (97), (100) is from Lemma 4, and (101) follows from (96).

Note that both lemmas are given in Appendix A.

Next we give more details about the derivation of (100): Ifv1vl < 0, then of course

|v1 − vl| ≥ max(|v1|, |vl|).

With yi = ±1, yT Q−1y
P

t,s
|Q−1

ts | ≤ 1 so (100) follows. In contrast, ifv1vl ≥ 0, we considerv =

(Y QY )(−Y (αk − ᾱ)) from (94). Since−eT Y (αk − ᾱ) = −yT (αk − ᾱ) = 0, we can apply

Lemma 4: With

|(Y QY )−1
ij | = |Q−1

ij yiyj | = |Q−1
ij | and

eT (Y QY )−1e = yT Q−1y,

we have

|v1 − vl| ≥ max(|v1|, |vl|)−min(|v1|, |vl|)

≥ (
yT Q−1y
∑

t,s |Q−1
ts |

)max(|v1|, |vl|),

which implies (100).

Finally we can define a constantc as follows:

c ≡ 1−min
B

(

min(eig(Q−1
BB))

l max(eig(Q−1))
(

yT Q−1y

2
∑

t,s |Q−1
ts |

)2σ2

)

< 1,

whereB is any two-element subset of{1, . . . , l}. Combining (95) and (102), afterk ≥ k̄, (89) holds.
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The condition (8) of Algorithm 2 is used in (97) and then (99).If WSS 3 is considered, in (99) we

will have a termh((v1 − vl)/2)2. Thus, the functionh affects the convergence rate. Sinceh(x) ≤ x,

linear rate is the best result using our derivation.

The linear convergence of the objective function is as follows:

Theorem 8 Under the same assumptions of Theorem 7, there arec < 1 and k̄ such that for allk ≥ k̄,

f(αk+1)− f(ᾱ) ≤ c(f(αk)− f(ᾱ)).

Proof: We show that for anyk ≥ k̄,

f(αk)− f(ᾱ) =
1

2
(αk − ᾱ)T Q(αk − ᾱ),

and the proof immediately follows from Theorem 7. Using (84),

f(αk)− f(ᾱ)

=
1

2
(αk)T Qαk + pT αk − 1

2
(ᾱ)T Qᾱ− pT ᾱ

=
1

2
(αk)T Qαk + (−Qᾱ− b̄y)T αk − 1

2
(ᾱ)T Qᾱ− (−Qᾱ− b̄y)T ᾱ

=
1

2
(αk)T Qαk − (ᾱ)T Qαk +

1

2
(ᾱ)T Qᾱ (103)

=
1

2
(αk − ᾱ)T Q(αk − ᾱ).

Since we always keep the feasibility ofαk, (103) comes fromyT αk = yT ᾱ.

VI. EXTENSIONS

In this section we show that the same SMO-type methods can be applied to some variants of SVM.

A. Support Vector Regression and One-class SVM

First we extend (1) to the following general form:

min
α

f(α) =
1

2
αT Qα + pT α

subject to Li ≤ αi ≤ Ui, i = 1, . . . , l, (104)

yT α = ∆,

where−∞ < Li < Ui <∞, i = 1, . . . , l, are lower and upper bounds, andQ is an l by l symmetric

matrix. Clearly, ifLi = 0, Ui = C, andp = −e, then (104) reduces to (1). The optimality condition

is the same as (3) though in the definition ofIup(α) and Ilow(α), 0 andC must be replaced byLi

andUi, respectively. Therefore, SMO-type decomposition methods using WSS 2 or 3 can be applied

to solve (104). A careful check shows that all results in Sections III-V hold for (104).
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Problem (104) covers some SVM formulations such as support vector regression (SVR) [28] and

one-class SVM [26]. Next we discuss SVR in detail. Given a setof data points{(x1, z1), . . . , (xl, zl)}
such thatxi ∈ Rn is an input vector andzi ∈ R1 is a target output, support vector regression solves

the following optimization problem:

min
α,α∗

f(α,α∗) =
1

2
(α−α∗)T K(α−α∗) + ǫ

l
∑

i=1

(αi + α∗
i ) +

l
∑

i=1

zi(αi − α∗
i )

subject to
l
∑

i=1

(αi − α∗
i ) = 0,

0 ≤ αi, α
∗
i ≤ C, i = 1, . . . , l, (105)

whereKij = φ(xi)
T φ(xj), andǫ > 0 is the width of theǫ-insensitive tube.

We can rewrite (105) as

min
α,α∗

f(α,α∗) =
1

2

[

αT ,α∗T
]





K −K

−K K









α

α∗



+
[

ǫeT + zT , ǫeT − zT
]





α

α∗





subject to yT





α

α∗



 = 0,

0 ≤ αi, α
∗
i ≤ C, i = 1, . . . , l, (106)

wherey is a 2l by 1 vector withyi = 1, i = 1, . . . , l and yi = −1, i = l + 1, . . . , 2l. Thus (106) is

in the form of (104) and an SMO-type method with WSS 3 can be applied. Moreover, the procedure

asymptotically converges and possesses all properties in Section IV. An interesting issue is about

Corollary 1, which requires the Hessian matrix
[

K −K
−K K

]

to be positive definite. This condition never

holds as
[

K −K
−K K

]

is only positive semi-definite. Note that in Corollary 1, thepositive definite Hessian

is used to have a unique optimal solution. For SVR, [4, Lemma 4] proves that ifǫ > 0 and K is

positive definite, then (106) has a unique solution. Thus, for SVR, Corollary 1 can be modified to

require only thatK is positive definite.

For the linear convergence result in Section V, Assumption 1does not hold as now
[

K −K
−K K

]

is not

positive definite. However, we will show that similar to Corollary 1, a positive definiteK is sufficient.

Note that in Section V, the Hessian matrix of (83) is in factQI′I′ asαi, i ∈ I can be removed after

large enough iterations, whereI and I ′ are defined as in (44) and (80) except that the set{1, . . . , l}
is replaced by{1, . . . , 2l}. Then in the linear convergence proof we needQI′I′ to be invertible and

this condition holds ifQ is positive definite (i.e., Assumption 1). For SVR, this means
[

K −K
−K K

]

I′I′

should be invertible. To prove it, we first claim that for any1 ≤ i ≤ l,

i and i + l are not both in the setI ′. (107)
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As ǫ > 0 implies

−yi∇f(α,α∗)i = −(K(α−α∗))i + ǫ + zi

6= −(K(α∗ −α))i − ǫ + zi = −yi+l∇f(α,α∗)i+l, (108)

the definition ofI ′ directly leads to (107). We further define

Ī ′ ≡ an index vector by replacing anyt, l ≤ t ≤ 2l in I ′ with t− l.

From (107),I ′ and Ī ′ have the same number of elements and furthermore,




K −K

−K K





I′I′

= YI′KĪ′Ī′YI′ , (109)

whereYI′ ≡ diag(yI′) is a diagonal matrix. Clearly, (109) indicates that ifK is positive definite, so

is KĪ′Ī′ and
[

K −K
−K K

]

I′I′
. Therefore, by replacing Assumption 1 on the Hessian matrixwith that on

the kernel matrix, the linear convergence result holds for SVR.

B. Extension toν-SVM

ν-SVM [27] is another SVM formulation which has a parameterν instead ofC. Its dual form is

min
α

f(α) =
1

2
αT Qα

subject to yT α = 0,

eT α = ν,

0 ≤ αi ≤ 1/l, i = 1, . . . , l, (110)

wheree is the vector of all ones. Note that some useeT α ≥ ν as a constraint, but [4] and [7] have

shown that decision functions are the same. Moreover, [4] proved that (110) is equivalent to problem

(1) with certainC. It also discusses the decomposition method for trainingν-SVM.

Via the KKT condition, a vector̄α is a stationary point of (110) if and only if there are two scalars

ρ andb such that

∇f(α)i − ρ + byi ≥ 0 if αi < 1/l,

∇f(α)i − ρ + byi ≤ 0 if αi > 0.

By separating the case ofyi = 1 and yi = −1, we obtain two conditions on−ρ + b and−ρ − b,

respectively. Thus, similar to (6), there is the following optimality condition:

mp(α) ≤Mp(α) andmn(α) ≤Mn(α), (111)
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where

mp(α) ≡ max
i∈Iup(α),yi=1

−yi∇f(α)i, Mp(α) ≡ min
i∈Ilow(α),yi=1

−yi∇f(α)i, and

mn(α) ≡ max
i∈Iup(α),yi=−1

−yi∇f(α)i, Mn(α) ≡ min
i∈Ilow(α),yi=−1

−yi∇f(α)i.

One can also define a violating pair as the following:

Definition 2 (Violating pair of (111)) If i ∈ Iup(α), j ∈ Ilow(α), yi = yj , and −yi∇f(α)i >

−yj∇f(α)j , then{i, j} is a “violating pair.”

Clearly, the conditionyi = yj is the main difference from Definition 1. In fact the selectedpair

B = {i, j} must satisfyyi = yj . If yi 6= yj , then the two linear equalities result in the sub-problem

having only one feasible pointαk
B . For the sameyi andyj , the two equations in the sub-problem are

identical, so we could moveαk
B to a better point. In addition, the sub-problem is then in thesame

form of (2), so the procedure in Section III-A directly works.

All working set selections discussed in Section II can be extended here. We modify WSS 3 as an

example:

WSS 4 (Extension of WSS 3 forν-SVM)

1) Select anyi ∈ Iup(αk), j ∈ Ilow(αk), yi = yj satisfying

−yi∇f(αk)i + yj∇f(αk)j ≥ h(D(αk)) > 0, (112)

where

D(αk) ≡ max(mp(α
k)−Mp(α

k),mn(αk)−Mn(αk)). (113)

2) ReturnB = {i, j}.

Results in Sections III-IV hold with minor modifications. They are listed in the following without

detailed proofs. For easier description, we let

αp (αn) be the sub-vector ofα corresponding to positive (negative) samples.

Theorem 9 Let{αk} be the infinite sequence generated by the SMO-type decomposition method using

WSS 4 for the working set selection. Then any limit point of{αk} is a stationary point of(110).

Theorem 10 AssumeQ is positive semi-definite.

1) If ᾱ 6= α̂ are any two optimal solutions of(110), then

−yi∇f(ᾱ)i = −yi∇f(α̂)i, i = 1, . . . , l. (114)
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If ᾱp 6= α̂p (ᾱn 6= α̂n), then

Mp(ᾱ) = mp(ᾱ) = Mp(α̂) = mp(α̂) (115)

(Mn(ᾱ) = mn(ᾱ) = Mn(α̂) = mn(α̂)). (116)

2) If there is an optimal solution̄α satisfyingmp(ᾱ) < Mp(ᾱ), then ᾱp is unique for (110).

Similarly, if mn(ᾱ) < Mn(ᾱ), thenᾱn is unique.

3) The following sets are independent of any optimal solutionᾱ:

Ip ≡ {i | yi = 1,−∇f(ᾱ)i > Mp(ᾱ) or −∇f(ᾱ)i < mp(ᾱ)}, (117)

In ≡ {i | yi = −1,∇f(ᾱ)i > Mn(ᾱ) or ∇f(ᾱ)i < mn(ᾱ)}. (118)

Moreover, problem(110) has unique and bounded optimal solutions atαi, i ∈ Ip ∪ In.

Theorem 11 AssumeQ is positive semi-definite. Let{αk} be the infinite sequence generated by the

SMO-type decomposition method using WSS 4. If{(αk)p} ({(αk)n}) is updated in infinitely many

iterations, then

limk→∞ mp(α
k)−Mp(α

k) = 0 (119)

(limk→∞ mn(αk)−Mn(αk) = 0). (120)

Theorem 12 AssumeQ is positive semi-definite and the SMO-type method Algorithm2 uses WSS 4.

Let Ip and In be the sets defined in(117) and (118). DefineKp andKn to be iterations in which the

working set is from positive and negative samples, respectively.

1) There isk̄ such that afterk ≥ k̄, everyαk
i , i ∈ Ip ∪ In has reached the unique and bounded

optimal solution. For anyi ∈ Ip, there is k̄ such that afterk ≥ k̄, k ∈ Kp, i is not in the

following set

{t | yt = 1,Mp(α
k) ≤ −yt∇f(αk)t ≤ mp(α

k)}. (121)

The same result holds for the negative part.

2) If (110) has an optimal solution̄α satisfyingmp(ᾱ) < Mp(ᾱ) (mn(ᾱ) < Mn(ᾱ)), then ᾱp

(ᾱn) is unique for(110)and the decomposition method reaches it in a finite number of iterations.

3) If {(αk)p} is updated in infinitely many iterations, then the followingtwo limits exist and are

equal:

limk→∞ mp(α
k) = limk→∞ Mp(α

k) = mp(ᾱ) = Mp(ᾱ) (122)

whereᾱ is any optimal solution. The same result holds for{(αk)n}.
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VII. D ISCUSSION ANDCONCLUSIONS

This paper provides a comprehensive study on SMO-type decomposition methods. Below we discuss

some issues for future investigation.

A. Faster Training via a Better Selection Rule

Under the general framework discussed in this paper, we can design various selection rules for prac-

tical implementations. Among them, the one using the maximal violating pair has been widely applied

in SVM software. Developing better rules from the proposed framework is important. Otherwise, this

article has only theoretical values. A working set selection which leads to faster training should:

1) reduce the number of iterations of the decomposition method. In other words, the convergence

is faster, and

2) keep the cost of identifying the working setB similar to that of finding the maximal violating

pair.

The challenge is that these two goals are often at odds. For example, fewer iterations may not

reduce the training time if the cost of working set selections is higher. We proposed some rules with

the above properties in [8]. This work shows that the “maximal violating pair” uses only the first-

order information of the objective function, and derives a better selection rule using the second-order

information. The new rule is a special case of WSS 2. The training time is generally shorter than that

by using the “maximal violating pair.”

B. Necessary Conditions for the Convergence

Previous studies and the discussion in Section III provide “sufficient conditions” for the convergence

of decomposition methods. That is, under given working set selections, we prove the convergence.

Investigating the “necessary conditions” is also interesting. When the decomposition method converges,

which conditions does its working set selection satisfy?

We may think that WSS 3 is general enough so that every convergent SMO-type method satisfies

the condition (9). However, this may not be right. We suspectthat even if some iterations select{i, j}
without enough violation (i.e.−yi∇f(αk)i + yi∇f(αk)j < h(m(αk) −M(αk))), the method may

still converge if other iterations have used appropriate working sets. Therefore, finding useful necessary

conditions may be a challenging task.

It is worth mentioning another working set selection proposed in [21]. This work requires the

following condition:

There isN > 0 such that for allk,

any violating pair ofαk is selected at least once in iterationsk to k + N. (123)
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Clearly, a cyclic selection of{i, j} in every l(l − 1)/2 iterations satisfies (123):

{1, 2}, {1, 3}, . . . , {1, l}, {2, 3}, . . . , {l − 1, l},

where l is the number of data instances. With (123), the convergenceproof in Theorem 3 becomes

very simple. For the limit point̄α assumed not stationary, its maximal violating pair{̄i, j̄} is also a

violating pair at iterationk, wherek ∈ K, k ≥ k̄. According to (123), this pair{̄i, j̄} of ᾱ must be

selected at iterationk′, wherek ≤ k′ ≤ k + N . Then at the(k′ + 1)st iteration, (28) and (29) imply

ī ∈ Iup(αk′+1) and j̄ ∈ Ilow(αk′+1),

but (33) indicates that

ī 6∈ Iup(αk′+1) or j̄ 6∈ Ilow(αk′+1).

Thus, immediately there is a contradiction. In a sense, (123) is a rule “designed” for the convergence

proof.

The two conditions (9) and (123) on the working set selectionare quite different, so neither is a

necessary condition. From the counter-example in Section II we observed that the selected{i, j} has

a much smaller violation thanm(αk) −M(αk), and hence proposed WSS 2 and 3. This example

also has a violating pair{4, 5} never selected, a situation opposite to (123). Thus both WSS 3and the

condition (123) attempt to remedy problems imposed from this counter-example, but they take very

different directions. One focuses on issues related to the maximal violating pair, but the other requires

that all current violating pairs are selected later in a finite number of iterations. In general, we think

the former leads to faster convergence as it more aggressively reduces the violation. However, this

also complicates the convergence proof as a counting procedure in Theorem 3 must be involved in

order to obtain the contradiction.
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APPENDIX

A. Proof of Two Lemmas Used in Section V

Lemma 3 If v1 ≥ · · · ≥ vl, then

max
i

(|vi|) ≥
v1 − vl

2
.

Proof: We notice thatmaxi(|vi|) must happen atv1 or vl. It is easy to see

v1 − vl

2
≤ |v1|+ |vl|

2
≤ max(|v1|, |vl|).

Lemma 4 If Q is invertible, then for anyx such that

1) eT x = 0,

2) v ≡ Qx, maxi((Qx)i) = v1 > vl = mini((Qx)i), and v1vl ≥ 0,

we have

min(|v1|, |vl|) ≤ (1− eT Q−1e
∑

i,j |Q−1
ij |

)max(|v1|, |vl|).

Proof: Sincev1 > vl and v1vl ≥ 0, we have eitherv1 > vl ≥ 0 or 0 ≥ v1 > vl. For the first

case, if the result is wrong,

vl > (1− eT Q−1e
∑

i,j |Q−1
ij |

)v1,

so for j = 1, . . . , l,

v1 − vj ≤ v1 − vl

< (
eT Q−1e
∑

i,j |Q−1
ij |

)v1. (124)

With x = Q−1v and (124),

eT x = eT Q−1v

=
∑

i,j

Q−1
ij vj

=
∑

i,j

Q−1
ij (v1 − (v1 − vj))

≥ v1eT Q−1e− (v1 − vl)
∑

i,j

|Q−1
ij |

> v1

(

eT Q−1e− (
eT Q−1e
∑

i,j |Q−1
ij |

)
∑

i,j

|Q−1
ij |
)

= 0

causes a contradiction. The case of0 ≥ v1 > vl is similar.


