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Abstract

This paper proposes new approaches to rank
individuals from their group competition re-
sults. Many real-world problems are of this
type. For example, ranking players from
team games is important in some sports. We
propose an exponential model to solve such
problems. To estimate individual rankings
through the proposed model we introduce
two convex minimization formulas with easy
and efficient solution procedures. Experi-
ments on real bridge records and multi-class
classification demonstrate the viability of the
proposed model.

1. Introduction

We address an interesting problem of estimating indi-
viduals’ abilities from their group competition results.
This problem arises in some sports. One can evaluate
a basketball player by his/her average points, but this
criterion may be unfair as it ignores opponents’ abili-
ties. In some sports such as bridge, competition results
even do not reveal any direct information related to in-
dividuals’ abilities. In a bridge match two partnerships
form a team to compete with another two. The match
record fairly reflects which two partnerships are bet-
ter, but every partnership’s raw score, depending on
different boards, does not indicate a partnership’s abil-
ity. Finding reasonable individual rankings using all
group competition records is thus a challenging task.
Another application in machine learning/statistics is
multi-class probability estimates by error-correcting
codes (Huang et al., 2005). Classification by error-
correcting codes (Dietterich & Bakiri, 1995; Allwein
et al., 2001) involves several two-class problems, each
of which is considered as the competition between two
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disjoint subsets of class labels. Individuals’ abilities
are then an instance’s probabilities in different classes.

Huang et al. (2005) propose a generalized Bradley-
Terry model to solve this problem. They consider k
individuals {1, . . . , k} having m competitions. The ith
competition involves a subset Ii, which is separated
to two disjoint teams, I+

i and I−i . They play ni =
n+

i + n−
i games, and we assume that I+

i and I−i win
n+

i and n−
i times, respectively. By representing the k

individuals’ abilities as a non-negative vector p ∈ Rk,
Huang et al. (2005) propose the following model:

P (I+
i beats I−i ) =

∑

j:j∈I
+

i
pj

∑

j:j∈Ii
pj

. (1)

This model extends the Bradley-Terry model (1952)
for pairwise comparison (i.e., games between any two
individuals):

P (individual i beats individual j) =
pi

pi + pj

. (2)

Huang et al. (2005) estimate p by minimizing the
negative log-likelihood of (1):

min
p

−

m
∑

i=1

(

n+
i log

∑

j:j∈I
+

i
pj

∑

j:j∈Ii
pj

+ n−
i log

∑

j:j∈I
−

i
pj

∑

j:j∈Ii
pj

)

subject to

k
∑

j=1

pj = 1, 0 ≤ pj , j = 1, . . . , k. (3)

They devise an iterative procedure to solve (3). How-
ever, since the negative log-likelihood may be non-
convex, their procedure does not give a global mini-
mum.

We propose a new exponential model in Section 2. The
main advantage is that one can estimate individuals’
abilities by minimizing unconstrained convex formula-
tions, so global minima are easily obtained. Details
are in Section 3. Section 4 presents a real applica-
tion, ranking bridge partnerships from team matches,
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and shows that the proposed model gives better rank-
ings than a naive approach. Section 5 applies the new
model to classification by error-correcting codes. Re-
sults are competitive with those of Huang et al. (2005).
Section 6 is conclusions.

2. A New Exponential Model

We denote individuals’ abilities as a vector v ∈ Rk,
−∞ < vs < ∞, s = 1, . . . , k. Unlike p used in (1),
v may have negative values. A team’s ability is then
defined as the sum of its members’: For I+

i and I−i ,
their abilities are respectively

T+
i ≡

∑

s:s∈I
+

i

vs and T−
i ≡

∑

s:s∈I
−

i

vs.

We consider teams’ actual performances as random
variables Y +

i and Y −
i , 1 ≤ i ≤ m and define

P (I+
i beats I−i ) ≡ P (Y +

i − Y −
i > 0). (4)

The distribution of Y +
i and Y −

i is generally unknown,
but a reasonable choice should place the mode around
T+

i and T−
i . To derive a computationally simple form

for (4), we assume that Y +
i (and similarly Y −

i ) has a
doubly-exponential extreme-value distribution with

P (Y +
i ≤ y) = exp(−e−(y−T

+

i
)), (5)

whose mode is exactly T+
i . Suppose Y +

i is independent
of Y −

i , from (4) and (5) we have

P (I+
i beats I−i ) =

eT
+

i

eT
+

i + eT
−

i

. (6)

We omit the basic but tedious derivation. One may
assume other distributions, e.g., normal, in (5), but
the resulting model may not be in a closed form. Such
differences already occur for pairwise comparisons, of
which David (1988) gave some discussion. Thus (6) is
our proposed model in this paper.

For pairwise comparisons (i.e., each individual forms
a team), (6) reduces to

P (individual i beats individual j) =
evi

evi + evj
, (7)

which is an equivalent re-parameterization (David,
1988; Hunter, 2004) of the Bradley-Terry model (2)
by

pi ≡
evi

∑k
j=1 evj

. (8)

Therefore, our model (6) can also be considered
as a generalized Bradley-Terry model. The re-
parameterization (8) does not extend to the case of
group competitions, so (6) and (1) are different.

Interestingly, (6) is a conditional exponential model1,
which is commonly used in the computational linguis-
tic community. Thus we can use existing properties of
this type of models.

3. Estimations

Following the proposed model (6), we estimate v by
using available competition results. This section pro-
poses two approaches: one minimizes a regularized
least square formula, and the other minimizes the neg-
ative log-likelihood. Both are unconstrained convex
optimization problems. Their differences are discussed
in Section 4.2. We also discuss a naive approach by
summing the number of games an individual wins.

3.1. Regularized Least Square (RLS)

Recall that n+
i and n−

i are respectively the number of
games teams I+

i and I−i win. From (6), we have

eT
+

i

eT
+

i + eT
−

i

≈
n+

i

n+
i + n−

i

,

and furthermore

eT
+

i
−T

−

i =
eT

+

i

eT
−

i

≈
n+

i

n−
i

.

Thus one can solve

min
v

m
∑

i=1

((T+
i − T−

i )− log(n+
i /n−

i ))2 (9)

to estimate the vector v of individuals’ abilities. To
represent (9) in a simpler form, we define a vector
d ∈ Rm with

di ≡ log(n+
i /n−

i ),

and a “game setting matrix” G ∈ Rm×k with

Gij ≡











1 if individual j ∈ I+
i ,

−1 if individual j ∈ I−i ,

0 if individual j 6∈ Ii.

(10)

Take bridge in teams of four as an example. An in-
dividual stands for a partnership, so G’s jth column
records the jth partnership’s team memberships in all
m matches. Since a match is played by four partner-
ships from two teams, each row of G has two 1’s, two
−1’s and k−4 0’s. Thus, G may look like










1 1 −1 −1 0 0 0 0
1 1 0 0 −1 −1 0 0
−1 −1 0 0 0 0 −1 −1
...

...
...

...
...

...
...

...











, (11)

1Tutorials are available at, for example, http://www.
cs.cmu.edu/∼aberger/maxent.html.
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read as “The first match: the 1st, 2nd partnerships
versus the 3rd, 4th; the second match: the 1st, 2nd
versus the 5th, 6th; . . . .”

With the help of d and G, we rewrite (9) as

min
v

(Gv − d)T (Gv − d), (12)

which is equivalent to solving the following linear sys-
tem:

GT Gv = GT d. (13)

The linear system (13) may have multiple solutions if
GT G is not invertible. To handle this situation, we
add a regularization term µvT v to (12):

min
v

(Gv − d)T (Gv − d) + µvT v,

where µ is a small positive real number. Then a unique
solution exists:

(

GT G + µI
)−1

GT d.

We refer to this approach as RLS (Regularized Least
Square). We heuristically use µ = 0.001 for experi-
ments in this paper.

3.2. Maximum Likelihood (ML)

Under the assumption that competitions are indepen-
dent, the negative log-likelihood function is

l(v) (14)

≡−

m
∑

i=1

(

n+
i log

eT
+

i

eT
+

i + eT
−

i

+ n−
i log

eT
−

i

eT
+

i + eT
−

i

)

,

and we estimate v by

arg min l(v). (15)

It is well known that the log-likelihood of a conditional
exponential model is concave. Thus l(v) is convex, so
one can easily find a global minimum, which satisfies
the following optimality condition:

∂l(v)

∂vs

= −(
∑

i:s∈I
+

i

n+
i +

∑

i:s∈I
−

i

n−
i ) +

∑

i:s∈I
+

i

nie
T

+

i

eT
+

i + eT
−

i

+
∑

i:s∈I
−

i

nie
T

−

i

eT
+

i + eT
−

i

= 0, s = 1, . . . , k. (16)

This condition is reasonable as it implies that the total
number of observed wins of individual s is the same as
the expected number by the assumed model.

Standard optimization methods (e.g., gradient or New-
ton’s method) can be used to find a solution of (15).

One may also use fixed-point type methods to mini-
mize l(v). A standard technique for conditional ex-
ponential models is improved iterative scaling (Pietra
et al., 1997), which generates a sequence of iterations
{vt}∞t=0. The update from vt to vt+1 requires the so-
lution of k one-variable minimization problems. These
k problems usually do not have closed-form solutions,
and this situation happens for our problem (14). In
the following we propose changing one component of
v at a time. The resulting update rule is very simple.
Let δ ≡ [0, . . . , 0, δs, 0, . . . , 0]T indicate the change of
the sth component. We have

l(v + δ)− l(v)

= −

(

∑

i:s∈I
+

i

n+
i +

∑

i:s∈I
−

i

n−
i

)

δs+ (17)

∑

i:s∈I
+

i

ni log

(

eT
+

i
+δs+ eT

−

i

eT
+

i + eT
−

i

)

+
∑

i:s∈I
−

i

ni log

(

eT
+

i + eT
−

i
+δs

eT
+

i + eT
−

i

)

≤ −

(

∑

i:s∈I
+

i

n+
i +

∑

i:s∈I
−

i

n−
i

)

δs+ (18)

(

∑

i:s∈I
+

i

nie
T

+

i

eT
+

i + eT
−

i

+
∑

i:s∈I
−

i

nie
T

−

i

eT
+

i + eT
−

i

)

(eδs − 1).

From (17), the inequality x − 1 ≥ log x yields (18).
If δs = 0, (18) = 0. We then minimize (18) to obtain
the largest reduction. The solution has a simple closed
form, which leads to the following update rule:

vs ← vs + log

∑

i:s∈I
+

i

n+
i +

∑

i:s∈I
−

i

n−
i

∑

i:s∈I
+

i

nie
T

+
i

e
T

+
i +e

T
−

i

+
∑

i:s∈I
−

i

nie
T

−

i

e
T

+
i +e

T
−

i

. (19)

The algorithm is as the following:

Algorithm 1
1. Start with v0 and obtain T 0,+

i , T 0,−
i , i = 1, . . . ,m.

2. Repeat (t = 0, 1, . . .)

(a) Let s = (t + 1) mod k. Change the sth ele-
ment of vt by (19) to obtain vt+1.

(b) Calculate T t+1,+
i , T t+1,−

i , i = 1, . . . ,m.

until ∂l(vt)/∂vj = 0, j = 1, . . . , k are satisfied.

This algorithm is indeed the same as applying the
sequential conditional generalized iterative scaling
(Goodman, 2002) to (14). Since Goodman considers
more complicated forms, here we give a derivation spe-
cific to our likelihood. The discussion also lets us know
conditions for convergences:
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Theorem 1 If competition results satisfy

∑

i:s∈I
+

i

n+
i +

∑

s∈I
−

i

n−
i > 0,∀s, (20)

then any limit point of the sequence {vt} generated by

Algorithm 1 is a global minimum of l(v).

The proof is omitted. The condition (20) ensures both
the numerator and the denominator of (19) are pos-
itive, so the update rule is well-defined. We refer to
this approach as ML (Maximum Likelihood).

3.3. A Naive Approach (SUM)

We may estimate the sth individual’s ability by sum-
ming the number of games it wins:

vs ≡

∑

i:s∈I
+

i
n+

i +
∑

i:s∈I
−

i
n−

i
∑

i:s∈Ii
1

. (21)

We refer to this method as SUM. This approach ex-
tends the following formula for pairwise comparisons:

vs ≡

∑

i:i6=s nsi

|{i | nsi + nis > 0}|
,

where nsi is the number of games that individual s
beats i. If

nsi > 0, nis > 0, and nsi +nis = constant,∀s, i, (22)

then David (1988) show that the rankings by SUM and
by ML are identical. Thus there is no need to max-
imize the likelihood. Practically (22) may not hold
if individuals play different numbers of games. For
group competitions, SUM and RLS/ML are quite dif-
ferent: SUM does not consider opponents’ abilities,
so its ranking is susceptible to individuals who played
much fewer (or more) games but performed unusually
well or poorly. Nor does it consider teammates’ abili-
ties, so strong players and weak ones receive the same
credits. Ranking by SUM thus tends to be similar to
that of teams. Because of the weak points mentioned
above, SUM is used only as a baseline in experiments.

4. Experiments: Ranking Partnerships

from Real Bridge Records

This section presents a real application: ranking part-
nerships from match records of Bermuda Bowl 20052,
which is the most prestigious bridge event. In a match
two partnerships (four players) from a team compete

2All match records are available at http://www.
worldbridge.org/tourn/Estoril.05/Estoril.htm.

N

S

W E

N

S

W E

A1

A2

B2 B1

B3

B4

A4 A3

Figure 1. A typical match setting. N, S, E and W stand
for north, south, east and west, respectively.

with two from another team. The rules require mu-
tual understanding within a partnership, so partner-
ships are typically fixed while a team can send differ-
ent partnerships for different matches. To rank part-
nerships using our model, an individual stands for a
partnership, and every T+

i (or T−
i ) consists of two in-

dividuals. We caution the use of the term “team” here.
Earlier we refer to each T+

i as a team and in bridge
the two partnerships (or four players) of T+

i are really
called a team. However, these four players are from a
(super)-team (usually a country), which often has six
members. We use “team” in both situations, which
are easily distinguishable.

4.1. Experimental Settings

We discuss why a partnership’s ability is not directly
available from match results, and explain why our
model is applicable here. Figure 1 illustrates the match
setting. A1, A2, A3, A4 and B1, B2, B3, B4 are four
players of Team A and Team B, sitting at two ta-
bles as depicted. A match consists of several boards,
each of which is played at both tables. An important
feature is that a board’s four hands are at identical
positions of two tables, but a team’s two partnerships
sit at complementary positions. In Figure 1, A1 and
A2 sit at the north (N) and the south (S) sides of one
table, so A3 and A4 must sit at the east (E) and the
west (W) sides of the other table. This setting reduces
the effect of uneven hands.

On each board winning partnerships receive raw
scores. Depending on the difference in two teams’ to-
tal scores, the winning team gains International Match
Points (IMPs). For example, Table 1 shows records of
the first eight boards of the match between from In-
dia and Portugal in Bermuda Bowl 2005. We can see
that a larger difference in raw scores results in more
IMPs for the winner. IMPs are then converted to Vic-
tory Points (VP) for the team ranking3. A quick look
at Table 1 may motivate the following straightforward
approach: A partnership’s score in a match is the sum

3The IMP-to-VP conversion for Bermuda Bowl 2005 is
on page 32, http://www.worldbridge.org/departments/
rules/GeneralConditionsOfContest2005.pdf.
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Table 1. Records of the first eight boards between India
(IN) and Portugal (PT). India: NS at Table I and EW at
Table II. The four columns in the middle are boards’ raw
scores, and only winners get points. For example, in the
second board IN’s NS partnership won at Table I and got
100 points while PT’s NS got 650 at Table II. Since PT
got more points than IN, it obtained IMPs.

Board Table I Table II IMPs
NS EW NS EW IN PT

1 1510 1510
2 100 650 11
3 630 630
4 650 660
5 690 690
6 420 50 10
7 140 600 10
8 420 100 8

of raw scores over all boards, and its ability is the aver-
age over the matches it plays. However, this estimate
is unfair due to raw scores’ dependency on boards and
opponents. Summing a partnership’s raw scores favors
those who get better hands or play against weak op-
ponents. Moreover, since boards are different across
rounds and partnerships play in different rounds, the
sum of raw scores can be more unfair. The above anal-
ysis indicates that a partnership’s ability cannot be ob-
tained directly from group competition results. Hence
the proposed model can be helpful.

We consider qualifying games: 22 teams from all over
the world had a round robin tournament, which con-
sisted of

(

22
2

)

= 231 matches and each team played
21. Most teams had six players in three fixed part-
nerships, and there were 69 partnerships in total. In
order to obtain reasonable rankings, each partnership
should play enough matches. Table 2 shows each part-
nership’s number of matches. Most played 13 to 15
matches, which are close to the average (14=21×2/3)
of a team with three fixed partnerships. Thus these
match records are reasonable for further analysis.

To use our model, the game setting matrix G defined
in (10) is of size 231 × 69; as shown in (11) each row
records a match’s setting and has exactly two 1’s (two
partnerships from one team), two −1’s (two partner-
ships from another team) and 65 0’s (the remaining
partnerships). The sum of two rival teams’ scores
(VPs) is generally 30. Occasionally it is between 25
to 30 as a team’s maximal score is 25. We normalize
two VPs by their sum as n+

i and n−
i , respectively.

4.2. Results and Analysis

Table 2 lists partnership rankings by four approaches,
RLS, ML, Huang et al., 2005 (HNG) and SUM. Be-

fore investigating which one is better, we check the
differences between the four approaches. Table 3(a)
presents correlation coefficients by Kendall’s tau, a
standard way to find correlation between various rank-
ings. Clearly RLS/ML/HNG behave similarly, but
SUM is very different. We further measure the dis-
tance between the ranking by one approach and those
by the other three:

d(rank by method 1, ranks by other methods)

≡











min(others’ ranks)− rank1 if rank1 the smallest,

rank1−max(others’ ranks) if rank1 the largest,

0 otherwise.

For example, from Table 2 the 2nd partner-
ship of U.S.A.1 (US1) ranks 67/66/66/29 by
RLS/ML/HNG/SUM. Then

d(29, {67, 66, 66}) = min(67, 66, 66)− 29 = 37.

Checking all 69 partnerships’ ranks gives

|d(RLS, {ML, HNG and SUM}) ≥ 20| = 2, (23)

|d(ML, {RLS, HNG and SUM}) ≥ 20| = 0, (24)

|d(HNG, {RLS, ML and SUM}) ≥ 20| = 0, (25)

|d(SUM, {RLS, HNG and ML}) ≥ 20| = 10. (26)

In Table 2 we respectively underline and boldface part-
nerships satisfying (23) and (26). From (26), SUM
produces a very different ranking from those by the
other three, an observation consistent with the correla-
tion matrix in Table 3(a). In addition, SUM’s ranking
is closer to the team ranking (by total VPs). Part-
nerships satisfying (26) have higher ranks than those
by RLS/ML/HNG when the team ranks are high, but
have the opposite when the team ranks are low. This
observation indicates that SUM may fail to identify
weak (strong) partnerships from strong (weak) teams.
From (24) and (25), ML’s and HNG’s rankings are al-
ways close to at least one other ranking. In fact, they
give very similar rankings, as indicated by a high cor-
relation coefficient of 0.87. However, compared with
ML, the ranking by HNG is more correlated to that
by SUM. Next we use match records to evaluate these
approaches.

Let r = (r1, r2) be the ranks of two partnerships. We
define an order relationship between two groups r =
(r1, r2) and r̄ = (r̄1, r̄2):

r better than r̄ if max(r1, r2) < min(r̄1, r̄2). (27)

That is, if the weakest partnership from r is better
than the strongest one from r̄, then the group r should
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Table 2. Partnerships’ rankings. A partnership corre-
sponds to the same position in columns. For example, The
second partnership of Italy (IT) is ranked 18th, 17th, 14th
and 4th by RLS, ML, HNG and SUM, respectively, and
it plays 14 matches. Rankings satisfying (23) and (26)
are boldfaced and underlined, respectively. Teams are or-
dered by team ranks; abbreviations of teams follow http:

//www.paladinosoftware.com/Generic/countries.htm.

Team Partnership rankings #match
RLS ML HNG SUM

IT 21 18 13 8 17 18 7 14 16 5 4 12 15 14 13
US2 63 67 1 52 66 1 43 66 1 47 29 2 8 17 17
US1 9 36 41 10 19 37 10 15 38 23 6 10 18 10 14
SE 2 55 37 2 25 53 2 12 64 1 19 39 14 13 15
IN 14 40 42 9 32 41 9 30 42 20 14 15 15 14 13
AR 33 26 32 26 21 29 25 23 34 16 17 28 15 14 13
EG 47 30 27 43 27 13 52 22 13 38 22 3 14 20 7

46 57 50 8 1
BR 19 4 66 31 7 61 24 5 65 25 11 32 11 18 13
JP 8 62 39 3 67 39 3 68 29 7 44 49 14 14 14
NL 6 60 11 30 44 28 28 47 31 37 34 21 15 15 12
CN 61 49 5 46 45 6 45 46 6 30 52 9 13 14 15
ZA 48 34 20 49 24 15 51 27 20 48 35 27 15 13 14
RU 38 28 31 35 16 47 36 18 49 40 24 53 14 14 14
PT 15 25 54 34 11 55 26 11 61 50 26 46 14 14 14
AU 44 51 16 42 51 20 40 53 21 42 51 41 16 11 15
NZ 68 23 3 68 48 5 67 39 4 64 36 13 9 16 17
UK 10 24 59 12 36 64 17 33 63 45 18 54 17 12 13
CA 17 35 56 14 38 58 19 35 62 33 43 60 14 16 12
TW 45 57 43 60 65 56 56 60 55 57 56 66 2 12 1

7 29 58 4 23 54 8 37 54 31 63 61 4 7 16
PL 12 52 53 22 50 59 32 48 59 58 55 62 15 15 12
GP 50 22 69 40 33 69 44 41 69 65 59 69 14 14 14
JO 64 65 62 63 57 58 67 68 21 21

be superior to r̄. Then for each match, we define two
kinds of events:

{

Violation: r better than r̄ but r̄ beats r,

Hit: r better than r̄ and r beats r̄.

A good ranking should produce many hits while caus-
ing few violations, so we use the following evaluation
criterion:

Number of violations

Number of hits
, (28)

whose value should be minimized. Table 3(b) shows
the ratio (28) of each of the four rankings and num-
bers of violations co-occurred for any two approaches.
There are some interesting observations:

1. SUM produces the largest number of hits, but
also the largest number of violations. Overall its ra-
tio (28) is the largest: 32/96 = 0.33. The other
three methods achieve better balance between viola-
tions and hits: ML performs slightly better than HNG
(6/45 = 0.13 < 9/48 = 0.19), while RLS is worse
(12/45 = 0.27).

Table 3. Properties of rankings by the four approaches. For
violations and hits, the diagonal shows #violations/#hits
of each approach, and the off-diagonals show #violations
co-occurred for any two approaches.

(a) Correlation coefficients

RLS ML HNG SUM
RLS 1.0 0.71 0.68 0.39
ML 0.71 1.0 0.87 0.50
HNG 0.68 0.87 1.0 0.53
SUM 0.39 0.50 0.53 1.0

(b) Violations and hits

RLS ML HNG SUM
RLS 12/45 3 3 4
ML 3 6/45 6 5
HNG 3 6 9/48 8
SUM 4 5 8 32/96

2. Results are highly related to the findings in (23)-
(26). Among 12 violations of RLS, the two partner-
ships from (23) involve in four. For SUM, nearly all
violations are related to the 10 partnerships from (26).

3. In few cases weak partnerships beat strong ones.
For example, two partnerships from Egypt (EG, team
rank 6) beat two from Italy (IT, team rank 1). All
four approaches however rank the Italian partnerships
higher than the Egyptian ones: RLS (18 13 vs. 47 30),
ML (17 18 vs. 27 43), HNG (14 16 vs. 22 52), and
SUM (4 12 vs. 22 38). Such ranks are reasonable as
the Italian partnerships win many other matches.

We find that the six violations of ML are either ex-
ceptional games where weaker ones win or rankings
with a small amount of violation (i.e., max(r1, r2) −
min(r̄1, r̄2) in (27) is small). Such violations are thus
not very serious. In contrast, RLS and SUM have ad-
ditional violations related to partnerships identified in
(23)-(26), whose ranks are likely to be wrong. For
HNG, its nine violations are the six of ML plus three
additional ones. Since ML and HNG give quite simi-
lar results, we investigate more carefully the distance
between their rankings and find that

|d(ML, HNG) ≥ 10| = 5. (29)

Similar to the second observation discussed earlier, Ta-
ble 4 shows that three of the five partnerships in (29)
involve in two of the three additional violations. More-
over, each partnership’s rank by ML is higher than
that by HNG if the team rank is low (PL and TW),
but lower if the team rank is high (JP). Therefore, ML
may be better than HNG in identifying weak (strong)
partnerships from strong (weak) teams. From all as-
pects discussed so far, ML is the best and HNG is
almost as good. Table 5 lists the top ten partnerships
by ML, which are also the top ten by HNG with only
minor re-ordering. Some are famous players.

In addition to violations, another evaluation measure
is the mean-squared error (MSE):

1

m

m
∑

i=1

(

P̃ (I+
i beats I−i )−

n+
i

ni

)2

,
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Table 4. The three matches where HNG causes violations
but ML does not. We show the ranks of playing partner-
ships by ML and HNG, boldfacing those satisfying (29).

Method Partnership ranks VPs
NL BR

ML 30 44 7 31 20 10
HNG 28 47 5 24

AR TW
ML 21 26 23 54 14 16
HNG 23 25 37 54

JP PL
ML 3 39 22 50 6 24
HNG 3 29 32 48

where P̃ (I+
i beats I−i ) is the estimate. The MSEs for

RLS, ML and HNG are 0.0365, 0.0283 and 0.0284,
respectively. We did not calculate MSE for SUM be-
cause it does not assume a predictive model. Again
we see that ML and HNG behave similarly, while RLS
performs worse. One may wonder if experiments un-
der a standard training/testing setting should be con-
ducted. However, in contrast to classification or re-
gression where generalization ability is emphasized,
the goal of ranking is to explain available outcomes
as well as possible, so evaluating rankings on unseen
match results would be unreasonable.

We then explore why RLS is slightly worse than ML.
The two partnerships satisfying (23) respectively have
scores 25:0 and 1:25 in two matches. Note that the
highest VP one can obtain is 25. Among eight 25:0/1
and 0/1:25 matches in all games, two occur for two
partnerships of New Zealand, which rank (3rd, 23rd)
by RLS. However, ML and HNG give (5, 48) and
(4, 39), respectively. Thus extreme scores seem to
more significantly affect RLS. We explain this phe-
nomenon by checking the optimization formulas of
RLS and ML. If the scores are 25:0, n+

i /n−
i = ∞

causes problems in (9), so we set n−
i = 0.001. How-

ever, log n+
i /n−

i is still large, so RLS essentially hopes

(T+
i − T−

i − a large value)2 (30)

is small. For (14), if n−
i = 0, it intends to have small

∣
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. (31)

One needs T+
i ≫ T−

i so that (30) is reasonably small,
but a small (31) does not require very large T+

i − T−
i .

In other words, extreme scores cause large terms in
(9), but only moderate ones in (14).

Discussion so far globally compares the three ap-
proaches. Next we investigate two teams’ rankings
in detail. Table 6 lists match records of U.S.A.2 and

Table 5. Top 10 partnerships by the approach ML

Team Players
U.S.A.2 Eric Greco Geoff Hampson
Sweden Peter Bertheau Fredrik Nystrom
Japan Yoshiyuki Nakamura Yasuhiro Shimizu
Chinese Taipei Chih-Kuo Shen Jui-Yiu Shih
New Zealand Tom Jacob Malcolm Mayer
China Zhong Fu Jie Zhao
Brazil Gabriel Chagas Miguel Villas-boas
Italy Norberto Bocchi Giorgio Duboin
India Subhash Gupta Rajeshwar Tewari
U.S.A.1 Jeff Meckstroth Eric Rodwell

Poland. For U.S.A.2, the 2nd partnership (called P2)
ranks 29th by SUM but RLS, ML and HNG give 67, 66
and 66, respectively. In addition, RLS and ML have
that P2 is similar to P1, but for SUM, P2 is better.
When (P2,P3) are together, they win 7 matches but
lose 5. For (P1,P3), they significantly win 3, but lose 1.
Thus P2 is not better than P1, but SUM fails to cap-
ture such relationships. Moreover, SUM does not con-
sider opponents’ abilities, so P2’s 25:3 match against
Jordan (team rank 22, the last) and P1’s 25:5 match
against India (team rank 5) respectively give them sim-
ilar credits. For the Polish team, all approaches rank
P2 and P3 to be around 55. SUM considers P1 to be
similar as well (58th), but RLS, ML and HNG give P1
a much higher rank (12, 22 and 32). To find which one
is more reasonable, we list opponents’ team ranks:

P1,P2: big wins over 9, 11, 17; big losses to 6, 8
P2,P3: big wins over 19, 21, 22; big losses to 2, 14, 18
P1,P3: small wins over 1, 4; big losses to 10, 13.

Clearly, results of (P1,P2) and (P2,P3) imply that
P1 is better than P3. The reason is that (P1,P2)
wins over/loses to stronger teams. Similarly, com-
paring (P2,P3) and (P1,P3) shows that P1 is better
than P2. This example shows that the proposed ap-
proach nicely captures indirect relationships. Earlier
we stressed the difference between team and partner-
ship rankings, so one may doubt the use of opponents’
team ranks above. However, a match involves two but
not one partnership of a team. As most teams have
only three partnerships, team ranks should reasonably
indicate the ability of two participating ones.

While ML seems to be the best for this data, it is not
perfect. We suspect that it overestimates a Chinese
Taipei partnership as the 4th. This team (six play-
ers) has six different partnerships, more than any team
else. As some play very few matches, without enough
records, the obtained ranks are less reliable. Earlier
we criticized that SUM is vulnerable if some partner-
ships play very few matches. This is observed in its
rank for an Egyptian partnership which plays only one
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Table 6. Match records of U.S.A.2 and Poland. A star
indicates playing in a match, and we boldface the score
of the winning team. The last column shows rival
teams and their team rankings. For U.S.A.2, rank-
ings by RLS/ML/HNG/SUM are P1: 63/52/43/47, P2:
67/66/66/29 and P3: 1/1/1/2. For Poland, rankings are
P1: 12/22/32/58, P2: 52/50/48/55 and P3: 53/59/59/62.

(a) U.S.A.2.

P1 P2 P3 Score vs.
⋆ ⋆ 0 25 NL(10)
⋆ ⋆ 12 18 ZA(12)
⋆ ⋆ 11 19 UK(17)
⋆ ⋆ 14 16 TW(19)
⋆ ⋆ 25 5 IN(5)
⋆ ⋆ 22 8 NZ(16)
⋆ ⋆ 22 8 PL(20)
⋆ ⋆ 12 18 US1(3)

⋆ ⋆ 22 8 SE(4)
⋆ ⋆ 19 11 EG(7)
⋆ ⋆ 19 11 BR(8)
⋆ ⋆ 24 6 RU(13)
⋆ ⋆ 20 10 PT(14)
⋆ ⋆ 20 10 CA(18)
⋆ ⋆ 25 3 JO(22)
⋆ ⋆ 15 15 AU(15)
⋆ ⋆ 12 18 IT(1)
⋆ ⋆ 13 17 AR(6)
⋆ ⋆ 14 16 JP(9)
⋆ ⋆ 13 17 CN(11)
⋆ ⋆ 14 16 GP(21)

(b) Poland

P1 P2 P3 Score vs.
⋆ ⋆ 24 6 JP(9)
⋆ ⋆ 19 11 CN(11)
⋆ ⋆ 22 8 UK(17)
⋆ ⋆ 15 15 ZA(12)
⋆ ⋆ 9 21 US1(3)
⋆ ⋆ 14 16 IN(5)
⋆ ⋆ 4 25 AR(6)
⋆ ⋆ 5 25 BR(8)
⋆ ⋆ 11 19 AU(15)
⋆ ⋆ 16 14 IT(1)
⋆ ⋆ 16 14 SE(4)
⋆ ⋆ 11 19 EG(7)
⋆ ⋆ 9 21 NL(10)
⋆ ⋆ 7 23 RU(13)
⋆ ⋆ 11.5 17.5 NZ(16)

⋆ ⋆ 25 5 TW(19)
⋆ ⋆ 19 11 GP(21)
⋆ ⋆ 20 10 JO(22)
⋆ ⋆ 8 22 US2(2)
⋆ ⋆ 4 25 PT(14)
⋆ ⋆ 3 25 CA(18)

match. While RLS, ML and HNG give more reason-
able ranks for this partnership, unfortunately they are
not so successful on the Chinese Taipei partnership.

5. Multi-class Classification

In Huang et al. (2005), the main application is multi-
class probability estimates under error-correcting
codes. Since their formulation (3) incorporates nor-
malizing and positive constraints, class probability es-
timates are immediately available from optimal pa-
rameters; the proposed model, however, cannot di-
rectly deliver such probability estimates. Nevertheless,
it can still be used for classification by predicting the
label with the largest vs. We conduct experiments on
the seven real problems used in Huang et al. (2005).
They prepared 20 subsets of 800 training and 1,000
testing instances4 and considered four error-correcting
codes. Due to space limitation, we present only results
on the “sparse” and “dense” codes. Average test error
rates by RLS, ML and HNG are in Table 7. For the
dense code, RLS and ML are marginally better than
HNG, but for the sparse code, RLS performs worse

4http://www.csie.ntu.edu.tw/∼cjlin/papers/
svmprob/data

Table 7. Average test error rates (in percentage). We bold-
face the lowest ones for each error-correcting code.

Dense Sparse
Problem #class RLS ML HNG RLS ML HNG
dna 3 6.35 6.34 6.39 6.88 6.29 6.24

waveform 3 13.71 13.71 13.92 13.54 13.45 14.27
satimage 6 11.61 11.52 11.41 11.46 11.58 11.79
segment 7 3.54 3.46 3.45 3.97 3.54 3.23

USPS 10 7.22 7.29 7.66 8.06 7.68 8.52
MNIST 10 7.25 7.25 7.58 8.09 7.74 8.97
letter 26 19.55 19.37 20.27 21.20 20.47 20.43

while ML and HNG are almost equally good. Re-
sults indicate that the proposed model is also useful
for multi-class classification by error-correcting codes.

6. Conclusions

We propose a new and useful method to rank individ-
uals from group comparisons. Contrary to early work,
which solves non-convex problems, here convex formu-
lations with easy solution procedures are developed.
Experiments show that the proposed approach gives
reasonable partnership rankings from bridge records.
We also develop techniques to evaluate different rank-
ings, which may be used in other ranking tasks.
Acknowledgements This work was partially sup-
ported by National Science Council, Taiwan.
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