Implementation of Probabilistic Outputs for
Support Vector Machine

P 253 B88506052
VT EET B88506054
Z=yii fiy B89902094
SRR HT B89902098
T 46 B89902103

January 9, 2003

Abstract

The output of a classifier should be a calibrated posterior probability to enable
post-processing. Standard SVMs do not provide such probabilities. In [1] they
introduce a method by training the parameters of an additional sigmoid function
to map the SVM outputs into probabilities. This method yields probabilities
of good quality, without much effort after training SVMs. Using python [2], we
implement this method with LIBSVM [3], and test several data sets.

1 Introduction

Constructing a classifier to produce a posterior probability P(class | input) is
very useful in practical recognition. Posterior probabilities are also required
when a classifier is making a small part of an overall decision, and the classi-
fication outputs must be combined for the overall decision. However, Support
Vector Machines [4] (SVMs) produce an uncalibrated value indicating which
class data ”belongs to”, rather than a probability.

Some works are proposed for mapping the outputs of SVMs to probabilities.
In [5] Hastie and Tibshirani suggests that class-conditional densities p(fly = 1)
and p(f|ly = —1) should be fitted to Gaussians. They use a single tied variance
to estimate both Gaussians. The posterior probability is thus a sigmoid, whose
slope is determined by the tied variance. However, the single parameter derived
from the variance may not accuarately model the true posterior probability.

One can also use a more flexible version of the Gaussians fit to p(f|y = +1).
The mean and the variance for each Gaussian are determined from a data set.
Bayes’ rule can be used to compute the posterior probability via:

p(fly=1)Py=1
> p(fly=19)P(y =1)’

i=—1,1

ply =1[f) = (1)

where P(y = i) are prior probablities that can be computed from the train-
ing set. In this formulation, the estimated posterior probability is an analytic
function of f with form:

1
- 1+explaf?+bf +c)

Py =1|f) (2)

There are two issues with this model. First, the posterior estimate above is
not monotonic in f. There’s a very strong prior for considering the probability
p(y = 1|f) to be monotonic in f since intuitively with larger f the data should
be more away from the separating hyperplane, thus more possible to be a posi-
tive example. Second, the assumption of Gaussian class-conditional densities is
sometimes failed.

Following we will introduce how [1] do modifications to SVMs, an efficient
algorithm for implementation, and finally results to several data sets applied by
this method.

2 Fitting a Sigmoid After the SVM

In [1], instead of estimating the class-conditional densities p(fl|y), they use a
parametric model to fit the posterior P(y = 1|f) direclty. The parameters of
the model are adapted to give the best probability outputs. Observing empirical
data, the form of the parametric model are inspired. They found that the class-
conditional densities between margins are usually exponential. By applying the
Bayes’ rule on two exponentials we can get a parametric form of a sigmoid:

1
Ply=1]f) = 1+exp(Af + B) (3)

Now we want to train a sigmoid by some SVM decision function values f.
We use maximum likelihood estimation to fit the parameters A and B. Given
a sigmoid training set (f;,y;), we define a new training set (f;,t;), where the ¢;
are target probabilities defined as:

i +1
t=8, (4)

so that ¢; = 0 while y; = —1; ¢; = 1 while y; = 1. According to maximum
likelihood estimate, we maximize: [], p;, where:

1 —
1+exp(Af;+B) yYi = 1
pi = . (5)
= meparas ¥i= 1

This is the same as minimizing the negative log likelihood, which is a cross-
entropy error function:

Iil,ig_z,ti log(p;) + (1 —t;) log(1 — p;), (6)
K3
where

1
~ 1+exp(Afi+ B)’

(7)

Di

Therefore we have to do this two-parameter minimization to get A and B.

3 Levenberg-Marquardt Algorithm

We use Levenberg-Marquardt Algorithm [5, 6] to do the optimization above.
Roughly speaking, this is a compromise between Newton method and gradient
descent. Like both methods, Levenberg-Marquardt algorithm is an iterative
algorithm, with update as:

Tz — M) Vi), (8)

where

Mi; = (14 6[i — j]A) Hi;. 9)
% . We can
see that when M is zero, it is exactly the Newton method; when) is very large, it
is then like the gradient descent. So A here is in a sense a parameter to ” control”
which method to apply.

When doing an optimization problem using an iterative method, in early
stage, we may be far from solution and the parabolic assumption is sometimes
wrong, so steepest descent is more safe. When we are close to the solution, then
Newton method is better for speeding up. So, here’s what Levenberg-Marquardt
algorithm does: whenever f(zy,1) gets worse (larger than f(zy)), increase A by
a factor A < B1\ to make step more like a gradient step. Whenever f(zpy1)
gets better (less than f(zy)), decrease A by a factor A < B2 to make step more
like a Newton step. We use ;1 = 10, 82 = 0.1 in our program.

Here H;; is the Hessian matrix whose elements are H;; =

4 Some Issues to Deal With

There are some issues in the optimization procedure: the choice of the sigmoid
training set, and the method to avoid over-fitting this set.

When we are given a training data set, to build a sigmoid model, one may
think that we can train an SVM with all training samples, then feed it with the
same samples to get each f;. However, this cause the SVM outputs f; to be
a biased estimate of the sample distribution. For example, for the data at the
margin, the SVM outputs are forced to have the same absolute value 1, which
are not the common values for test samples. So in our program we use a 5-fold
cross validation to generate f;. That is, the training samples are split into five
parts, and each of five SVMs are trained on permutations of four out of five
parts, then the f; are evaluated by the remaining one. By cross-validation we
can get a good unbiased f to make the sigmoid model.

Another isuue is over-fitting, which is indicated in [1]. They notice that with
unbalanced data, fitting a sigmoid with the SVMs will make A biased. Therefore
there can be an infinite number of sigmoids with infinite steep sigmoids when
the validation set is perfectly separable. [1] sugeests to use the out-of-sample
data. Out-of-sample data is modelled with the same empirical density as the
sigmoid training data, but with a finite probability of opposite label. In other
words, when a positive example is observed at a value f;, we do not use ¢t; =1
but assume that there is a finite chance of opposite label at the same f; in the
out-of-sample data. Therefore, a value of ¢; =1 — €4 will be used. Similarly, a
negative example will ues a target value of t; = e_. In [1] they set:

1o, !
N,+2’ "~ N_+2
where Ny and N_ are number of positive and negative samples. These targets
are then used instead of {0,1} for all data in the sigmoid fit.

ty=1- (10)

5 Implementation

We modified the svm_predict() in svm.cpp of libsvin to output the decision
value. Then a post-processing program using libsvm python interface is written
to find out correct parameters A, B that minimize the likelihood function.

Figure 1 shows the predicted probability against decision value mapping
function and ROC curve of heart_scale for demostration.

Dataset #Positive #Negative

22pos500 400 100
22bln500 250 250
22neg500 100 400
imgpos500 400 100
imgbln500 250 250
imgneg500 100 400

Predicted Probability

Ture Positive Rate

0.8

0.6
04

02

Figure 1: Probability mapping function and ROC curve of heart_scale

Probability v.s. Decision Value of heart_scale ROC curve of heart_scale

A:-1.187e+00
| B:5.038e-03
Q
T
x
[
2
%
x c
@
S
X % =
n Joooot——oc 0
-4 -3 -2 -1 0 1 2 3 4 0 0.2 0.4 0.6 0.8
Decision Value False Positive Rate

ROC curve of heart_scale

0.2 linear
o polynomial ----------
0.1 [radial basis -
0 7 . . . sigmoid -
0 0.2 0.4 0.6 0.8

False Positive Rate

Figure 2: ROC curve with different kernel type

ROC curve of heart_scale

()
IS i
04
w -
=
£ |
o
a -
g
3 -
- 1
02 f . |
b optimal
0.1 § underfitting -]
0 . . overfitting -
0 0.2 0.4 0.6 0.8 1

False Positive Rate

Figure 3: ROC curve with different gamma value

5.1 Characteristics of Probablistic Output SVM:
An Empirical View

First we try probability output SVM with different kernel type. In the original
paper, the author applied experiment only on linear kernel, Figure 2 shows
performance of different kernel with heart_scale. All kernel is fine tuned with
their best confiuration. It seems that RBF kernel is better in this case. However,
they are closed to each other. Different data such as linear-separable ones may
lead to completely different result.

Second, we want to know the influence of inappropriate cost and gamma to
probability output SVM with RBF kernel. Figure 3 shows three ROC curves,
each is from heart_scale with same optimized parameters but with different
gammra. Best gamma of this sample is (C, gamma) = (27,2719)), the one
marked overfitting is plotted with (C,gamma) = (27,2°), and underfitting is
plotted with (C,gamma) = (27,272%). Obviously, SVM with optimal model
selection results in best performance under most scenario.

Third, we explored the its ability of learning from unbalanced data. The
unbalanced datasets for testing is randomly extracted from 22features and im-
age_scale with specified positive and negative instances(shown in table 1).

Figure 4 shows three curves of probability against decision value mapping
function with different bias of data. The curve varies with different bias. The

predicted probability

predicted probability

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

predicted probability against decision value of 22features

balanced
positive bias
negative bias

-2

0 2
decision value

4 6

predicted probability against decision value of image_scale

balanced
positive bias
negative bias

0 2
decision value

4 6

Figure 4: Probability against decision value with different data bias

reason it very simple, because different data distribution constructs different
scenario for approximation. Positive bias may provide more positive instance
when training, but its distribution, say range of decision value, also have great
influence on curve fitting.

To sum up, this implementation enables gerneric svm to output approxi-
mated probability instantly with high accuracy. But we suggent everyone using
this this implementation to fine tune SVM in standard way before any further
processing to get more accurate result.

References

[1] J. C. Platt (1999) Probabilistic Outputs for Support Vector Machine and
Comparisons to Regularized Likelihood Methods

[2] http://www.python.org

[3] C. C. Chang and C. J. Lin (2001) LIBSVM: A library for support vector
machines Software available at http://www.csie.ntu.edu.tw/&jlin/libsvm

[4] Vapnik, V. (1998) Statistical Learning Theory New York, NY: Wiley

[5] P. E. Gill, W. Murray, and M. H. Wright (1981) Practical Optimization
Academic Press

[6] http://mayaweb.upr.clu.edu/ jechauz/vg-lm.pdf
[7] http://gim.unmc.edu/dxtests/roc3.htm The Area Under an ROC Curve

[8] Gary M. Weiss and Foster Provost (2001) The Effect of Class Disribution
on Classifier Learning: An Empirical Study

[9] Foster Provost and Tom Fawcett (2001) Robust Classification for Imprecise
Environments

