
Supplementary Materials for ”Fast Matrix-vector
Multiplications for Large-scale Logistic Regression

on Shared-memory Systems”
Mu-Chu Lee

Department of Computer Science
National Taiwan University

Taipei, Taiwan
Email: b01902082@ntu.edu.tw

Wei-Lin Chiang
Department of Computer Science

National Taiwan University
Taipei, Taiwan

Email: b02902056@ntu.edu.tw

Chih-Jen Lin
Department of Computer Science

National Taiwan University
Taipei, Taiwan

Email: cjlin@csie.ntu.edu.tw

1. MATRIX-VECTOR MULTIPLICATIONS IN NEWTON
METHODS FOR LOGISTIC REGRESSION

We briefly introduce Newton methods for logistic regression
and then explain that matrix-vector Multiplications are the
computational bottleneck.

A. Newton and Truncated Newton Methods

To minimize a twice-differentiable function f(w) in (1),
at the current iterate wk, a Newton method minimizes the
following second-order Taylor expansion of the function-value
reduction f(wk + s)− f(wk) to obtain a direction sk.

min
s
qk(s), where qk(s) ≡ ∇f(wk)Ts+

1

2
sT∇2f(wk)s.

(A.1)
For logistic regression, we can easily derive the following
gradient and Hessian of f(w):

∇f(w) = w + C
∑l

i=1
(σ(yiw

Txi)− 1)yixi, (A.2)

∇2f(w) = I + CXTDX, (A.3)

where I is the identity matrix,

σ(yiw
Txi) = (1 + e−yiw

Txi)−1,

and D is a diagonal matrix with

Dii = σ(yiw
Txi)(1− σ(yiw

Txi)).

We can see that Xw obtained in function value evaluation can
be continually used for σ(yiw

Txi),∀i in (A.2) for gradient
evaluation. In (A.2) we need another matrix-vector multipli-
cation

XTv, where vi = (σ(yiw
Txi)− 1)yi.

For obtaining the direction sk, because ∇2f(wk) is positive
definite, the minimization problem in (A.1) is equivalent to
solving the following Newton linear system.

∇2f(wk)sk = −∇f(wk). (A.4)

For data sets with many features, ∇2f(wk) is a huge and
dense matrix that is too large to be stored. Machine learning

Algorithm 1 CG for approximately solving (A.4)
1) Let s = 0, r = −∇f(wk), d = r, and rsq = ‖r‖2.
2) For i = 0, 1, . . .
• If some stopping conditions hold, stop and output s as
sk.

• Calculate v = ∇2f(wk)d by (A.5)
• α← rsq/d

Tv
• s← s+ αd and r ← r − αv.
• rnew

sq ← ‖r‖2
• β ← rnew

sq /rsq and rsq ← rnew
sq

• d← r + βd.

researchers [1], [2], [3] have applied iterative methods such
as Conjugate Gradient (CG) to solve (A.4) without explicitly
forming the Hessian. A CG procedure includes some itera-
tions, where each one has the following main computational
task

∇2f(w)d = d+ C ·XT (D(Xd)). (A.5)

Here d is an intermediate vector in the CG procedure. Note
that (A.5) is performed by using only X and D without form-
ing the Hessian XTDX . This Hessian-free strategy effectively
alleviates the memory difficulty. For completeness, we show
the CG procedure in Algorithm 1, where details can be seen
in, for example, [4]. In Algorithm 1, we can clearly see that
except (A.5), all others are cheaper vector operations.

By using the CG method, a Newton method has two layers
of iterations: at each outer iteration an inner CG procedure
finds the Newton direction. To save the computational cost,
in practice we only approximately solve (A.5), so the CG
procedure stops after satisfying some stopping conditions.
Therefore, we have a “truncated” Newton method in optimiza-
tion because of not using the full Newton direction of exactly
solving (A.5).

The obtained direction sk cannot be directly used to update
wk because we may not have the decrease of the function
value; that is, f(wk + sk) < f(wk) may not hold. The
decreasing property is required in proving the convergence.



Two major optimization techniques to obtain this property
are line search and trust-region methods. We investigate their
needed operations.

B. Line Search Procedure

A line search procedure finds a step size αk such that the
following sufficient decrease condition holds.

f(wk + αks
k) ≤ f(wk) + ηαk∇f(wk)Tsk,

where η ∈ (0, 1) is a pre-specified constant. Usually αk is
obtained by a backtrack search of trying

αk = 1, β, β2, . . . ,

where β ∈ (0, 1). Although several evaluations of f(wk +
αsk) are conducted, we need only one matrix-vector multipli-
cation Xsk and have

X(wk + αsk) = Xwk + αXsk.

Proofs of convergence for truncated Newton methods using
line search can be found in, for example, [5].

C. Trust Region Methods

This approach restricts the truncated Newton direction sk

to be within a “trust region” of size ∆k.

min
s

qk(s) subject to‖s‖ ≤ ∆k.

The step sk is taken if the function value at wk + sk is
sufficiently decreased. The calculation involves one matrix-
vector multiplication X(wk +sk). However, if sk is accepted
for update, then X(wk+sk) can be passed to the next iteration
for use.

In our implementation, we follow the setting in [6] to update
the size ∆k of the trust region. Because of the constraint ‖s‖ ≤
∆k, the CG procedure must be modified to take care of it. See
details in Algorithm 2 of [3]. The convergence of trust region
Newton methods using CG procedures has been established in
[7] and subsequent works.

D. Computational Cost

From the above discussion, we see that function evaluations,
gradient evaluations, and CG iterations all involve matrix-
vector multiplications. Because each outer iteration involves
one function/gradient evaluation but several CG iterations, the
cost of a Newton method is almost proportional to the total
number of CG iterations (i.e., the total number of Hessian-
vector multiplications).

2. DETAILED ANALYSIS ON IMPLEMENTATION USING
OpenMP

An OpenMP loop must assign tasks to different threads. For
example, the default schedule(static) splits indices to
P blocks in a fixed way, where each contains l/P elements.
However, because tasks may be unbalanced, we can have
a dynamic scheduling so that available threads are assigned
to the next needed tasks. A chunk size decides the number
of indices handled by a thread at a time. For example,

schedule(dynamic,256) implies that a thread works on
a chunk of 256 elements each time. However, overheads occur
for doing the dynamic task assignment.

Deciding what kind of scheduling to use is not trivial. We
check the implementation of (3) as an example. This operation
involves the following three loops.

1) Initializing ûp = 0,∀p = 1, . . . , P .
2) Calculating ûp,∀p by

ûp =
∑
{uixi | i run by thread p}

3) Calculating ū =
∑P

p=1 û
p.

At first glance we would think that the first and the third
loops are not important because they involve only O(Pl)
operations. The second loop needs O(nnz), where nnz is the
total number of non-zero entries in X . In general

nnz� Pl,
because our number of cores is no more than 20, but the
average number of non-zero features per instance is easily
hundreds or more. However, we show that a casual imple-
mentation may cause the first or the third loop equally time
consuming. For simplicity, we check only the third loop
because the first one is similar. The summation

∑P
p=1 û

p is
indeed similar to XTu, where the output is shared. If n� P ,
we can sequentially conduct vector additions but parallelize
each vector addition:

1: for p = 1, . . . , P do
2: for i = 1, . . . , n do in parallel
3: ui ← ui + ûpi

We call this a core-oriented approach. A concern is that when
n is very small, we do not achieve parallelism. Instead we can
consider:

1: for i = 1, . . . , n do in parallel
2: ui =

∑P
p=1 û

p
i

We call this a feature-oriented approach. A disadvantage is
that ûp is not continuously accessed.

Now for the second loop and the two approaches for the
third loop, we try the following three settings,

1) schedule(static)
2) schedule(dynamic)
3) schedule(dynamic,256)

and present the running time in Table I. We consider
one problem (covtype binary) with small n and one
problem (rcv1 binary) with large n. Results show that
not only does scheduling significantly affect the run-
ning time, but also it is data dependent. For the sec-
ond loop by schedule(static), the running time
is short for covtype binary, but is unacceptable for
rcv1 binary. For the third loop (core-oriented approach) with
schedule(dynamic), where the default chunk size is one,
the running time is huge for rcv1 binary. Apparently this
is because of the overheads of doing n assignments. This
experiment fully illustrates the importance of having appro-
priate settings. In experiments in Section III-E, the OpenMP
implementation considers schedule(dynamic,256) for



TABLE I
RUNNING TIME(IN SECONDS) WITH DIFFERENT SCHEDULER. EIGHT

THREADS ARE USED.
Second loop covtype binary rcv1 binary
schedule(static) 0.2879 2.9387
schedule(dynamic) 1.2611 2.6084
schedule(dynamic, 256) 0.2558 1.6505
Third loop (core-oriented) covtype binary rcv1 binary
schedule(static) 0.0008 0.0056
schedule(dynamic) 0.0017 0.5094
schedule(dynamic, 256) 0.0010 0.0062
Third loop (feature-oriented) covtype binary rcv1 binary
schedule(static) 0.0005 0.0062
schedule(dynamic) 0.0007 0.0910
schedule(dynamic, 256) 0.0005 0.0039

the second loop, while the feature-oriented approach with
schedule(static) for the third loop.

A. Relations with Asynchronous Coordinate Descent Methods

Very recently, asynchronous coordinate descent methods [8]
have been proposed for efficiently solving the dual problem
of linear classifiers on shared-memory systems. While a dual-
based method looks very different from the Newton method
here that solves the primal problem, surprisingly their op-
erations are very related. In this section we discuss some
interesting connections.

If l1 loss rather than logistic loss is used, problem becomes
linear SVM.

min
w

1

2
wTw + C

∑l

i=1
max(0, 1− yiwTxi). (A.6)

The dual problem takes the following form.

min
α

f(α) subject to 0 ≤ αi ≤ C, ∀i, (A.7)

where

f(α) =
1

2

∑l

i=1

∑l

j=1
xT
i xjαiαj −

∑l

i=1
αi.

The dual CD method to solve (A.7) is the following procedure.
1: while w is not optimal do
2: for i = 1, . . . , l do
3: r = min(max(αi − ∇if(α)

‖xi‖2 , 0), C)− αi

4: αi ← αi + r
5: w ← w + rxi

By initializing w = 0, we maintain the relationship

w =
∑l

j=1
αjxj ,

and w will eventually converge to the optimal solution of the
primal problem (A.6). Then

∇if(α) =
∑l

j=1
αjx

T
j xi − 1 = xT

i w − 1.

A comparison with the for loop in Section II-C shows that,
in the for loop here for updating α1, . . . , αl, the number of
operations is about the same as that of the two matrix-vector
operations:

Xd and XTu, where u = DXd.

The work [8] parallelizes the for loop by

1: for i = 1, . . . , l do in parallel
2: r = min(max(αi − wTxi−1

‖xi‖2 , 0), C)− αi

3: αi ← αi + r
4: for (xi)s 6= 0 do
5: atomic: ws ← ws + r(xi)s

We pointed out in Section III-C that the atomic operations
cause serious difficulties in the parallel computation of XTu.
However, [8] reports good speedup on some large document
data sets such as rcv1 binary used in Section III. Naturally
we wonder why atomic operations do not cause difficulties for
the dual CD method.

An investigation shows that the reason is because the dual
CD method may not need to update w for all i ∈ {1, . . . , l}.
Specifically, the for loop is implemented in the following way.

1: for i = 1, . . . , l do in parallel
2: r = min(max(αi − wTxi−1

‖xi‖2 , 0), C)− αi

3: αi ← αi + r
4: if r 6= 0 then
5: for (xi)s 6= 0 do
6: atomic: ws ← ws + r(xi)s

This setting is reasonable because if r = 0, w remains the
same. An important property of the l1 loss SVM is that the
optimal α has some bounded elements (i.e., αi = 0 or C).
These elements may reach the final bounded value in just
a few iterations. Their corresponding r is zero, so there is
no need to update w. The situation is like that only part of
XTu calculation is conducted. More precisely, the two loops
in Section II-B have

l of every 2l vector operations
involving atomic operations, while the dual CD method has

δl of every (1 + δ)l vector operations,
where δ ∈ [0, 1) depends on the number of bounded compo-
nents in the solution. Thus, the reason why the asynchronous
parallel CD method can achieve good speedup is because
atomic operations are a smaller portion of the total compu-
tation.

In the dual CD method, if we know r = 0 beforehand, than
the whole step at index i can be waived and the calculation
of wTxi can also be saved. In practice, we can conjecture if
an αi will remain the same or not. This technique, referred to
as shrinking [9], [10], is effective in some situations. Then a
bigger portion of inner products involves atomic operations, so
the speedup may become less dramatic. Further, the speedup
may be poor if the dual CD method is applied to train logistic
regression [11] because 0 < αi < 1,∀i and r 6= 0 in general.

REFERENCES

[1] P. Komarek and A. W. Moore, “Making logistic regression a core data
mining tool,” Carnegie Mellon University, Tech. Rep., 2005.

[2] S. S. Keerthi and D. DeCoste, “A modified finite Newton method for
fast solution of large scale linear SVMs,” JMLR, vol. 6, pp. 341–361,
2005.

[3] C.-J. Lin, R. C. Weng, and S. S. Keerthi, “Trust region Newton method
for large-scale logistic regression,” JMLR, vol. 9, pp. 627–650, 2008.

[4] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed. The
Johns Hopkins University Press, 1996.

[5] I. Griva, S. G. Nash, and A. Sofer, Linear and nonlinear optimization,
2nd ed. SIAM, 2009.



[6] C.-J. Lin and J. J. Moré, “Newton’s method for large-scale bound
constrained problems,” SIAM J. Optim., vol. 9, pp. 1100–1127, 1999.

[7] T. Steihaug, “The conjugate gradient method and trust regions in large
scale optimization,” SIAM J. Numer. Anal., vol. 20, pp. 626–637, 1983.

[8] C.-J. Hsieh, H.-F. Yu, and I. S. Dhillon, “PASSCoDe: Parallel asyn-
chronous stochastic dual coordinate descent,” in ICML, 2015.

[9] T. Joachims, “Making large-scale SVM learning practical,” in Advances
in Kernel Methods - Support Vector Learning. MIT Press, 1998.

[10] C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. S. Keerthi, and S. Sundararajan,
“A dual coordinate descent method for large-scale linear SVM,” in
ICML, 2008.

[11] H.-F. Yu, F.-L. Huang, and C.-J. Lin, “Dual coordinate descent methods
for logistic regression and maximum entropy models,” MLJ, vol. 85, pp.
41–75, 2011.


	Matrix-vector Multiplications in Newton Methods for Logistic Regression
	Newton and Truncated Newton Methods
	Line Search Procedure
	Trust Region Methods
	Computational Cost

	Detailed Analysis on Implementation using OpenMP
	Relations with Asynchronous Coordinate Descent Methods

	References

