
Supplementary materials for "Parallel Dual Coordinate
Descent Method for Large-scale Linear Classification in

Multi-core Environments"

Wei-Lin Chiang
Dept. of Computer Science

National Taiwan Univ., Taiwan
b02902056@ntu.edu.tw

Mu-Chu Lee
Dept. of Computer Science

National Taiwan Univ., Taiwan
b01902082@ntu.edu.tw

Chih-Jen Lin
Dept. of Computer Science

National Taiwan Univ., Taiwan
cjlin@csie.ntu.edu.tw

I. PROOFS
Following [1], we will apply some results proved in [4],

which studies CD methods for problems in the following
form:

min
α

f(α)

subject to Li ≤ αi ≤ Ui, (I.1)

where

f(α) ≡ g(Eα) + bTα,

f(·) and g(·) are proper closed functions, E is a constant
matrix, and Li ∈ [−∞,∞), Ui ∈ (−∞,∞] are lower/upper
bounds. It has been checked in [1] that l1 and l2 loss SVM
are in the form of (I.1) and satisfy additional assumptions
needed in [4].

We introduce an important class of gradient-based scheme
for CD’s variable selection: the Gauss-Southwell rule. It
plays an important role in our proof. The rule requires that
at a CD step the variable i selected for update satisfies the
following condition:

|di| ≥ βmax
j
|dj |, (I.2)

where

dj = min(max(αj −∇jf(α), 0), U)− αj ,

and β is a fixed constant in the interval (0, 1].

I.1 Proof of Theorem 1
Assume the result in Theorem 1 is wrong. Based on the

use of a variable t̄ to check the number of updates per outer
iteration, we know that if the algorithm does not terminate,
at lease one αi is updated per outer iteration. Therefore,
line 15 of Algorithm 4 to change α is conducted infinitely
many times. Let us collect all these α iterates to form an
infinite sequence {αk}. If our variable selection for each CD
update satisfies the Gauss-Southwell rule, then Lemma 4.2
of [4] implies that

lim
k→∞

αk − P [αk −∇f(αk)] = 0,

where P [·] is the projection operator defined as

P [αi] = min(max(αi, 0), U).

Then there exists k̄ such that

‖αk − P [αk −∇f(αk)]‖∞ < ε̄min(min
j
Q̄jj , 1), ∀k ≥ k̄.

(I.3)
Note that minj Q̄jj > 0 because we have mentioned in Sec-
tion 2.1 that instances causing Q̄jj = 0 can be easily re-
moved before the optimization process.

We will prove that if an index i is updated at αk, then

|αk
i − P [αk

i −
∇if(αk)

Q̄ii
]| < ε̄. (I.4)

This inequality is important because it violates the condition
at line 14 of Algorithm 4. We will use it to obtain the
contradiction. First, if

0 ≤ αk
i −∇if(αk) ≤ U, (I.5)

then

|αk
i − P [αk

i −
∇if(αk)

Q̄ii
]|

≤|∇if(αk)

Q̄ii
| = |α

k
i − P [αk

i −∇if(αk)]|
Q̄ii

< ε̄,

(I.6)

where the first inequality is from the property of the pro-
jection operator, the equality is from (I.5), and the last in-
equality is from (I.3). Second, if

αk
i −∇if(αk) < 0,

then with Q̄ii > 0 and (I.3)

|αk
i − P [αk

i −
∇if(αk)

Q̄ii
]|

≤|αk
i | = |αk

i − P [αk
i −∇if(αk)]| < ε̄.

(I.7)

The situation for

αk
i −∇if(αk) > U

is similar. Therefore we have (I.4). However, (I.4) violates
our condition to update αk

i . Thus our assumption is wrong
and the algorithm should terminate after a finite number of
steps.

It remains to prove that our variable selection follows the
Gauss-Southwell rule. Because α is in the following compact
set,1

{α | f(α) ≤ f(initial α),α is feasible}, (I.8)

1See a proof in, for example [1, Section 7.1].

there exists a constant S such that for all α in the set defined
in (I.8),

max
j
|αj − P [αj −∇jf(α)]| ≤ S.

Let

β =
ε̄min(1,minj Q̄jj)

S
. (I.9)

Then we have that at any iteration k, the selected index i
satisfies

|αk
i − P [αk

i −∇if(αk)]|

≥min(1,min
j
Q̄jj)(α

k
i − P [αk

i −
∇if(αk)

Q̄ii
])

≥min(1,min
j
Q̄jj)ε̄

=βS

≥βmax
j
|αk

j − P [αk
j −∇jf(αk)]|.

The first inequality comes from properties of the projection
operator; see how we derive the first inequality in (I.6) and
(I.7). The second inequality is from how we decided if an
element should be updated or not, while the last is from
(I.9). Therefore, our selection follows the Gauss-Southwell
rule.

I.2 Proof of Theorem 2
Assume the result is wrong. Because we have shown in

Section I.1 that {αεk,ε̄k} is in a compact set, there is a con-
vergent sub-sequence {αεk,ε̄k}, k ∈ K such that

lim
k∈K,k→∞

αεk,ε̄k = ᾱ (I.10)

and

lim
k∈K,k→∞

wεk,ε̄k = w̄ =
∑l

j=1
ᾱjyjxj 6= w∗.

Before Algorithm 4 stops, at the last iteration, we have
the following intermediate vectors.

αk,1, . . . ,αk,T ,αεk,ε̄k ,

where αk,t corresponds to the α vector before the set B̄t is
handled. We will prove that

lim
k∈K,k→∞

αk,1 = · · · = lim
k∈K,k→∞

αk,T

= lim
k∈K,k→∞

αεk,ε̄k = ᾱ.
(I.11)

Consider αk,t and αk,t+1. Between these two vectors ele-
ments in B̄t may be updated. We can further consider the
following iterates

αk,t,1, . . . ,αk,t,|B̄t|. (I.12)

Because only elements in the selected subset B ⊂ B̄t are
actually considered for update, many adjacent ones in (I.12)
are the same. Regardless of whether αk,t,s = αk,t,s+1 or
not, from Lemma 2 in Section 7.4 of [1],

f(αk,t,s)− f(αk,t,s+1) ≥ 1

2
Q̄ii‖αk,t,s −αk,t,s+1‖

≥ 1

2
min
j
Q̄jj‖αk,t,s −αk,t,s+1‖,

where xi is assumed to be the instance considered at αk,t,s.
Because our setting ensures that the function value is mono-
tonically decreasing and f(α) is lower-bounded, we have
that f(αεk,ε̄k) as well as f(αk,t,s), ∀s globally converge.
Therefore,

lim
k∈K,k→∞

f(αk,t,s)− f(αk,t,s+1) = 0

= lim
k∈K,k→∞

1

2
min
j
Q̄jj‖αk,t,s −αk,t,s+1‖.

Note that we have explained in Section 2.1 that minj Q̄jj >
0. Then the limits of all vectors in (I.12) when k ∈ K, k →∞
are all the same. Therefore,

lim
k∈K,k→∞

αk,t = lim
k∈K,k→∞

αk,t+1.

By similar arguments, we have (I.11).
When Algorithm 4 stops, we see that either

|∇P
i f(αk,t)| ≤ εk, ∀t = 1, . . . , T,∀i ∈ B̄t (I.13)

or

αk,1 = · · · = αk,T = αεk,ε̄k and{
|∇P

i f(αεk,ε̄k)| ≤ δεk, or

α
εk,ε̄k
i − P

[
α
εk,ε̄k
i −∇if(αεk,ε̄k)

]
≤ ε̄k,

∀i = 1, . . . , l.

(I.14)

The first case corresponds to the situation when M ≤ ε
holds at line 18, while the second situation means that t̄ = 0
occurs (either B is empty in selecting elements from B̄ at
line 10 or |d| < ε̄ at line 14.)

Because ᾱ is not optimal, from the optimality condition
there exists an index i such that

∇if(ᾱ) < 0 if ᾱi = 0, or

∇if(ᾱ) > 0 if ᾱi = U, or

∇if(ᾱ) 6= 0 if 0 < ᾱi < U.

(I.15)

From (16), the continuity of ∇f(α), and (I.11), there exists
k̄ such that for all k ∈ K, k ≥ k̄, ∀t = 1, . . . , T

Case 1 of (I.15):

0 ≤ αk,t
i + εk < U,∇if(αk,t) < −εk.

Case 2 of (I.15):

0 < αk,t
i − εk ≤ U,∇if(αk,t) > εk.

Case 3 of (I.15):

εk < αk,t
i < U − εk, |∇if(αk,t)| > εk.

From these three cases and our setting of εk > ε̄k, we have

|∇P
i f(αk,t)| > εk,∀t = 1, . . . , T,

and

αk,t
i − P

[
αk,t
i −∇if(αk,t)

]
> εk > ε̄k,∀t = 1, . . . , T.

This clearly violates (I.13) and (I.14). Therefore, our as-
sumption is wrong, and hence {wεk,ε̄k} converges to the
optimal w∗.

II. ADDITIONAL ANALYSIS OF ALGORITHM 4

II.1 Scheduling of the Parallel For Loop
A parallel for loop must assign tasks to different threads.

For example, OpenMP may statically dispatch tasks to threads
or dynamically assign tasks according to the load of each
thread. The setting, often referred to as the scheduling of
the loop, may affect the computational speed; see, for ex-
ample, a study in [3, Supplement]. We applied different
OpenMP scheduling schemes for the operation at line 8 of
Algorithm 4. Results show that the running time is about
the same. The explanation is that the for loop being par-
allelized is a light task: Because B̄ is relatively small (no
more than a few thousands), it is difficult to improve the
utilization of cores by improving the load balance.

III. DETAILED RESULTS OF MINI-BATCH
CD

In Figure III, we compare mini-batch CD using atomic
and reduce operations for updating w (see Section 2.2.1)
with LIBLINEAR. The parameter βb in Algorithm 2 for mini-
batch CD is set to be

βb = 1 +
(b− 1)(lσ2 − 1)

l − 1
, (III.1)

where b is the batch size, l is the number of instances, and
σ2 is the spectral norm of the normalized data matrix

X̄ = [x̄1, . . . , x̄l],

in which each x̄i = xi/‖xi‖.2 We implemented the mini-
batch CD without the shrinking technique because the ex-
pected convergence proof in [5] is based on the randomness
of all instances. For a fair comparison, LIBLINEAR without
shrinking is used.

An important parameter to be decided is the size of B.
In (III.1), we can observe that |B| = b is strongly related
to βb, which is an important coefficient of the sub-problem
in Algorithm 2. If |B| is too large, then the CD update
in each iteration becomes more conservative, leading to a
slow convergence. In contrast, if |B| is too small, then the
overhead in parallelizing CD updates becomes significant, a
situation that may lead to a worse scalability.

We consider three sizes of |B|: 16, 64 and 256. The re-
sults show that for the dense data covtype, a small |B| leads
to no scalability for both implementations. Further, the
atomic operations significantly slow down the program in
all sizes of B. For the sparse data rcv1, the opposite re-
sult is observed: the one implementing the reduce operation
is worse because each dense array ûp defined in (9) han-
dles only several sparse instances. For the comparison with
the single-core LIBLINEAR without the shrinking technique,
clearly the mini-batch method is slower. This result leads
to our decision in Section 5.3 for not including mini-bach
CD in the main comparison. The experimental result also
confirms our assessment in Section 2.2.1, in which we point
out the difficulty to update some w components together in
a multi-core environment.

IV. DETAILS OF THE SHRINKING IMPLE-
MENTATION

2The computational time presented in Figure III does not
include the calculation of σ2, which is quite time-consuming.

In Algorithm I we give details of implementing Algorithm 4
with the shrinking technique. We directly apply the setting
in [1], so Algorithm I is basically the combination of Algo-
rithm 4 in this work and Algorithm 3 in [1].

We mentioned in Section 3.1 that LIBLINEAR actually
uses

max
i
∇f(αk,i)−min

i
∇f(αk,i) < ε

as the stopping condition. We follow the same setting so at
line 32 the condition becomes M −m ≤ ε. In the future we
hope to change the dual CD in LIBLINEAR and the parallel
extension to use

max
i
|∇P

i f(αk,i)| < ε.

V. RESULTS WITHOUT APPLYING THE SHRINK-
ING TECHNIQUE

Under the same setting in Section 5.3, we compare asyn-
chronous CD, Algorithm 4, and LIBLINEAR without apply-
ing the shrinking technique.

However, some issues occur in asynchronous CD without
applying the shrinking technique because we found that the
implementation in [2] has very slow final convergence. In
[1, Section 3.1], it is noticed that a random permutation
of indices in the beginning of each outer iterations leads to
much faster convergence than the setting of using a fixed
order of CD updates. However, the experimental code in
[2] did not conduct the same procedure of random shuf-
fling as LIBLINEAR. Their setting is to split all instances
into P blocks, where P is the number of threads, and all
threads parallely permute indices within their associated
blocks. Therefore, elements in each block remain fixed through-
out iterations. To analyze the influence of the randomness,
we modified the experimental code in [2] to have the same
global index permutation as in LIBLINEAR. A compari-
son between the implementation in [2] and the new setting
is in Figure IV. We can observe that for almost all data,
asynchronous CD with a weaker randomness converges very
slowly in the later stage.

As a comparison, we check the situation when the shrink-
ing technique is used. Results are shown in Figure V. The
difference between the two settings is less significant than
that in Figure IV. The explanation is that the randomness is
improved by the shrinking technique. In LIBLINEAR as well
as the implementation in [2], they move shrunken elements
to the end of the index list. Therefore, when the shrinking
technique is applied, the order of instances may be changed
at each iteration, leading to a better randomness.

Based on the above analysis, for the comparison with Al-
gorithm 4 and LIBLINEAR without the shrinking technique
we consider the new asynchronous CD implementation that
permutes all indices in the beginning of each outer iteration.
Results are in Figures VI and VII for l1 and l2 losses, re-
spectively. We observe that the scalability of Algorithm 4
is better than that in Figure 1. The explanation is that
without the shrinking technique, many elements (e.g., those
that will eventually be bounded) have ∇P

i f(α) = 0. Then
the size of B is relatively smaller in comparison with the
size of B̄. Hence a better scalability is obtained. For asyn-
chronous CD, the convergence is improved in url-combined.
Our guess is that because many indices have ∇P

i f(α) = 0,
after the gradient value is calculated, the thread does not
need to update w. From the less frequent update of w, the

Algorithm I A parallel dual CD method in practice

1: Specify α and calculate w =
∑

j yjαjxj

2: Specify δ, ε, ε̄, initB̄,maxB̄
3: Let M̄ ←∞, m̄← −∞, A← {1, . . . , l}
4: nowB̄← initB̄
5: while true do
6: Let M ← −∞,m←∞, Ā← A, t̄← 0
7: while Ā 6= ∅ do
8: Choose B̄ ⊂ Ā with |B̄| = min(nowB̄, |Ā|)
9: Ā← Ā \ B̄

10: Calculate ∇fB̄(α) in parallel
11: B ← ∅
12: for i ∈ B̄ do
13: PG← 0; G← ∇if(α)
14: if (αi < C and G < 0) or (αi > 0 and G > 0) then
15: PG← G
16: else if (αi = 0 and G > M̄) or (αi = C and G < m̄) then
17: A← A \ {i}
18: M ← max(M,PG),m← min(m,PG)
19: if |PG| ≥ δε1 then
20: B ← B ∪ {i}
21: if |B| = 0 then
22: nowB̄← min(1.5× nowB̄,maxB̄)
23: else if |B| ≥ initB̄ then
24: nowB̄← nowB̄/2
25: for i ∈ B do
26: G← yiw

Txi − 1 +Diiαi

27: d← min(max(αi −G/Q̄ii, 0), U)− αi

28: if |d| ≥ ε̄ then
29: αi ← αi + d
30: w ← w + dyixi

31: t̄← t̄+ 1
32: if M −m ≤ ε1 or t̄ = 0 then
33: if A = {1, . . . , l} and ε1 ≤ ε then
34: break
35: else
36: A← {1, . . . , l}, M̄ ←∞, m̄← −∞
37: ε1 ← max(0.1ε1, ε)
38: if M ≤ 0 then
39: M̄ ←∞
40: else
41: M̄ ←M
42: if m ≥ 0 then
43: m̄← −∞
44: else
45: m̄← m

(a) rcv1 (b) yahoo-korea (c) yahoo-japan

(d) webspam (e) url-combined (f) KDD2010-b

(g) covtype (h) epsilon (i) HIGGS

Figure I: A comparison of Algorithm 4 with |B̄| = 64 and 256. In the legend, “fix” means that the adaptive
rule in Section 4.2 is not applied to update |B̄|. All other settings are the same as Figure 1. The l1 loss is
considered.

lag τ discussed in Section 2.2.2 is relatively small and may
become smaller and hence the desired conditions for the con-
vergence are easier satisfied. Unfortunately, asynchronous
CD still fails for covtype. In summary, when shrinking is
not applied, Algorithm 4 is competitive with asynchronous
CD and is still more robust.

VI. RESULTS OF USING DIFFERENT C VAL-
UES

In Section 5 we present results of C = 1. We wonder if
similar observations can still be made under other C values.
While users may experiment with different values, an im-
portant C value is the one that achieves the best validation
accuracy. Therefore, we conduct five-fold cross validation on
C ∈ {2−10, . . . , 210}. Then the best C is used for comparing
the training time. Results for l1 and l2 losses are respec-
tively represented in Figures VIII and IX. All other settings
are the same as those in Section 5. Results are generally
similar to those in Figures 1 and 2 because in many cases

the selected C is not very different from C = 1. However, we
roughly see that the problems become more difficult when C
is large (e.g., webspam, covtype, epsilon in Figure VIII and
webspam in Figure IX). It is known that the convergence
of dual CD is slower for such cases, but how scalability is
affected is an issue worth investigating.

VII. THE STOPPING CONDITION OF AL-
GORITHM I

To show the relationship between the training time and
the closeness to the optimal object value, we apply non-
stop settings for all approaches in Figures 1 and 2. For
Algorithm I (indicated as Algorithm 4 in the paper), we set
ε = 0 and initial ε1 = 0.1. Therefore, whenever M −m ≤ ε1

is satisfied, ε1 is reduced by a factor of 10. For asynchronous
CD and LIBLINEAR, we initially set the stopping tolerance
ε to be 0.1. When M −m ≤ ε is satisfied, we keep reducing
ε by a factor of 10.

In the practical use, we can not apply a non-stop setting.

(a) rcv1 (b) yahoo-korea (c) yahoo-japan

(d) webspam (e) url-combined (f) KDD2010-b

(g) covtype (h) epsilon (i) HIGGS

Figure II: A comparison of Algorithm 4 with |B̄| = 256 and 1024. In the legend, “fix” means that the adaptive
rule in Section 4.2 is not applied to update |B̄|. All other settings are the same as Figure 1. The l1 loss is
considered.

For Algorithm I, this means that a stopping condition un-
der a given ε > 0 is used. It is important to check if the
algorithm performs well. In this section, we give some de-
tailed analysis and study the behavior under different stop-
ping conditions. Finally, we make an improved version of
Algorithm I regarding the issues when stopping conditions
are considered.

In Section 4.3, we introduced a variable ε1 to prevent Al-
gorithm I from being ε-dependent. However, ε is still a
lower bound of ε1 (see line 37 in Algorithm I). Therefore,
the behavior of Algorithm I is still affected by different ε.
To see the effect of ε, we run Algorithm I under ε = 0.1
and 0.01. Results are shown in Figures XI and XII respec-
tively. Clearly, we can observe that Algorithm I converges
slower in some periods, particularly in the final stage (e.g.,
some almost horizontal segments in the end of the curves of
“Alg I-1” for problems rcv1, webspam, and covtype). There
are two possible reasons. First, resetting the active set A
is a time-consuming process because all gradient elements

including those which should not be checked are calculated
in the next iteration. In Algorithm I, we reset it whenever
ε1 is reduced (see line 36); this may be too frequent. Next,
we describe another reason. Because of the setting

ε1 ← max(0.1ε1, ε),

in the final stage of the algorithm, we may have

ε1 = ε.

Then with shrinking, the condition

M −m ≤ ε1

may be quickly satisfied after only very few α elements are
updated. This process may repeat several times until both
M −m ≤ ε and A = {1, . . . , l} are true.

We revise the if statement in lines 40-45 of Algorithm I
to prevent the frequent reset of the active set A, while still
make the decrease of ε1 possible. To begin, we make the
lower bound of ε1 be smaller than ε by using 0.01ε. Second,

(a) rcv1 (|B| = 16) (b) rcv1 (|B| = 64) (c) rcv1 (|B| = 256)

(d) covtype (|B| = 16) (e) covtype (|B| = 64) (f) covtype (|B| = 256)

Figure III: A comparison between single-core LIBLINEAR and multi-core mini-batch CD. The mini-batch CD
implementations by using atomic and reduce operations are respectively denoted as “mba” and “mbr.” We
present running time in seconds (x-axis) versus the relative difference to the optimal objective value (y-
axis, log-scaled). All methods are implemented without the shrinking technique. We use 1 and 8 cores for
mini-batch CD.

the reset of the active set A occurs only if

M −m ≤ ε

holds rather than when ε1 is decreased. Details are in the
following statements.

1: Specify ε1 = 0.1
2: Specify εmin = min(0.01ε, ε1)
3: // skipped
4: if M −m ≤ ε1 or t̄ = 0 then
5: ε1 ← max(0.1ε1, εmin)
6: if M −m ≤ ε then
7: if A = {1, . . . , l} and ε1 ≤ ε then
8: break
9: else

10: A← {1, . . . , l}, M̄ ←∞, m̄← −∞

(a) epsilon (b) webspam

Figure X: A comparison between Algorithm I and
the new setting. We set ε = 0.01 and the l1 loss is
used.

In Figure X, we show the results of applying new settings.
We can observe that the less frequent reactivation of the set
A does not affect the convergence speed. However, the slow
convergence in the final stage may still be observed. The
reason is that when

M −m ≤ ε

holds, the situation is similar to when ε1 = ε occurs in
the previous setting. Our earlier discussion has explained
that slow convergence may happen. To improve the final
convergence, we further reduce the frequency of reactivating
the set A by modifying line 6 to be

M −m ≤ ρε, (VII.1)

where ρ < 1 but is close to 1. The reason behind this setting
is that

M −m ≤ ε (VII.2)

is a condition applied on a smaller problem of only variables
in A. It is easier to hold than a condition on all variables.
When (VII.2) is satisfied, we may not be that close to the
optimal solution yet and hence the reactivation of the set A
is not necessary. On the other hand, if the shrinking proce-
dure does not remove any elements, our new setting will lead
to longer training time. Therefore, the parameter ρ should
be only slightly smaller than 1. In Figures XI and XII, we
present the result of using ρ = 0.9. Clearly, we can see that
in the final stage, the training time is significantly improved
for many data sets. Another observation is that when the
number of cores is increased from one to eight, the improve-
ment becomes less dramatic. The reason is that the slow

(a) rcv1 (b) yahoo-korea (c) yahoo-japan

(d) webspam (e) url-combined (f) KDD2010-b

(g) covtype (h) epsilon (i) HIGGS

Figure IV: A comparison between two asynchronous dual CD implementations without applying the shrinking
technique. “permutation” is our implementation that randomly permutes the indices in the beginning of each
outer iteration, while the other is the experimental code from [2]. The l1 loss is considered.

convergence is from computing the gradient after resetting
the set A. This calculation is parallelized in Algorithm I, so
the issue of slow convergence becomes less significant.

We have also checked the situation when l2-loss is used.
Results by using ε = 0.1 and 0.01 are respectively presented
in Figures XIII and XIV. The improvement is less significant.
The reason might be that shrinking is less effective for l2-loss
SVM because αi is now unbounded above.

References
[1] C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. S. Keerthi, and

S. Sundararajan. A dual coordinate descent method for
large-scale linear SVM. In ICML, 2008.

[2] C.-J. Hsieh, H.-F. Yu, and I. S. Dhillon. PASSCoDe:
Parallel asynchronous stochastic dual coordinate de-
scent. In ICML, 2015.

[3] M.-C. Lee, W.-L. Chiang, and C.-J. Lin. Fast matrix-

vector multiplications for large-scale logistic regression
on shared-memory systems. In ICDM, 2015.

[4] Z.-Q. Luo and P. Tseng. On the convergence of coordi-
nate descent method for convex differentiable minimiza-
tion. J. Optim. Theory Appl., 72(1):7–35, 1992.

[5] M. Takáč, P. Richtárik, and N. Srebro. Distributed mini-
batch SDCA, 2015. arXiv.

(a) rcv1 (b) yahoo-korea (c) yahoo-japan

(d) webspam (e) url-combined (f) KDD2010-b

(g) covtype (h) epsilon (i) HIGGS

Figure V: A comparison between two asynchronous dual CD implementations with applying the shrinking
technique. “permutation” is our implementation that randomly permutes the indices in the beginning of each
outer iteration, while the other is the experimental code from [2]. The l1 loss is considered.

(a) rcv1 (b) yahoo-korea (c) yahoo-japan

(d) webspam (e) url-combined (f) KDD2010-b

(g) covtype (h) epsilon (i) HIGGS

Figure VI: A comparison of dual CD methods without applying the shrinking technique. All settings are the
same as Figure 1. The l1 loss is considered.

(a) rcv1 (b) yahoo-korea (c) yahoo-japan

(d) webspam (e) url-combined (f) KDD2010-b

(g) covtype (h) epsilon (i) HIGGS

Figure VII: A comparison of dual CD methods without applying the shrinking technique. All settings are
the same as Figure 1. The l2 loss is considered.

(a) rcv1 (C = 2) (b) yahoo-korea (C = 8) (c) yahoo-japan (C = 2)

(d) webspam (C = 32) (e) url-combined (C = 2) (f) KDD2010-b (C = 0.25)

(g) covtype (C = 16) (h) epsilon (C = 16) (i) HIGGS (C = 0.5)

Figure VIII: A comparison of different parallel dual CD methods. All settings are the same as Figure 1
except that the best C selected from cross validation is used; see the C value shown next to the data name.
The l1 loss is used.

(a) rcv1 (C = 0.5) (b) yahoo-korea (C = 4) (c) yahoo-japan (C = 0.5)

(d) webspam (C = 32) (e) url-combined (C = 2) (f) KDD2010-b (C = 0.03125)

(g) covtype (C = 0.015625) (h) epsilon (C = 4) (i) HIGGS (C = 0.5)

Figure IX: A comparison of different parallel dual CD methods. All settings are the same as Figure 2 except
that the best C selected from cross validation is used; see the C value shown next to the data name. The l2
loss is used.

(a) rcv1 (b) yahoo-korea (c) yahoo-japan

(d) webspam (e) url-combined (f) KDD2010-b

(g) covtype (h) epsilon (i) HIGGS

Figure XI: A comparison between Algorithm I and the new setting (VII.1) with ρ = 0.9. We set the stopping
tolerance ε = 0.1. The l1 loss is used.

(a) rcv1 (b) yahoo-korea (c) yahoo-japan

(d) webspam (e) url-combined (f) KDD2010-b

(g) covtype (h) epsilon (i) HIGGS

Figure XII: A comparison between Algorithm I and the new setting (VII.1) with ρ = 0.9. We set the stopping
tolerance ε = 0.01. The l1 loss is used.

(a) rcv1 (b) yahoo-korea (c) yahoo-japan

(d) webspam (e) url-combined (f) KDD2010-b

(g) covtype (h) epsilon (i) HIGGS

Figure XIII: A comparison between Algorithm I and the new setting (VII.1) with ρ = 0.9. We set the stopping
tolerance ε = 0.1. The l2 loss is used.

(a) rcv1 (b) yahoo-korea (c) yahoo-japan

(d) webspam (e) url-combined (f) KDD2010-b

(g) covtype (h) epsilon (i) HIGGS

Figure XIV: A comparison between Algorithm I and the new setting (VII.1) with ρ = 0.9. We set the stopping
tolerance ε = 0.01. The l2 loss is used.

	Proofs
	Proof of Theorem 1
	Proof of Theorem 2

	Additional Analysis of Algorithm 4
	Scheduling of the Parallel For Loop

	Detailed Results of Mini-batch CD
	Details of the Shrinking Implementation
	Results without Applying the Shrinking Technique
	Results of Using Different C Values
	The stopping condition of Algorithm I

