Optimization and Machine Learning

Midterm 2

December 8, 2010

- Please give details of your calculation. A direct answer without explanation is not counted.
- Your answers must be in English.
- You can bring notes and the textbook. Other books or electronic devices are not allowed.

Problem 1 (20%)

Consider the function

$$f(x_1, x_2) = (x_1 + x_2^2)^2$$

At the point $\boldsymbol{x}_k = [1, 0]^T$, find

- (a) the gradient descent direction
- (b) \boldsymbol{x}_{k+1} by exact line search on the gradient descent direction
- (c) the Newton direction
- (d) \boldsymbol{x}_{k+1} by exact line search on the Newton direction

Problem 2 (40%)

Consider the following quadratic function:

$$f(\boldsymbol{x}) = \frac{1}{2}\boldsymbol{x}^{T}Q\boldsymbol{x} - \boldsymbol{b}^{T}\boldsymbol{x}$$

Assume Q is symmetric and positive definite.

(a) What's the gradient of $f(\boldsymbol{x})$?

(b) Derive x_{k+1} by the gradient descent method with the exact line search. That is, represent x_{k+1} by a form of using x_k

(c) Define

$$\|\boldsymbol{x}\|_Q^2 = \boldsymbol{x}^T Q \boldsymbol{x}.$$

Do we have

$$\frac{1}{2} \| \boldsymbol{x} - \boldsymbol{x}^* \|_Q^2 = f(\boldsymbol{x}) - f(\boldsymbol{x}^*)?$$

We assume \boldsymbol{x} is any vector and \boldsymbol{x}^* is the minimum of $f(\boldsymbol{x})$. Prove or disprove the result.

(d) Represent $\|\boldsymbol{x}_{k+1} - \boldsymbol{x}^*\|_Q^2 = C_k \|\boldsymbol{x}_k - \boldsymbol{x}^*\|_Q^2$, Where C_k is a scalar related to \boldsymbol{x}_k . Hint: Prove and use the following property:

$$\|\boldsymbol{x}_k - \boldsymbol{x}^*\|_Q^2 = \nabla f(\boldsymbol{x}_k)^T Q^{-1} \nabla f(\boldsymbol{x}_k)$$

Problem 3 (40%)

Consider the following optimization problem:

$$\min_{\boldsymbol{w},\boldsymbol{\xi},\rho,b} \qquad \frac{1}{2}\boldsymbol{w}^{T}\boldsymbol{w} - \nu\rho + \frac{1}{l}\sum_{i=1}^{l}\xi_{i}$$

subject to $y_{i}(\boldsymbol{w}^{T}\boldsymbol{x}_{i} + b) \geq \rho - \xi_{i}$
 $\xi_{i} \geq 0, \ \rho \geq 0$

Note that $\nu \in [0, 1]$ is a positive constant.

The main difference from standard SVM is that a new non-negative variable ρ is introduced.

- (a) Derive the dual problem.
- (b) Show that the primal and dual problems have the same KKT conditions.
- (c) If α_i is the Lagrangian multiplier of

$$y_i(\boldsymbol{w}^T\boldsymbol{x}_i+b) \ge \rho - \xi_i,$$

Can you simplify the dual to have only one variable α ?