Optimization and Machine Learning Solution

Midterm 1

November 10, 2010

- Please give details of your calculation. A direct answer without explanation is not counted.
- Your answers must be in English.
- You can bring notes and the textbook. Other books or electronic devices are not allowed.

Problem 1 (5%)

If C_1 and C_2 are convex sets in \Re^n and we define

 $C_1 + C_2 = \{x_1 + x_2 | x_1 \in C_1, x_2 \in C_2\},\$

then is $C_1 + C_2$ a convex set?

Problem 2 (15%)

Consider $f(x) = e^x, x \in \Re$.

- (a) What's the conjugate function $f^*(y)$ of f(x)?
- (b) What's the conjugate function of $f^*(y)$?

Problem 3 (20%)

Consider the following problem:

$$\min_{x_1, x_2} \qquad x_1^2 - x_1 x_2 + 2x_2^2 - 4x_1 - 5x_2$$

subject to $x_1 + 2x_2 \le 6$
 $x_1 \le 2$
 $x_1, x_2 \ge 0.$

- (a) Is this a convex optimization problem?
- (b) What's the KKT condition?
- (c) Find the solution of this optimization problem.

Problem 4 (20%)

Consider the following problem

 $\begin{array}{ll} \min & x_1^2 + x_2^2 \\ \mbox{subject to} & x_1 + x_2 - 4 \geq 0 \\ & x_1, x_2 \geq 0 \end{array}$

- (a) What's the optimal solution?
- (b) Derive the dual problem.
- (c) Solve the dual problem.
- (d) Is there any gap between primal and dual optimal values?

Problem 5 (20%)

Let Q be an $n \times n$ symmetric and positive definite matrix and p be any $n \times 1$ vector. Consider the following two optimization problems:

$$\min_{\boldsymbol{x}} \qquad \frac{1}{2} \boldsymbol{x}^T Q \boldsymbol{x} - \boldsymbol{p}^T \boldsymbol{x}$$

subject to $\boldsymbol{x} \succeq 0$ (1)

$$\min_{\boldsymbol{x}} \qquad \frac{1}{2} \boldsymbol{x}^T Q \boldsymbol{x}$$

subject to $Q \boldsymbol{x} \succeq \boldsymbol{p}$ (2)

 $(\succeq \text{ means component wise } \geq)$

Do these two problems have the same optimal solution or not?

Problem 6 (20%)

Consider a function of n variables,

$$f(\boldsymbol{p}) = -\sum_{i,j:i\neq j} n_{ij} (\log p_i - \log(p_i + p_j)),$$

where n_{ij} are non-negative constants and $p_i > 0, \forall i$.

- (a) Is this function convex? If yes, give a proof. If not, give a counter example.
- (b) If we replace p_i with e^{θ_i} (since $p_i > 0$) and obtain the following function

$$g(\boldsymbol{\theta}) = -\sum_{i,j:i\neq j} n_{ij}(\theta_i - \log(e^{\theta_i} + e^{\theta_j})),$$

is this function convex or not?