
JMLR: Workshop and Conference Proceedings 1: 1-16 KDD Cup 2010

Feature Engineering and Classifier Ensemble
for KDD Cup 2010

Hsiang-Fu Yu, Hung-Yi Lo, Hsun-Ping Hsieh, Jing-Kai Lou, Todd G. McKenzie,
Jung-Wei Chou, Po-Han Chung, Chia-Hua Ho, Chun-Fu Chang, Yin-Hsuan
Wei, Jui-Yu Weng, En-Syu Yan, Che-Wei Chang, Tsung-Ting Kuo, Yi-Chen
Lo, Po Tzu Chang, Chieh Po, Chien-Yuan Wang, Yi-Hung Huang, Chen-Wei
Hung, Yu-Xun Ruan, Yu-Shi Lin, Shou-de Lin, Hsuan-Tien Lin, Chih-Jen Lin
Department of Computer Science and Information Engineering, National Taiwan University

Taipei 106, Taiwan

Editor:

Abstract

KDD Cup 2010 is an educational data mining competition. Participants are asked to
learn a model from students’ past behavior and then predict their future performance.
At National Taiwan University, we organized a course for this competition. Most student
sub-teams expanded features by various binarization and discretization techniques. The
resulting sparse feature sets were trained by logistic regression (using LIBLINEAR). One
sub-team considered condensed features using simple statistical techniques and applied
Random Forest (through Weka) for training. Initial development was conducted on an
internal split of training data for training and validation. We identified some useful feature
combinations to improve performance. For the final submission, we combined results of
student sub-teams by regularized linear regression. Our team is the first prize winner of
both tracks (all teams and student teams) of KDD Cup 2010.

Keywords: educational data mining, feature engineering, classifier ensemble, linear clas-
sification, logistic regression, Random Forest

1. Introduction

KDD Cup 2010 is an educational data mining competition in which participants are charged
with predicting student algebraic problem performance given information regarding past
performance. Specifically, participants were provided with summaries of the logs of student
interaction with intelligent tutoring systems. Two datasets are available: algebra 2008 2009
and bridge to algebra 2008 2009. In the rest of this paper, we refer to them as A89 and
B89, respectively. Each dataset contains logs for a large number of interaction steps. There
are 8,918,055 steps in A89, while there are 20,012,499 steps in B89. Some interaction
log fields are included in both the training and testing sets, such as student ID, problem
hierarchy including step name, problem name, unit name, section name, as well as knowledge
components (KC) which were used in the problem and the number of times a problem has
been viewed. However, there are some log fields which are only available in the training set:
whether the student was correct on the first attempt for this step (CFA), number of hints
requested (hint) and step duration information.

c©2010 .



The competition regards CFA, which could be 0 (i.e., incorrect on the first attempt)
or 1, as the label in the classification task. For each dataset, a training set with known
CFA is available to participants, but a testing set of unknown CFA is left for evaluation.
Subsequently we call the training and testing set T and T̃ , respectively. The evaluation
criterion used is the root mean squared error (RMSE). During the competition, participants
submitted prediction results on the testing set to a web server, where the RMSE calculated
based on a small subset of the testing data is publicly reported. This web page of displaying
participants’ results is called the “Leaderboard.”

At National Taiwan University, we organized a course for KDD Cup 2010. Our members
include three instructors, two TAs, 19 students and one RA. The students were split into six
sub-teams. Every week, each sub-team presented their progress and participated in discus-
sion with other sub-teams. The TAs helped to build an internal competition environment
such that each sub-team could try their ideas before submission to the external competition
website.

In the beginning we suspected that this year’s competition would be very different from
several past KDD Cups. Domain knowledge seems to be quite important for educational
systems. Indeed, Educational Data Mining is an entire research field in itself with specialized
models and techniques to address the unique types of data that are collected in educational
settings.1

Contrary to several past KDD Cups, the meanings of the dataset entries were made
available this year. This means that feature engineering is able to play a vital role. Also,
temporal information is important as students are learning during the tutoring process of
which the logs are a record. This property seems to differentiate the task from traditional
classification, which assumes data independence. Interestingly, after exploring some tempo-
ral approaches such as Bayesian networks, we found that it was easier to incorporate useful
information into a vector-space model and then train a traditional classifier. Therefore,
our focus was shifted to identifying useful features by taking domain knowledge, temporal
information, and other concepts into consideration.

The following sections describe our solution in detail. The architecture of our approach
is outlined in Section 2. Sections 3 and 4 focus on diversified feature engineering. Ensemble
techniques are described in Section 5. Section 6 shows our experimental results with some
additional observations in Section 7.

2. Initial Settings and Our Approach

This section discusses the use of a validation set and introduces our solution architecture.

2.1 Validation Set Generation

Due to the nature of competition, participants tend to optimize the scores on the leader-
board. However, overfitting leaderboard results is undesired as the leaderboard shows the
RMSE of only a small portion of the testing set. To avoid overfitting the leaderboard, our
sub-teams focused on our internal competition environment, in which validation sets were

1. Major educational data mining conferences include, for example, International Conference on Intelligent
Tutoring Systems and International Conference on Educational Data Mining.

2



Feature engineering and classifier ensemble for KDD Cup 2010

A unit of problems

problem 1 ∈ V

problem 2 ∈ V
...

last problem ∈ Ṽ

Figure 1: Generation of the validation set Ṽ .
For each unit of problems, the last problem
was used for validation, while all others were
for training.

A89 B89

Internal training (V ) 8,407,752 19,264,097

Internal validation (Ṽ ) 510,303 748,402
External training (T ) 8,918,055 20,012,499

External testing (T̃ ) 508,913 756,387

Table 1: Number of steps in internal and
external datasets

provided by splitting the training set (T ) into two parts: an internal training set (V ) and
an internal testing set (Ṽ ). Then, T and T̃ are referred to as external training and testing
sets, respectively.

Care must be taken when choosing a validation technique, as some are only appropriate
when certain criteria are met. For example, cross validation (CV) is a common technique
applied in document classification problems. However, for this competition, simple CV is not
a suitable approach due to the temporal property of the data. To generate a validation pair
(V, Ṽ ) with a distribution similar to the distribution of the challenge training and testing
pair (T, T̃ ), we set the last problem in each unit in T as Ṽ , while calling the remaining
part V . Figure 1 shows the partition of a unit of data. The procedure is same as the
generation of (T, T̃ ), thus a similar distribution as achieved. Sizes of validation sets for A89
and B89 are given in Table 1.

2.2 Architecture of Our Solution

Because of the temporal relationship between data points, initially we tried methods such
as Bayesian networks. However, we found that it was easier to incorporate information
into independent vectors of data instances and train a traditional classifier. Therefore, the
main task was to extract useful features and apply suitable classifiers. Our approach can be
split into the following steps. First, each student sub-team extracted different features from
the datasets according to their analysis and interpretation of the data, and chose different
classifiers for learning based on the internal set. The feature engineering approaches can be
categorized into two types: sparse feature sets generated by binarization and discretization
techniques, and condensed feature sets using simple statistics on the data. Finally, we
applied ensemble methods on the testing results from sub-teams. The procedure is shown
in Figure 2. The detailed description of each step is presented in the following sections.

3. Feature Engineering: Sparse Features

We describe our approach of transforming logs of student interaction to sparse feature
vectors and applying linear classifiers.

3



Problem

Sparse
Features

Condensed
Features

Ensemble

Figure 2: Solution architecture of our approach

3.1 Basic Sparse Features (Our Baseline Setting)

Some basic yet important features considered in our early experiments can be categorized
into two types: student name, unit name, section name, problem name, step name and KC are
categorical features, while problem view and opportunity are numerical features.2

We chose to expand a categorical feature into a set of binary features. For example,
there are 3,310 students in A89. The feature vector then contains 3,310 binary features to
indicate the student who finished the step.

For numerical features, due to large value ranges, we applied various scaling methods.
One simple way is to linearly scale each numerical feature to the range [0, 1]. We have also
checked nonlinear scaling methods, where for generating Figure 3 later in the experiment,
we considered log(1 + x).

Using the above procedure, the resulting numbers of features for A89 and B89 are about
1 million and 200 thousand, respectively. Owing to the categorical expansion, each instance
contains very few non-zero elements, yielding a sparse dataset. Though five out of six stu-
dent sub-teams took this approach of feature expansion, their own baseline implementations
were slightly different from the one described above. They may use only a subset of features
or apply different scaling methods for numerical features.

3.2 Feature Combination

Due to the large training size, nonlinear classifiers like kernel training methods are perhaps
not an ideal solution due to training time restrictions. Alternatively, linear classifiers can
be used; see details in Section 3.5. However, linear classifiers are not capable of exploit-
ing possible feature dependence. Following the polynomial mapping in kernel methods or
bigram/trigram in natural language processing, we can use feature combinations to indi-
cate these relationships. Because all feature meanings are available, we are able to manually
identify some useful pairs of features. For example, hierarchical information can be modeled
by indicating the occurrences of the following pairs: (student name, unit name), (unit name,
section name), (section name, problem name) and (problem name, step name). In addition to
two-feature combinations, we have also explored combinations of higher-order features. Re-

2. These two features have integer values, so they can also be considered categorical.

4



Feature engineering and classifier ensemble for KDD Cup 2010

sults in the experiment section show that feature combinations effectively improve RMSE.
We released two datasets using feature combinations at the LIBSVM dataset repository.3

3.3 Temporal Context as Features

Because learning is a process of skill-improving over time, temporal information should
be taken into consideration. There are some well-established techniques, utilizing a quite
different data model than traditional classification problems, to model student latent at-
tributes such as knowledge tracing and performance factor analysis (Gong et al., 2010). We
considered a simple and common approach to embed temporal context into feature vectors.
For each step, step name and KC values from the previous few steps were added as features.

3.4 Other Ways for Generating Features

During the competition, we tried many other ways to generate features. Here we describe
some of these methods.

In our baseline setting in Section 3.1, KCs are obtained by splitting the KC string by
“∼∼” following the suggestion at the “Data Format” page on the competition website.
Then binary features are used to indicate the KCs associated with each step. However, this
setting results in many similar KCs. For example, “Write expression, positive one slope” and
“Write expression, positive slope” indicate similar concepts, but are considered different.
To remedy this problem, we tokenized KC strings and used each token as a binary feature.
For example a KC “Write expression, positive slope” will cause four features, “Write,”
“expression,” “positive” and “slope” to have true values. Our experiences indicated that
this method for generating KC features is very useful for the dataset A89. We also used
techniques such as regular expression matching to parse knowledge components, but did
not reach a setting clearly better than the one used for the baseline.

For problem name and step name, we tried to group similar names together. For example,
two step names “−18 + x = 15” and “ 5 + x = −39” differ only in their numbers. By
replacing numbers with a symbol, they become the same string and are then considered to
have the same step name. This simple approach effectively reduced the number of features
without deteriorating the performance, and a majority of our student sub-teams applied
this approach. One or two student sub-teams tried more sophisticated methods to group
similar names, but did not reach concrete conclusions.

We also tried to model the learning experience of students. A student’s performance
may depend on whether that student had previously encountered the same step or problem.
We added features to indicate such information. Results showed that this information
slightly improves the performance. Conversely, we also added a reverse cumulative features,
recording the occurrence of future problems. The logic here is that the appearance of future
problems will depend on the performance of previous problems.

Earlier problem view was considered as a numerical feature. In some situations, we
treated it as a categorical one and expanded it to several binary features. This setting is
possible because there are not too many problem view values in the training and testing sets.
One student sub-team reported that this modification slightly improved RMSE.

3. See http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/. We thank Carnegie Learning and
Datashop for allowing us to release these processed datasets.

5

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/


3.5 Linear Classification and Probability Outputs

In our classification process, for each step we used its CFA as label yi

yi =

{
1 if CFA = 1,

−1 if CFA = 0,

and extracted a sparse feature vector xi. Hence, we assume the training set includes
(xi, yi), i = 1, . . . , l. Due to the high dimensionality of xi, we considered only linear clas-
sifiers. In particular, we used logistic regression, which assumes the following probability
model:

P(y | x) =
1

1 + exp(−ywTx)
.

Then, regularized logistic regression solves the following optimization problem

min
w

1

2
wTw + C

l∑
i=1

log
(

1 + e−yiw
Txi

)
, (1)

where w is the weight vector of the decision function, wTw/2 is the L2-regularization term,
and C is a penalty parameter. The parameter C is often decided by a validation procedure.
In our experiments, we used C = 1 most of the time.

L2 regularization leads to a dense vector w, so we have also considered L1-regularized
logistic regression to obtain a sparse w:

min
w

‖w‖1 + C
l∑

i=1

log
(

1 + e−yiw
Txi

)
. (2)

Once w is obtained, we submitted either labels y = 1 if wTx ≥ 0 and 0 otherwise,
or probability values 1/(1 + exp(−wTx)) as our predictions. Results showed that using
probability values gives a smaller RMSE. We can easily explain this result. Assume the
true label is 0. For a wrongly predicted data point, the error incurred when predicting
a false label and a probability of this occurrence are 1 and (1 − p1)2, respectively, where
p1 ≥ 0.5 is the predicted probability. If a data point is correctly predicted, then this error
and probability are 0 and p22, respectively, where p2 ≤ 0.5. Since the quadratic function is
increasing in [0, 1], the gain of reducing 1 to p21 for a wrongly predicted data is often larger
than the loss of increasing 0 to p22 for a correctly predicted data.

In our development, we used a large-scale linear solver LIBLINEAR (Fan et al., 2008),
which can effectively train very large data. It took only about one hour to train our largest
setting for the data B89, which contains more than 20 million instances and 30 million
features.

We also checked linear support vector machine (SVM) solvers in LIBLINEAR, but the
result was slightly worse than logistic regression.

4. Feature Engineering: Condensed Features

In contrast to generating sparse features in Section 3, this section discusses an approach
that exploits only a small feature set.

6



Feature engineering and classifier ensemble for KDD Cup 2010

4.1 Correct First Attempt Rates as Feature Values

We proposed replacing each categorical feature with a numerical one by using the “correct
first attempt rate” (CFAR). Take the student name feature as an example. The CFAR of a
specific student name “sid” is defined as

CFAR ≡ #steps with student name = sid and CFA = 1

#steps with student name = sid
.

For each step whose student name is sid, the above CFAR would be used as the corresponding
feature value. This setting directly connects a feature and CFA, which is now the target
for prediction. We have considered CFARs for student name, step name, problem name,
KC, (problem name, step name), (student name, problem name), (student name, unit name)
and (student name, KC). Feature combinations are considered following the discussion in
Section 3.2 for sparse features. For the KC feature, we consider the whole string as the ID
in calculating CFAR. We cannot split the string to several KC features as in Section 3.

4.2 Learning Temporal Information

We developed two approaches to extract temporal information.

First, we suspect that the performance on the current problem is related to the same
student’s past performances on similar types of problems. Thus we use the average CFA and
average hint on the student’s previous records (up to six depending on the availability) with
the same KC to model the student’s recent performance on similar problems.4 A binary
feature is also added to indicate whether such previous records exist.

Second, as students have higher chance to forget older events, the time elapsed since the
student saw a problem with the same KC may reveal the performance of the student. For
the current step, we find the KC and check if the student has seen a step with the same KC
within

same day, 1-6 days, 7-30 days, or more than 30 days.
Therefore, four binary features are used to indicate how familiar a student is with a given
KC.

4.3 Training by Various Classifiers

In addition to features mentioned above, two numerical features opportunity and problem
view were first scaled by x/(x + 1) and then linearly scaled to the interval [0, 1]. Thus the
feature set contains 17 features:

• Eight CFARs; see Section 4.1.
• Seven temporal features; see Section 4.2.
• Two scaled numerical features for opportunity and problem view.

Due to the small feature size, we were able to apply various classifiers in Weka including
Random Forest (Breiman, 2001) and AdaBoost (Freund and Schapire, 1997). Random
Forest is an ensemble classifier consisting of many decision trees, while AdaBoost is a

4. In the testing set, neither CFA nor hint is available. Because testing data was generated using the last
problem of a unit (see Figure 1), finding CFA and hint values in the student’s previous records (with the
same KC) is not a problem.

7



method which adaptively improves the performance by a series of weak classifiers (e.g.,
decision stumps). We also used logistic regression via LIBLINEAR. To save training time, we
considered a subset of training data and split the classification task into several independent
sets according to unit name. Specifically, for each unit name, we collected the last problem
of each unit to form its training set. A classification method was then applied to build
a model. In testing, we checked the testing point’s unit name to know which model to
use. Results showed that Random Forest technique gives the best result. Regarding the
training time, due to the small feature size, we could efficiently train a Random Forest on
the training subset of a unit in a few minutes.

5. Classifier Ensemble

Many past competitions (e.g., Netflix Prize) showed that an ensemble of results from differ-
ent methods can often boost the performance. The ensemble approach we adopted was to
find a weight vector to linearly combine the predicted probabilities from student sub-teams.
We did not use a nonlinear ensemble because a complex ensemble may increase the chance
of overfitting. We checked several linear models including simple averaging, linear SVM, lin-
ear regression and logistic regression. Probably because linear regression directly minimizes
RMSE, which is now the evaluation criterion, we found that it gives the best leaderboard re-
sult. Given l testing steps and k prediction probabilities pi ∈ [0, 1]l, i = 1, . . . , k, regularized
linear regression solves the following optimization problem:

min
w

‖y − Pw‖2 +
λ

2
‖w‖2, (3)

where λ is the regularization parameter, y is the CFA vector, and P = [p1, . . . ,pk]. If λ = 0,
Equation (3) becomes a standard least-square problem. In SVM or logistic regression,
sometimes we add a bias term b so that Pw becomes Pw + b1, where 1 = [1, . . . , 1]T . In
our implementation, we also replaced ‖w‖2 with ‖w‖2 + b2.

The obtained weight w is used to calculate Pw for combining prediction results. How-
ever, as components of Pw may be out of the interval [0, 1], we employ a simple truncation
to avoid such a situation:

min(1,max(0, Pw)), (4)

where 1 is the vector with all ones, and 0 is the vector with all zeros. We also explored
sigmoid transformation and linear scaling for modifying Pw to [0, 1]l, but results did not
improve on these measures.

The analytical solution of (3) is

w = (P TP +
λ

2
I)−1P Ty, (5)

where I is the identity matrix. The main difficulty to apply (5) is that y is unknown. We
considered the following two approaches:

1. Use validation data to estimate w. Recall that we split the training set T to two sets
V and Ṽ for internal training an validation, respectively; see Section 2.1. Our student

8



Feature engineering and classifier ensemble for KDD Cup 2010

RMSE

features

0.2895

0.2843 0.2816
0.2815

0.2985

0.2883 0.2875

0.2836

A89

B89

Basic

+Combination

+Temporal

+ More combination

Figure 3: Experiment result of how incremental sparse features improve RMSE. Reported
RMSEs are leaderboard results.

sub-teams generated two prediction results on Ṽ and T̃ :

Train V ⇒ Predict Ṽ to obtain p̃i,

Train T ⇒ Predict T̃ to obtain pi.

Let P̃ be the matrix of collecting all predictions on the validation set and we have the
corresponding true labels ỹ. Then in (3) we used ỹ and P̃ to obtain w. For the final
prediction, we calculated Pw and applied the truncation in (4).

2. Use leaderboard information to estimate P Ty in (5). This approach follows from Töscher
and Jahrer (2009). By the definition of RMSE,

ri ≡
√
‖pi − y‖2

l
,

so

pT
i y =

‖pi‖2 + ‖y‖2 − lr2i
2

. (6)

Because ri and ‖y‖ are unavailable, we estimated them by

ri ≈ r̂i and ‖y‖2 ≈ lr̂20,

where r̂i is the RMSE on the leaderboard by submitting pi as the prediction result and
r̂0 is the RMSE by submitting the zero vector.

We conducted experiments to check which of the above two methods performs better.
See Section 6 for our setting (including the selection of λ) for the final submission.

6. Experiments and Final Results

We used the leaderboard to test the effectiveness of different types of features. We checked
four settings by incrementally adding basic sparse features, combined features, temporal
features and additional combined features. See details of added features in Table 2(a). The
number of features for each setting is shown in Table 2(b). We conducted this experiment

9



Table 2: Detailed information of our feature combinations and our temporal features.

(a) List of features

+Combination (student name, unit name), (unit name, section name), (section
name, problem name), (problem name, step name), (student name,
unit name, section name), (unit name, section name, problem
name), (section name, problem name, step name), (student name,
unit name, section name, problem name) and (unit name, section
name, problem name, step name)

+Temporal Given a student and a problem, add KCs and step name in each
previous three steps as temporal features.

+More combination (student name, section name), (student name, problem name),
(student name, step name), (student name, KC) and (student
name, unit name, section name, problem name, step name)

(b) Number of features

Features A89 B89

Basic 1,118,985 245,776
+Combination 6,569,589 4,083,376
+Temporal 8,752,836 4,476,520
+More combination 21,684,170 30,971,151

Table 3: RMSE on the leaderboard after adding important features gradually.

#features A89 B89

Basic 0.2895 0.2985
+ (problem name, step name) 0.2851 0.2941
+ (student name, unit name) 0.2881 0.2942
+ (problem name, step name) and (student name, unit name) 0.2842 0.2898
+ Combination; see Table 2(a) 0.2843 0.2883

with the L1-regularized logistic regression solver in LIBLINEAR with C = 1. The leader-
board results are shown in Figure 3. Clearly, some feature combinations provide additional
information to basic features, so the RMSE is significantly improved. In particular, the
RMSE of B89 is reduced from 0.2985 to 0.2883. In contrast, from Figure 3, temporal fea-
tures are more useful for A89 than B89. We managed to further improve B89’s RMSE by
adding more feature combinations, combining the five features together in additional ways.
The improvement is, however, less dramatic which is likely due to the fact that much of
the information captured by these new features had already been realized by earlier feature
combinations.

During the competition, our sub-teams reported some feature combinations were very
useful such as (problem name, step name) and (student name, unit name). To further confirm
this observation, we designed an experiment to see the impact of these two combinations.
Table 3 shows the leaderboard results of basic sparse features, basic sparse features plus

10



Feature engineering and classifier ensemble for KDD Cup 2010

Table 4: Leaderboard results by different approaches.

A89 B89 Avg.

Basic sparse features 0.2895 0.2985 0.2940
Best sparse features 0.2784 0.2830 0.2807
Best condensed features 0.2824 0.2847 0.2835
Best ensemble 0.2756 0.2780 0.2768
Best leaderboard 0.2759 0.2777 0.2768

one feature combination (either (problem name, step name) or (student name, unit name)),
and basic sparse features plus both feature combinations. From this table, we can see that
these two feature combinations clearly improve the leaderboard RMSE, especially for B89.

Next, Table 4 lists our leaderboard results submitted during the competition. “Basic
sparse features” means that we used the baseline setting described in Section 3.1. For “Best
sparse features,” the improvement of reducing RMSE by around 0.015 is very significant.
For the condensed representation, the best result comes from training Random Forest with
depth 7. It is surprising that the performance (in particular, on B89) of using 17 features
is competitive with the sparse approach with millions of features.

For the classifier ensemble, we collect 19 results from 7 sub-teams (six student sub-teams
and one RA sub-team). We make sure that each result comes from training a single classifier
instead of combining several predictions. While not shown in the table, results are improved
by various ensemble strategies including simple averaging. For the “Best ensemble results”
in Table 4, we use linear regression for combining 19 results. To select λ in (3), we gradually
increased λ until the leaderboard result started to decline. This procedure, conducted in
the last several hours before the deadline, was not very systematic, but this is unavoidable
in participating in a competition. Our best A89 result is by estimating P Ty in (5) and
using λ = 10. See the second method in Section 5. For the B89, the best result is by using
the validation set to estimate w, which corresponds to the first method in Section 5. The
parameter λ is zero (i.e., no regularization).

In Table 4, we also show the best leaderboard result (by another team). Our team
ranked 2nd on the leaderboard.5 However, from the last two rows of Table 4, the difference
between our result and the best leaderboard result is very small. At that time, we hoped
that our result suffered from a lesser degree of overfitting and might yield better results on
the complete challenge set.

Table 5 showed the final KDD Cup results of the top five teams. Note that, in general,
final KDD Cup scores are slightly better than the leaderboard results.

7. Discussion and Conclusions

There were many submissions in the last week before the deadline. In particular, in the last
two hours as each top team, including ourselves, tried to outperform the other top teams
on the leaderboard. Whether such a large number of submissions resulted in overfitting
remains a concern.

5. More precisely, our submission ranked 10th, but the 1st to the 9th submissions on the leaderboard were
from the same team.

11



Table 5: Challenge final result.

Rank Team name Leaderboard Cup

1 National Taiwan University 0.276803 0.272952
2 Zhang and Su 0.276790 0.273692
3 BigChaos @ KDD 0.279046 0.274556
4 Zach A. Pardos 0.279695 0.276590
5 Old Dogs With New Tricks 0.281163 0.277864

We believe that a crucial point to our ensemble’s success is feature diversity. Different
sub-teams tried various ideas guided by their own intuition. Our feature combination helps
to enrich the feature set. However, while we have identified some important features, a
detailed study on feature selection is needed to obtain more definitive results.

Once we decided to use a vector-space model and apply standard classifiers such as lo-
gistic regression, the techniques which were subsequently developed in this paper seem to be
reasonable. As indicted in Section 2.2, we initially tried Bayesian networks to directly model
the domain knowledge, but failed to obtain good results. Therefore, a traditional classifi-
cation approach may be more suitable for this competition. Whether the same conclusion
holds for other education data mining tasks is an interesting future issue.

In summary, feature engineering and classifier ensembling were useful techniques used
in our approach for winning KDD Cup 2010.

Acknowledgements

We thank the organizers for offering this interesting and fruitful competition. We also thank
National Taiwan University for providing a stimulating research environment.

References

Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin. LIBLIN-
EAR: A library for large linear classification. Journal of Machine Learning Research, 9:
1871–1874, 2008. URL http://www.csie.ntu.edu.tw/~cjlin/papers/liblinear.pdf.

Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line learning
and an application to boosting. Journal of Computer and System Sciences, 55(1):119–139,
1997.

Yue Gong, Joseph E. Beck, and Neil T. Heffernan. Comparing knowledge tracing and per-
formance factor analysis by using multiple model fitting procedures. Intelligent Tutoring
Systems, 2010.

Andreas Töscher and Michael Jahrer. The BigChaos solution to the Netflix grand prize.
2009.

12

http://www.csie.ntu.edu.tw/~cjlin/papers/liblinear.pdf

	Introduction
	Initial Settings and Our Approach
	Validation Set Generation
	Architecture of Our Solution

	Feature Engineering: Sparse Features
	Basic Sparse Features (Our Baseline Setting)
	Feature Combination
	Temporal Context as Features
	Other Ways for Generating Features
	Linear Classification and Probability Outputs

	Feature Engineering: Condensed Features
	Correct First Attempt Rates as Feature Values
	Learning Temporal Information
	Training by Various Classifiers

	Classifier Ensemble
	Experiments and Final Results
	Discussion and Conclusions

