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Data Classification

Given training data in different classes (labels known)

Predict test data (labels unknown)

Examples
Handwritten digits recognition
Spam filtering
Text classification
Prediction of signal peptide in human secretory
proteins

Training and testing
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Methods:
Nearest Neighbor
Neural Networks
Decision Tree

Support vector machines: a new method

Becoming more and more popular
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Why Support Vector Machines

Existing methods:

Nearest neighbor, Neural networks, decision trees.

SVM: a new one

In my opinion, after careful data pre-processing

Appropriately use NN or SVM ⇒ similar accuracy

But, users may not use them properly

The chance of SVM

Easier for users to appropriately use it

The ambition: replacing NN on some applications
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Support Vector Classification

Training vectors : xi, i = 1, . . . , l

Consider a simple case with two classes:
Define a vector y

yi =

{

1 if xi in class 1
−1 if xi in class 2,

A hyperplane which separates all data
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A separating hyperplane: w
T
x + b = 0

(wT
xi) + b > 0 if yi = 1

(wT
xi) + b < 0 if yi = −1
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Decision function f(x) = sign(wT
x + b), x: test data

Variables: w and b : Need to know coefficients of a
plane
Many possible choices of w and b

Select w, b with the maximal margin.
Maximal distance between w

T
x + b = ±1

(wT
xi) + b ≥ 1 if yi = 1

(wT
xi) + b ≤ −1 if yi = −1
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Distance between w
T
x + b = 1 and −1:

2/‖w‖ = 2/
√

wTw

max 2/‖w‖ ≡ minw
T
w/2

min
w,b

1

2
w

T
w

subject to yi((w
T
xi) + b) ≥ 1,

i = 1, . . . , l.
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Higher Dimensional Feature Spaces

Earlier we tried to find a linear separating hyperplane

Data may not be linear separable

Non-separable case: allow training errors

min
w,b,ξ

1

2
w

T
w + C

l
∑

i=1

ξi

yi((w
T
xi) + b) ≥ 1 − ξi,

ξi ≥ 0, i = 1, . . . , l

ξi > 1, xi not on the correct side of the separating plane

C: large penalty parameter, most ξi are zero

. – p.10/64



Nonlinear case: linear separable in other spaces ?

Higher dimensional ( maybe infinite ) feature space

φ(x) = (φ1(x), φ2(x), . . .).
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Example: x ∈ R3, φ(x) ∈ R10

φ(x) = (1,
√

2x1,
√

2x2,
√

2x3, x
2
1,

x2
2, x

2
3,
√

2x1x2,
√

2x1x3,
√

2x2x3)

A standard problem (Cortes and Vapnik, 1995):

min
w,b,ξ

1

2
w

T
w + C

l
∑

i=1

ξi

subject to yi(w
T φ(xi) + b) ≥ 1 − ξi, ξi ≥ 0, i = 1, . . . , l.
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Finding the Decision Function

w: a vector in a high dimensional space ⇒ maybe
infinite variables

The dual problem

min
α

1

2
αTQα − e

T α

subject to 0 ≤ αi ≤ C, i = 1, . . . , l

y
Tα = 0,

where Qij = yiyjφ(xi)
Tφ(xj) and e = [1, . . . , 1]T

w =
∑l

i=1 αiyiφ(xi)
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Primal and dual : optimization theory. Not trivial.

Infinite dimensional programming.

A finite problem:

#variables = #training data

Qij = yiyjφ(xi)
Tφ(xj) needs a closed form

Efficient calculation of high dimensional inner products

Kernel trick, K(xi,xj) = φ(xi)
Tφ(xj)
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Example: xi ∈ R3, φ(xi) ∈ R10

φ(xi) = (1,
√

2(xi)1,
√

2(xi)2,
√

2(xi)3, (xi)
2
1,

(xi)
2
2, (xi)

2
3,
√

2(xi)1(xi)2,
√

2(xi)1(xi)3,
√

2(xi)2(xi)3),

Then φ(xi)
T φ(xj) = (1 + x

T
i xj)

2.

Popular methods: K(xi,xj) =

e−γ‖xi−xj‖
2

, (Radial Basis Function)

(xT
i xj/a + b)d (Polynomial kernel)
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Kernel Tricks

Kernel: K(x,y) = φ(x)Tφ(y)

No need to explicitly know φ(x)

Common kernels K(xi,xj) =

e−γ‖xi−xj‖
2

, (Radial Basis Function)

(xT
i xj/a + b)d (Polynomial kernel)

They can be inner product in infinite dimensional space

Assume x ∈ R1 and γ > 0.
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e−γ‖xi−xj‖
2

= e−γ(xi−xj)
2

= e−γx2

i +2γxixj−γx2

j

= e−γx2

i−γx2

j
(

1 +
2γxixj

1!
+

(2γxixj)
2

2!
+

(2γxixj)
3

3!
+ · · ·

)

= e−γx2

i−γx2

j
(

1 · 1 +

√

2γ

1!
xi ·

√

2γ

1!
xj +

√

(2γ)2

2!
x2

i ·
√

(2γ)2

2!
x2

j

+

√

(2γ)3

3!
x3

i ·
√

(2γ)3

3!
x3

j + · · ·
)

= φ(xi)
Tφ(xj),

where

φ(x) = e−γx2

[1,

√

2γ

1!
x,

√

(2γ)2

2!
x2,

√

(2γ)3

3!
x3, · · · ]T .
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Decision function

w: maybe an infinite vector

At optimum

w =
∑l

i=1 αiyiφ(xi)

Decision function

w
T φ(x) + b

=
l

∑

i=1

αiyiφ(xi)
Tφ(x) + b

=
l

∑

i=1

αiyiK(xi,x) + b

No need to have w
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> 0: 1st class, < 0: 2nd class

Only φ(xi) of αi > 0 used

αi > 0 ⇒ support vectors
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Support Vectors: More Important Data
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A Toy Example

Two training data in R1:

△
0

©
1

What is the separating hyperplane ?
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Primal Problem

x1 = 0,x2 = 1 with y = [−1, 1]T .

Primal problem

min
w,b

1

2
w2

subject to w · 1 + b ≥ 1, (1)

−1(w · 0 + b) ≥ 1. (2)
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−b ≥ 1 and w ≥ 1 − b ≥ 2.

For any (w, b) satisfying two inequality constraints

w ≥ 2

We are minimizing 1
2w2

The smallest possibility is w = 2.

(w, b) = (2,−1) is the optimal solution.

The separating hyperplane 2x − 1 = 0
In the middle of the two training data:

△
0

©
1

•
x = 1/2
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Dual Problem

Formula derived before

min
α∈Rl

1

2

l
∑

i=1

l
∑

j=1

αiαjyiyjx
T
i xj −

l
∑

i=1

αi

subject to αi ≥ 0, i = 1, . . . , l, and
l

∑

i=1

αiyi = 0.

Get the objective function

x
T
1 x1 = 0,xT

1 x2 = 0

x
T
2 x1 = 0,xT

2 x2 = 1
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Objective function

1

2
α2

1 − (α1 + α2)

=
1

2

[

α1 α2

]

[

0 0

0 1

] [

α1

α2

]

−
[

1 1
]

[

α1

α2

]

.

Constraints

α1 − α2 = 0, 0 ≤ α1, 0 ≤ α2.
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α2 = α1 to the objective function,

1

2
α2

1 − 2α2

Smallest value at α1 = 2.

α2 as well

If smallest value < 0

clipped to 0

. – p.26/64



Let Us Try A Practical Example

A problem from astroparticle physics

1.0 1:2.617300e+01 2:5.886700e+01 3:-1.894697e-01 4:1.251225e+02

1.0 1:5.707397e+01 2:2.214040e+02 3:8.607959e-02 4:1.229114e+02

1.0 1:1.725900e+01 2:1.734360e+02 3:-1.298053e-01 4:1.250318e+02

1.0 1:2.177940e+01 2:1.249531e+02 3:1.538853e-01 4:1.527150e+02

1.0 1:9.133997e+01 2:2.935699e+02 3:1.423918e-01 4:1.605402e+02

1.0 1:5.537500e+01 2:1.792220e+02 3:1.654953e-01 4:1.112273e+02

1.0 1:2.956200e+01 2:1.913570e+02 3:9.901439e-02 4:1.034076e+02

Training and testing sets available: 3,089 and 4,000

Data format is an issue
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SVM software: LIBSVM

http://www.csie.ntu.edu.tw/~cjlin/libsvm

Now one of the most used SVM software

Installation

On Unix:

Download zip file and make

On Windows:

Download zip file and make
c:nmake -f Makefile.win

Windows binaries included in the package
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Usage ofLIBSVM

Training

Usage: svm-train [options] training_set_file [model_file]
options:
-s svm_type : set type of SVM (default 0)

0 -- C-SVC
1 -- nu-SVC
2 -- one-class SVM
3 -- epsilon-SVR
4 -- nu-SVR

-t kernel_type : set type of kernel function (default

Testing

Usage: svm-predict test_file model_file output_file
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Training and Testing

Training

$./svm-train train.1
......*
optimization finished, #iter = 6131
nu = 0.606144
obj = -1061.528899, rho = -0.495258
nSV = 3053, nBSV = 724
Total nSV = 3053

Testing

$./svm-predict test.1 train.1.model
test.1.predict

Accuracy = 66.925% (2677/4000)
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What does this Output Mean

obj: the optimal objective value of the dual SVM

rho: −b in the decision function

nSV and nBSV: number of support vectors and
bounded support vectors

(i.e., αi = C).

nu-svm is a somewhat equivalent form of C-SVM where
C is replaced by ν.
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Why this Fails

After training, nearly 100% support vectors

Training and testing accuracy different

$./svm-predict train.1 train.1.model o
Accuracy = 99.7734% (3082/3089)

Most kernel elements:

Kij

{

= 1 if i = j,

→ 0 if i 6= j.
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Data Scaling

Without scaling

Attributes in greater numeric ranges may dominate

Example:

height sex
x1 150 F
x2 180 M
x3 185 M

and
y1 = 0, y2 = 1, y3 = 1.
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The separating hyperplane

x1

x2x3

Decision strongly depends on the first attribute

What if the second is more important
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Linearly scale the first to [0, 1] by:

1st attribute − 150

185 − 150
,

New points and separating hyperplane

x1

x2x3
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Transformed to the original space,

x1

x2x3

The second attribute plays a role
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After Data Scaling

A common mistake

$./svm-scale -l -1 -u 1 train.1 > train.1.scale
$./svm-scale -l -1 -u 1 test.1 > test.1.scale
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Same factor on training and testing

$./svm-scale -s range1 train.1 > train.1.scale
$./svm-scale -r range1 test.1 > test.1.scale
$./svm-train train.1.scale
$./svm-predict test.1.scale train.1.scale.model

test.1.predict
→ Accuracy = 96.15%

We store the scaling factor used in training
and apply them for testing set
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More on Training

Train scaled data and then prediction

$./svm-train train.1.scale
$./svm-predict test.1.scale train.1.scale.model

test.1.predict
→ Accuracy = 96.15%

Training accuracy now is

$./svm-predict train.1.scale train.1.scale.model
Accuracy = 96.439% (2979/3089) (classification)

Default parameter

C = 1, γ = 0.25
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Different Parameters

If we use C = 20, γ = 400

$./svm-train -c 20 -g 400 train.1.scale
$./svm-predict train.1.scale train.1.scale.model
Accuracy = 100% (3089/3089) (classification)

100% training accuracy but

$./svm-predict test.1.scale train.1.scale.model
Accuracy = 82.7% (3308/4000) (classification)

Very bad test accuracy

Overfitting happens
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Overfitting and Underfitting

When training and predicting a data,
we should

Avoid underfitting: small training error
Avoid overfitting: small testing error
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● and ▲: training; © and△: testing
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Overfitting

In theory

You can easily achieve 100% training accuracy

This is useless

Surprisingly

Many application papers did this
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Parameter Selection

Is very important

Now parameters are

C, kernel parameters

Example:

γ of e−γ‖xi−xj‖
2

a, b, d of (xT
i xj/a + b)d

How to select them ?

So performance better ?
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Performance Evaluation

Training errors not important; only test errors count

l training data, xi ∈ Rn, yi ∈ {+1,−1}, i = 1, . . . , l, a
learning machine:

x → f(x, α), f(x, α) = 1 or − 1.

Different α: different machines

The expected test error (generalized error)

R(α) =

∫

1

2
|y − f(x, α)|dP (x, y)

y: class of x (i.e. 1 or -1)
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P (x, y) unknown, empirical risk (training error):

Remp(α) =
1

2l

l
∑

i=1

|yi − f(xi, α)|

1
2 |yi − f(xi, α)| : loss, choose 0 ≤ η ≤ 1, with probability
at least 1 − η:

R(α) ≤ Remp(α) + another term

A good pattern recognition method:
minimize both terms at the same time
Remp(α) → 0
another term → large
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Performance Evaluation (Cont.)

In practice

Available data ⇒ training and validation

Train the training

Test the validation

k-fold cross validation:

Data randomly separated to k groups.
Each time k − 1 as training and one as testing
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CV and Test Accuracy

If we select parameters so that CV is the highest,

Does CV represent future test accuracy ?

Slightly different

If we have enough parameters, we can achieve 100%
CV as well

e.g. more parameters than # of training data
But test accuracy may be different

So

Available data with class labels
⇒ training, validation, testing
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Using CV on training + validation

Predict testing with the best parameters from CV
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A Simple Procedure

1. Conduct simple scaling on the data

2. Consider RBF kernel K(x, y) = e−γ‖x−y‖2

3. Use cross-validation to find the best parameter C and γ

4. Use the best C and γ to train the whole training set

5. Test

Best C and γ by training k − 1 and the whole ?

In theory, a minor difference

No problem in practice
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Parameter Selection Procedure inLIBSVM

grid search + CV

$./grid.py train.1 train.1.scale

[local] -1 -7 85.1408 (best c=0.5, g=0.0078125, rate=85.1408)

[local] 5 -7 95.4354 (best c=32.0, g=0.0078125, rate=95.4354)

.

.

.

grid.py: a python script in the python directory of LIBSVM
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Easy parallelization on a cluster
$./grid.py train.1 train.1.scale

[linux1] -1 -7 85.1408 (best c=0.5, g=0.0078125, rate=85.1408)

[linux7] 5 -7 95.4354 (best c=32.0, g=0.0078125, rate=95.4354)

.

.

.

. – p.52/64



Parallel Parameter Selection

Specify machine names in grid.py

telnet_workers = []
ssh_workers = [’linux1’,’linux1’,’linux2’,
’linux3’]
nr_local_worker = 1

linux1: more powerful or two CPUs

A simple centralized control

Load balancing not a problem

We can use other tools

Too simple so not consider them
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Contour of Parameter Selection
d2d2d2d2d2d2d2d2d2d2d2d2d2d2d2d2d2d2d2d2d2d2     98.8

    98.6
    98.4
    98.2
      98

    97.8
    97.6
    97.4
    97.2
      97

1 2 3 4 5 6 7

lg(C)

-2

-1

0

1

2

3

lg(gamma)
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Simple script in LIBSVM

easy.py: a script for dummies

$python easy.py train.1 test.1
Scaling training data...
Cross validation...
Best c=2.0, g=2.0
Training...
Scaling testing data...
Testing...
Accuracy = 96.875% (3875/4000)
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Example: Engine Misfire
Detection
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Problem Description

First problem of IJCNN Challenge 2001, data from Ford

Given time series length T = 50, 000

The kth data

x1(k), x2(k), x3(k), x4(k), x5(k), y(k)

y(k) = ±1: output, affected only by x1(k), . . . , x4(k)

x5(k) = 1, kth data considered for evaluating accuracy

50,000 training data, 100,000 testing data (in two sets)
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Past and future information may affect y(k)

x1(k): periodically nine 0s, one 1, nine 0s, one 1, and so
on.

Example:

0.000000 -0.999991 0.169769 0.000000 1.000000
0.000000 -0.659538 0.169769 0.000292 1.000000
0.000000 -0.660738 0.169128 -0.020372 1.000000
1.000000 -0.660307 0.169128 0.007305 1.000000
0.000000 -0.660159 0.169525 0.002519 1.000000
0.000000 -0.659091 0.169525 0.018198 1.000000
0.000000 -0.660532 0.169525 -0.024526 1.000000
0.000000 -0.659798 0.169525 0.012458 1.000000

x4(k) more important
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Background: Engine Misfire Detection

How engine works

Air-fuel mixture injected to cylinder

intact, compression, combustion, exhaustion

Engine misfire: a substantial fraction of a cylinder’s
air-fuel mixture fails to ignite

Frequent misfires: pollutants and costly replacement

On-board detection:

Engine crankshaft rational dynamics with a position
sensor

Training data: from some expensive experimental
environment
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Encoding Schemes

For SVM: each data is a vector

x1(k): periodically nine 0s, one 1, nine 0s, one 1, ...

10 binary attributes
x1(k − 5), . . . , x1(k + 4) for the kth data
x1(k): an integer in 1 to 10
Which one is better
We think 10 binaries better for SVM

x4(k) more important

Including x4(k − 5), . . . , x4(k + 4) for the kth data

Each training data: 22 attributes
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Training SVM

Selecting parameters; generating a good model for
prediction

RBF kernel K(xi,xj) = φ(xi)
Tφ(xj) = e−γ‖xi−xj‖

2

Two parameters: γ and C

Five-fold cross validation on 50,000 data

Data randomly separated to five groups.

Each time four as training and one as testing

Use C = 24, γ = 22 and train 50,000 data for the final
model
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d2d2d2d2d2d2d2d2d2d2d2d2d2d2d2d2d2d2d2d2d2d2     98.8
    98.6
    98.4
    98.2
      98

    97.8
    97.6
    97.4
    97.2
      97

1 2 3 4 5 6 7

lg(C)

-2

-1

0

1

2

3

lg(gamma)
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Test set 1: 656 errors, Test set 2: 637 errors

About 3000 support vectors of 50,000 training data

A good case for SVM

This is just the outline. There are other details.

It is essential to do model selection.
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Conclusions

Dealing with data is interesting

especially if you get good accuracy

Some basic understandings are essential when
applying methods

e.g. the importance of validation

No method is the best for all data

Deep understanding of one or two methods very helpful
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