
ADL Final Project

Team 67

B09902035 李沁柔, B09902064 楊冠柏, B09902067 易冠廷, B09902118 林語涵

January 05, 2023

1 Abstract

We chose the Hahow challenge as our final
project. In the introduction, we provided an
overview of the task definition for this challenge.
In the following section, we discussed related
works and the various methods we investigated
to solve the challenge. We demonstrated that
using an ensemble model to combine multiple
methods resulted in the best performance for
both seen and unseen domain tasks. Finally, we
analyzed the performances and characteristics of
our proposed models.

2 Introduction

The competition dataset covers an 8 month
period and includes 97,410 examples. Each ex-
ample can be represented as a vector (u, ru),
where u is the user ID and ru is the set of courses
that user u has purchased. The dataset has been
divided into three subsets: training (59,738 ex-
amples), validation (19,370 examples), and test
(18,302 examples). The validation set is fur-
ther split into seen (77,48 examples) and unseen
(11,622 examples) subsets, indicating users that
are present or absent in the training set, respec-
tively. The test set is also split into seen (7,205
examples) and unseen (11,907 examples) sub-
sets. The mean average precision (mAP) with a
fixed maximum number of predictions (mAP@k,
k = 50) is used to calculate the prediction accu-
racy.
In this competition, we need to predict the

courses and subgroups that users will purchase in
the test set. We have tried multiple models and
methods to model the relevance between the oc-

cupations, interests, and recreations of users and
the information about courses, to compare the
similarity between all courses and those courses
that users have purchased (content-based filter-
ing), and to find similar users in the training
set and compare the similarity of their courses
(collaborative filtering). In addition to modeling
the relationship between users’ information and
courses’ content, we also analyzed the statistics
of the number of times courses were purchased.
From this analysis, we found that free and dis-
counted courses were the most popular. We also
observed that there were some courses published
after the time interval of the training set data.
These courses require special consideration since
they are not covered by the training set data,
and new courses often have discounts.

Ensemble learning combines the predictions
of multiple learning algorithms to achieve bet-
ter performance than any single algorithm could
achieve on its own. In this competition, we ex-
plored the use of ensemble learning. We inte-
grated various models and methods into the en-
semble model and modified the weights of each
model and method in order to capture the di-
verse features that different methods model. The
experimental results and performance on Kag-
gle both showed that our ensemble model out-
performed the other models we proposed and
achieved high scores on the leaderboards.

3 Related work

3.1 ALS

Alternating Least Square (ALS) is an op-
timization algorithm frequently used in Ma-

1

3.2 BM25 4 APPROACH

trix Factorization-based recommendation sys-
tems. The typical usage of ALS is to predict the
score for missing entries in a sparse matrix where
rows are usually users and columns are items to
recommend (courses in our case) by matrix fac-
torization. The input of ALS is a sparse matrix
where non-empty entries indicate a bought his-
tory of an item by a user. To predict the like-
lihood of a user buying an item, we can simply
check the corresponding entry in the output ma-
trix from ALS.

3.2 BM25

Best Matching 25 (BM25) is a series of ranking
functions for information retrieval, which is often
used by search engines. BM25 method ranks a
set of documents by their relevance to a given
query, based on Term Frequency (TF) and In-
verse Document Frequency (IDF).
TF represents the number of times the query
terms appear in a document, the higher the more
relevant. Whereas IDF measures how commonly
the query terms appear in different documents,
which indicates the amount of information the
query terms provided. The lower the IDF the
less important a query term is.

3.3 CKIP Transformers

CKIP Transformers contains the traditional
Chinese transformers models and a set of NLP
tools provided by the Chinese Knowledge and In-
formation Processing (CKIP) Lab.
CKIP Lab also provides BERT-based pretrained
Chinese language models and NLP task models.
The NLP tools include word segmentation (WS),
part-of-speech tagging (POS), and named entity
recognition (NER).

3.4 Sentence Transformer

Sentence-BERT [3] (Reimers et al., 2019),
abbreviated as SBERT, is a model based on
BERT that extracts sentence embeddings. Its
siamese structure is composed of two BERT with
tied weights and pooling layers afterward to de-
rive fixed-size embeddings. SBERT outperforms
BERT embeddings (including CLS vector and
average embedding) and has a higher inference

speed. With its comprehensive documentation
and codes, finetuning and running inference can
be accessed easily.

3.5 Ensemble Learning

Inspired by the first prize winner of both
tracks of KDD Cup 2011 [1] (Chen et al., 2012),
we use ensemble learning to combine the predic-
tions of multiple models to make more accurate
predictions than any of our individual models.
In this paper, we discovered that an ensemble
model (blending) can significantly improve over-
all performance by leveraging the diverse aspects
or information provided by multiple individual
models. Based on this, we decided to use the
ensemble method in our competition.

4 Approach

For course prediction, each method predicts
the scores of courses (a higher score indicates
that the user is highly likely to purchase this
course), then takes the top-50 as the prediction
outcome.

For subgroup prediction, most methods do not
directly predict the scores of each subgroup, but
rather predict the courses first and then con-
vert the outcome of course prediction to sub-
group prediction. For the predicted course rank,
the conversion process just simply takes the sub-
group of higher rank courses as the predicted
subgroup. The repeated predicted subgroups
with lower course ranks are ignored.

4.1 ALS

We first built a sparse matrix where each row
indicates a seen user and each column indicates
a course. If we know a user bought a course in
training data, we filled the corresponding entry
with 1, and leave the rest of the entries empty.
Then, we use the ALS algorithm provided by
Implicit to train on the previously built sparse
matrix. Let the output matrix of ALS be M . To
predict the likelihood of a seen user u buying a
course i, we simply checked M [u][i]. Therefore,
to find and rank possible courses that a user u
would buy, we would take u-th row of M , i.e.

2

https://github.com/ckiplab/ckip-transformers
https://ckip.iis.sinica.edu.tw/
https://ckip.iis.sinica.edu.tw/
https://www.sbert.net/
https://www.sbert.net/
https://github.com/benfred/implicit

4.2 BM25 4 APPROACH

M [u], and sort the indices i’s by value in M [u][i]
in descending order, and the resulting sorted in-
dices i’s would be the prediction.

In addition, on subgroup domain, other
than previously mentioned method of convert-
ing course result into subgroup result, we also
implemented native ALS on subgroup domain.
However, we found that its performance is far
less then the one of converting from course re-
sult. Therefore, in the remainder of this report,
ALS method on subgroup refers to the one that
converts from courses result.

4.2 BM25

We used Rank-BM25 to calculate the score be-
tween a query and documents. The assumption
is that the more relevant a user’s information to
a course is, the more likely the user will purchase
this course.
For a set of query terms Q to represent

the information of a user u, we used the
fields gender, occupation_titles, interests,
recreation_names. The gender field contains
the options: male, female, and other. We con-
verted those options into ”男”, ”女”, ”其他” be-
cause the information of the courses is in Chi-
nese. The options in the interests field are
the concatenation of groups and subgroups. To
consider the relevance of both groups and sub-
groups to a course, we separated them into
two different terms and removed the repeated
group terms. For the occupation_titles and
recreation_names fields, each option was de-
rived from the multiple choice questions, so we
simply added them into Q.

Q = {q1, q2, . . . , qn} (1)

where qi is a query term from the processed
fields.
For the corpus D composed of courses in-

formation, the fields course_name, groups,
sub_groups, description were concatenated
to represent a course, then we used the tool
CkipWordSegmenter to segment the concate-
nated fields into the words wk of a document
dj .

D = [d1, d2, . . . , dm] (2)

di = [w1, w2, . . . , wlj], ∀dj ∈ D (3)

where lj is the length of document dj .
We chose the BM25Okapi algorithm to compute

the scores of the courses dj ∈ D to a given query
Q.

scorej,Q = Σqi∈Q IDFqi

×
TFjqi

× (k1 + 1)

TFjqi
+ k1 × (1− b+ b× |dj |

avgdl)

(4)

avgdl =
Σdj∈D |dj |

|D|
(5)

where scorej,Q is the score of dj given Q, IDFqi

is the inverse document frequency of the term qi
to D, TFjqi

is the term frequency of qi to dj ,
k1 = 1.5 and b = 0.75 are the parameters of
BM250kapi, |dj | represents the length of dj , and
avgdl represents the average length of documents
in D.
To predict the courses a user would purchase,

we ranked the courses with scorej,Q ∀dj ∈ D and
took top-50 as our predictions. For subgroup
prediction, we took the subgroups of the top 50
predicted courses as our subgroup prediction.

4.3 Predict by Course Similarity

In this approach, we first concatenated the fol-
lowing fields of courses into a sentence: course
name, groups, subgroups, topics, description,
and target group. In addition, spaces and HTML
tags are removed from these fields. Then, we put
the resulting sentence into the tokenizer of our
model, and the tokenized sentence will be then
fed into the model. The output of the model,
i.e. token embedding, would be passed to the
mean pooling layer. The output of the mean
pooling layer would be an embedding represent-
ing the input sentence, i.e. a course. To calculate
the similarity between 2 courses, we can simply
convert the raw data into course embedding by
the above method, and then calculate the cosine
similarity between the embedding of these two
courses. Therefore, to predict how likely a seen
user would buy a course, we can calculate cosine
similarity between the bought courses and other
courses.

Our approach works like this: For every
bought course bi of the user, we will find 50

3

https://github.com/dorianbrown/rank_bm25

4.4 Predict by Course and User Similarity 4 APPROACH

most similar courses that the user had not yet
bought. We would use ci,j to represent j-th sim-
ilar course of bought course bi. Intuitively, if
a course is similar to multiple bought courses,
then it is more likely to be bought in the fu-
ture. Therefore, after we found all ci,j for all
bought courses bi, we would combine repetitive
ci,j ’s. Formally, if there exists ci,j = ci′,j′ , then
we remove ci′,j′ from our list, and the similarity
score si,j of ci,j would become si,j + si′,j′ . Fi-
nally, we would re-rank all ci,j ’s by si,j ’s, and
the result would be our prediction. In addition,
to make our similarity score between 0 and 1, we
normalized the resulting similarity score. Note
that since we need to know bought courses, this
approach only works on the seen domain.

4.4 Predict by Course and User
Similarity

In order to cope with the problem that the
previous approach in section 4.3 works only on
the seen domain, we came up with another ap-
proach, which allowed us to find similar seen
users first, and then use the same method in sec-
tion 4.3 to predict for unseen users. Similarly,
in order to find the similarity between two users,
we used the same method mentioned in section
4.3 to convert a sentence of a user into an em-
bedding. As for the sentence representing a user,
we first sorted the interest field so that the in-
terests under the same group are located near
each other, and then separated the group and
subgroups into distinct words. Afterward, we’ve
added some prompts like ”我的職業是...”, ”我
喜歡...”, and ”我常常...” in front of fields of oc-
cupation, interests, and habits. The reason why
we do this is that pretrained transformer mod-
els are usually trained with contextualized texts,
and thus we have to add context to those fields of
users by adding these prompts, which is a com-
mon technique when using pretrained language
model.

Our approach works like this: For a user u to
predict, we first use a similar method of finding
similar courses in section 4.3 to find the 25 most
similar seen users. We would denote k-th sim-
ilar user as uk. Then, we run the approach of
section 4.3 for every uk’s. We would denote j-

th course prediction of uk as ck,j . Similarly and
intuitively, if a course is likely to be bought by
multiple similar users, then our target user u is
more likely to buy it. Therefore, after we found
every ck,j for every uk, we combine repetitive
ck,j ’s. Formally, after we found all ck,j for all
similar user uk, if there exists ck,j = ck′,j′ , then
we remove ck′,j′ from our list, and the similar-
ity score sk,j of ck,j would become sk,j + sk′,j′ .
Note that the similarity score sk,j , in this case,
will be the similarity score usk between uk and u
times course similarity score csk,j from the out-
put of applying the approach in section 4.3 on
uk, i.e. sk,j = usk × csk,j . Finally, we would
re-rank all ck,j ’s by sk,j ’s and get our prediction,
which is the same as what we do in the approach
of section 4.3. In addition, we also normalize
the resulting similarity score. Note that this ap-
proach can be applied to both seen and unseen
domains.

4.5 User-Course Similarity

Our user-course similarity model predicts in
accord with the cosine similarity between user
embedding and course embedding.

The embedding is directly produced by an
SBERT model finetuned with the training
dataset. The course and user input sentences
are processed as in sections 4.3 and 4.4. We fine-
tune the model with its MultipleNegativesRank-
ingLoss, where each pair of (user, bought course)
in the training data serves as a positive pair and
all others are seen as negative pairs. As stated
in the research of this loss function [2], the train-
ing goal is to minimize the approximated mean
negative log probability.

The top 50 courses are directly ranked by the
cosine similarity of each user-course pair pro-
duced by the finetuned model.

4.6 Statistical Model

A statistical model is a model that uses ob-
servations from the training data set to extract
meaningful insights or patterns. These patterns
are then used to make predictions about future
courses. We chose to use this technique because
we found that free courses are popular within the
data set.

4

https://www.sbert.net/docs/package_reference/losses.html#sentence_transformers.losses.MultipleNegativesRankingLoss
https://www.sbert.net/docs/package_reference/losses.html#sentence_transformers.losses.MultipleNegativesRankingLoss

4.7 Ensemble 4 APPROACH

Based on our analysis of the training data set,
we noticed that users often purchase free courses.
As a result, our model prioritizes free courses
and arranges them in order of date, starting with
the most recent. Furthermore, we noticed that
courses occurring close to the time frame of the
prediction tend to have higher enrollment. To ac-
count for this, our model prioritizes these courses
and arranges them by price, with higher-priced
courses coming first. This order is used because
courses that are closer in time often have promo-
tional pricing. For the remaining courses, we ar-
ranged them based on the number of times they
were purchased.
The probability of each prediction is deter-

mined linearly based on the ranking of the
courses in the prediction:

r̂ui = k · r + b (6)

where r is the ranking of the user in r̂u and k
and b are constants. In this case, we set b = 0.02
and k = −0.0002 to generate the probabilities
for each course. The probability generated by
this model does not take into account the pop-
ularity of the courses, which could potentially
improve its accuracy. However, since many pop-
ular courses were not available for purchase dur-
ing the training period (probably because they
haven’t been published), we were unable to in-
corporate this information in our analysis.
It’s worth noting that one of the courses

was never purchased in the validation set. To
improve the accuracy of our validation score
(mAP), we exclude this course from the pre-
dicted courses r̂u when making predictions for
the validation set. However, this method was not
used when predicting the test data set. More-
over, we also observed that some courses have a
higher number of purchases based on additional
data from a public API. However, since this data
is external to our training data set, we did not in-
clude it in our predictions, even though it could
significantly improve the performance of our sta-
tistical model and ensemble model.

4.7 Ensemble

Our ensemble model combines the predictions
of multiple models using a weighted averaging

method, which does not require training a meta-
model. While this technique is easy to imple-
ment, it may not always perform as well as other
ensemble methods like boosting, bagging, and
stacking. This is because it does not consider
the unique characteristics of the individual mod-
els and simply combines their predictions with-
out taking their relationships into account. With
weighted averaging, the final prediction is the
weighted average of the predictions made by the
individual models. This method can be used for
regression problems, where the final prediction is
the mean of the individual model predictions.

To obtain the final probability r̂ui for each
user-course pair (u, i), we generate probabilities
for each model and combine them using weighted
averaging. The weights we use are the mAP
scores of the models in the validation or test data
set.

r̂ui =

∑n
k=1 wk · pk∑n

k=1 wk
(7)

where wk represents the mAP score of model k,
and pk is the probability of user u purchasing
course i, as predicted by model k. The models we
included in the final ensemble model were chosen
based on their performance, but we also included
some models that were worse than others in our
experiments for the sake of diversity.

The performance of the ensemble model can be
seen in Table 1. We will discuss various variant
techniques of ensemble models in more detail in
section 5.3.

4.8 Post Processing

To improve the accuracy of our predictions,
we performed post-processing on our final out-
put by removing courses that were purchased in
the training and validation datasets. For each
user in the test dataset, we compiled a list of
courses that were purchased in the training and
validation datasets. If a course appeared on this
list, it was removed from our prediction for the
test dataset. We did this because the time period
of the test dataset is after the training and val-
idation datasets, so our predictions for the test
dataset may include courses that a user has al-
ready purchased. By removing these courses, we
were able to improve the overall performance of
our models.

5

6 DISCUSSION

5 Experiments

5.1 Performance

The results of all of our methods on the valida-
tion set are presented in Table 1, and the results
on the test set on Kaggle can be found in Table
2. Bold text states for the best model and scores.

5.2 Fine-tuning SBERT

Since sentence embeddings play a crucial part
in our prediction, we have tuned several versions
of SBERT models. From table 1, we can see that
finetuned models perform better.

5.3 Ensemble learning

To further improve the performance of our en-
semble model, we implemented several ensem-
ble variants including a model-based ensemble
model and a powered-weighted ensemble model.
In the model-based ensemble model, rather than
combining models with different parameters di-
rectly, we first calculate the weighted average
of each type of model and then calculate the
weighted average of the probabilities of all mod-
els. This model can improve the performance
of predictions for seen and unseen courses but
may reduce the accuracy of predictions for sub-
groups. In contrast, the powered-weighted en-
semble model raises each weight to the power of
5.5 to adjust the weights of the individual mod-
els:

r̂ui =

∑n
k=1 w

5.5
k · pk∑n

k=1 w
5.5
k

(8)

This technique can improve the performance of
predictions for seen and unseen subgroups but
may decrease the accuracy of predictions for
courses. In our experiments, we found that us-
ing a power of 5.5 was the most effective at
improving the performance of predicting sub-
groups. However, we do not have a mathematical
explanation for this result.

Additionally, we heuristically choose the
weights of each model to make the performance
better. The performance of the ensemble models
on the validation set is in Table 1.

6 Discussion

6.1 Seen vs Unseen Tasks

In our methods, the seen and unseen tasks
aren’t treated very differently; the main dif-
ference is the removal of bought course in the
seen tasks. However, we’ve discovered that a
method’s properties affect its performance on
these tasks.

The methods that take advantage of seen
data, undoubtedly, performed better on seen
tasks. For example, predicting by user-user then
course-course similarity (section 4.4) makes use
of training data to find similar users. This
method scored higher in the seen tasks, which
are on average 34.0% and 11.9% increases in the
course and topic prediction. It is noteworthy
that the more epoch the model is tuned, the
wider the performance gap is. Our statistical
model (section 4.6) also showed this tendency
with increases of 73.5% and 49.8% on average
in the course and topic prediction. Since the
purchase patterns were observed in the training
data, its predictions are more related to the seen
domain.

On the other hand, methods related to in-
formation retrieval performed better on unseen
tasks. For BM25 (section 4.2), the unseen tasks
outperform the seen tasks by 39.3% and 20.8%
on average separately. The user-course similarity
method (section 4.5) can be perceived as infor-
mation retrieval due to its query-response prop-
erty. We have not reached a conclusion of this
phenomenon’s cause yet, but perhaps the ”seen
users” and ”unseen users” are different beyond
the received data, such as how long they have
joined Hahow.

In the end, our ensemble model performed
equally well on both seen and unseen tasks. We
believe this result implies that it effectively chose
the predictions and mixed the advantages of each
method together.

6.2 Language Model

We have totally 3 approaches that run on lan-
guage models, which are predicted by course sim-
ilarity in section 4.3, predict by course and user
similarity in section 4.4, and user-course simi-

6

6.3 Statistical 6 DISCUSSION

Table 1: Results on validation set

Seen Unseen
Model Course Topic Course Topic

ALS 0.03751 0.22236

BM25 0.02814 0.19029 0.04698 0.23606

CS0 0.03764 0.23952
CS10 0.05829 0.24542
CS15 0.11335 0.27131
CS18 0.11553 0.27203

US0 0.02505 0.24379 0.02132 0.22981
US10 0.04363 0.20274 0.02866 0.21459
US15 0.11569 0.24127 0.07554 0.18302
US18 0.13965 0.26889 0.09515 0.20680

UC0 0.01657 0.18946 0.02248 0.23410
UC3 0.03707 0.20490 0.06412 0.27869
UC10 0.03492 0.20352 0.06054 0.28012

Statistics 0.13757 0.22559 0.07367 0.14450

Ens 0.16447 0.32625 0.14754 0.30974
Ens Avg 0.17125 0.31415 0.17358 0.30974
Ens 5.5 0.16188 0.33041 0.10746 0.32661
Ens Heu 0.18364 0.33087 0.18067 0.33449

larity in section 4.5. From table 1 on seen do-
main, we can find out that methods of predict-
ing by course or user similarity perform better
than methods of user-course similarity. We think
the possible reason for this is that predicted by
similar courses or users can take more advan-
tage of seen information, and thus perform bet-
ter on the seen domain. However, when it comes
to the unseen domain, the user-course similarity
method does not have that much performance
difference between the method of user and course
similarity, especially on the unseen topic domain,
which has significantly higher performance than
the method of user and course similarity.

In addition, we can also find out from the table
1 that all 3 methods using a language model do
not perform well when directly using zero-shot
transfer, and all of them perform better after
finetune. On the method of user-course similar-
ity, we find out that it performs the best when it
is finetuned for 3 epochs, however, on the meth-
ods using user or course similarity, it performs

the when it is finetuned for 18 epochs.

6.3 Statistical

In this section, we will explain our reasoning
behind the ordering of the courses and the po-
tential factors that influenced this decision.

First of all, we prioritize free courses. Our
analysis of the training data revealed that users
tend to purchase free courses. It makes sense
that users would be more likely to purchase free
courses without the added pressure of financial
cost. Next, we prioritize courses that are occur-
ring in the near future. Our analysis of the train-
ing data showed that these courses tend to have
higher enrollment. We believe this is due to pro-
motional pricing or marketing efforts for these
courses. Therefore, cheaper courses may not nec-
essarily be the most popular, as they may only
have a small discount. On the other hand, more
expensive courses that offer larger discounts and
promotions may be more attractive to users. As

7

6.4 Ensemble Method 6 DISCUSSION

Table 2: Performance on Kaggle test set

Seen Unseen
Model Course Topic Course Topic

ALS 0.02751 0.10691

BM25 0.03250 0.18469 0.05290 0.23749

CS10 0.07598 0.30349
CS15 0.11150 0.27980

US10 0.06154 0.21342 0.05103 0.25591
US15 0.11318 0.24367 0.10175 0.20595

UC 0.03316 0.21414 0.06789 0.28662

Statistics 0.15220 0.27436 0.10331 0.19807

Ens 0.17852 0.33475 0.17798 0.34371
Ens Avg 0.18192 0.20664
Ens 5.5 0.34222 0.34813
Ens Heu 0.19643 0.21880 0.35826

a result, our model orders the courses in the near
future by price, with higher-priced courses com-
ing first. Additionally, we divided the near future
into smaller time slots for a more detailed anal-
ysis. This decision was based on heuristics, as
we do not have a specific technique to determine
the optimal time slot size for slicing. Finally,
we order the remaining courses by the number
of purchases they received. It is logical to as-
sume that courses with more purchases are more
appealing to users.

6.4 Ensemble Method

We have tested two methods for predicting
subgroups through the ensemble model. The
first one is to take the weighted averaging on
the subgroup predictions from each model, i.e.
do ensemble on the subgroup predictions. The
second one is to ensemble the course predictions
from each model, then convert the course predic-
tion by ensemble model to subgroup prediction.

We compare two methods on the validation
set, from Table 3, method 1 (directly do ensem-
ble on subgroups) outperforms method 2 (con-
verted from the course prediction) on both seen
domain and unseen domain. To improve the per-
formance of method 2, we also tried different

weights for the ensemble model. wc represents
that the weights are determined by the perfor-
mance of individual models on course prediction,
and ws represents the weights derived from the
performance of individual models on subgroup
prediction. We intuitively thought that using
ws on the subgroup prediction would have bet-
ter performance than using wc to do subgroup
prediction. We could confirm our intuition from
Table 3 We could also observe that method 1
was still better than two variants of method 2,
so we chose method 1 to do subgroup prediction
by ensemble model.

We thought that the models we implemented
above could capture different features about
whether a user was willing to purchase courses.
For those models similar to information retrieval,
such as BM25 (section 4.2) and user-course sim-
ilarity (section 4.5), they calculate the correla-
tion between user information and course infor-
mation. For those which compare similarity be-
tween courses and users, like section 4.3 and sec-
tion 4.4, they use the assumptions that users are
more likely to purchase courses that are similar
to the courses they purchased or similar to the
courses purchased by other users with high sim-
ilarity. For the statistical model, it gains insight
into the relationship between a course’s price, re-

8

9 APPENDIX

Table 3: Results of different subgroup prediction methods by ensemble model

Method Seen Topic Unseen Topic

Method 1 0.32625 0.30974

Method 2 with wc 0.28702 0.26614
Method 2 with ws 0.30140 0.29993

leased date, number of purchases, and the like-
lihood of future purchases, which happen to be
the features not captured by other models.

Our ensemble method integrates features from
different models and increases the utilization of
information. By adjusting the weights of differ-
ent models, the ensemble model can benefit from
various features to predict better.

7 Conclusion

7.1 Conclusion

In the Hahow challenge, we proposed six meth-
ods and an ensemble model fusing their pre-
dictions based on their individual performances.
The methods ranged from statistics to language
model embeddings, exploiting features in dis-
tinct aspects. Our results showed that the en-
semble model achieves significant improvements
by combining the strengths of each method.

7.2 Future Work

As NLP technologies progress, sentence em-
bedding extraction has improved significantly.
The SBERT model we used was the state-of-
the-art model in 2019, but now ranks 34 on the
STS benchmark. Therefore, newer or more ad-
vanced models could be tested out. In addi-
tion, semantic-level adjustments could also be
done. Prompts and interest field selection were
implemented in our methods, thus trying differ-
ent prompts and combinations of chosen fields
might also lead to better performance.

During our work, we discovered that language
models may miss certain information that can be
supplemented by statistical models. To make the
most of the available data, we applied statistical

tools to gain additional insights more than our
statistical model.

Additionally, we believe that our model could
benefit from further consideration of the time
attribute, as the number of purchases is signif-
icantly influenced by the time period, such as
promotions for newer courses (as discussed in
4.6). Using techniques like time deviation may
improve the model’s performance.

Furthermore, we have additional models that
utilize matrix factorization techniques that were
not used in this competition. If we integrate
these models into our ensemble model, we be-
lieve that we can extract more information from
the dataset and produce more accurate predic-
tions.

Finally, while our ensemble model uses simple
weighted averaging, there are other techniques
such as stacking, bagging, and boosting that can
significantly improve the performance of the en-
semble model. Unfortunately, we are unable to
train on the validation set. However, we believe
that by making some modifications to our en-
semble model configuration and training it on
the training dataset, we can improve its perfor-
mance.

8 Work Distribution

Our work distribution of this project is shown
in table 4.

9 Appendix

9.1 Appendix A. Terms

• u: user ID

• i: course ID

9

https://paperswithcode.com/sota/semantic-textual-similarity-on-sts-benchmark

REFERENCES REFERENCES

Table 4: Our work distribution in this project

Member Work

李沁柔 User-course Similarity, User similarity, Slide, Report

楊冠柏 Statistical method, Ensemble learning, Slide, Report, Figures and Tables

易冠廷 ALS, Course Similarity, User Similarity, Presentation video editing, Slide, Report

林語涵 BM25, Ensemble Learning, Slide, Report

• ru: courses that user u will purchase

• r̂u: predicted courses that user u will pur-
chase

• r̂ui: The predicted probability that user u
will purchase course i

• pi: the price of course i

• Q: The query terms.

• qi: Each query term in Q.

• D: The corpus of information of courses.

• dj : The document representing a course in
corpus D.

• wk: A word in the documents.

• ci,j : course i’s j-th similar course.

• si,j : course similarity between course i and
j.

• uk: user u’s k-th similar user.

References

[1] Po-Lung Chen, Chen-Tse Tsai, Yao-Nan
Chen, Ku-Chun Chou, Chun-Liang Li,
Cheng-Hao Tsai, Kuan-Wei Wu, Yu-Cheng
Chou, Chung-Yi Li, Wei-Shih Lin, Shu-Hao
Yu, Rong-Bing Chiu, Chieh-Yen Lin, Chien-
Chih Wang, Po-Wei Wang, Wei-Lun Su,
Chen-Hung Wu, Tsung-Ting Kuo, Todd G.
McKenzie, Ya-Hsuan Chang, Chun-Sung
Ferng, Chia-Mau Ni, Hsuan-Tien Lin, Chih-
Jen Lin, and Shou-De Lin. A linear ensem-
ble of individual and blended models for mu-
sic rating prediction. In Proceedings of the

2011 International Conference on KDD Cup
2011 - Volume 18, KDDCUP’11, page 21–60.
JMLR.org, 2011.

[2] Matthew Henderson, Rami Al-Rfou, Brian
Strope, Yun-Hsuan Sung, Laszlo Lukacs,
Ruiqi Guo, Sanjiv Kumar, Balint Miklos, and
Ray Kurzweil. Efficient natural language re-
sponse suggestion for smart reply. May 2017.

[3] Nils Reimers and Iryna Gurevych. Sentence-
bert: Sentence embeddings using siamese
bert-networks. In Proceedings of the 2019
Conference on Empirical Methods in Natural
Language Processing. Association for Com-
putational Linguistics, 11 2019.

10

	Abstract
	Introduction
	Related work
	ALS
	BM25
	CKIP Transformers
	Sentence Transformer
	Ensemble Learning

	Approach
	ALS
	BM25
	Predict by Course Similarity
	Predict by Course and User Similarity
	User-Course Similarity
	Statistical Model
	Ensemble
	Post Processing

	Experiments
	Performance
	Fine-tuning SBERT
	Ensemble learning

	Discussion
	Seen vs Unseen Tasks
	Language Model
	Statistical
	Ensemble Method

	Conclusion
	Conclusion
	Future Work

	Work Distribution
	Appendix
	Appendix A. Terms

