FreeNet

A Distributed Anonymous Information

Storage and Retrieval System

Presented By Xiao Wei—Cheng
2004.04.06

Outline

Introduction

Architecture

— Keys and searching files

— Inserting, Storing, Retrieving, Managing files

— Adding nodes

Security

Performance Analysis

Introduction (1/2)

Decentralization

Privacy

Sharing of Storage Space
Location—independent file system

Retrieving, Inserting, Storing files

Introduction (2/2)

* Design Goals

— Anonymity for producers and consumers

— Deniability for storers of information

— Resistance to attempts to deny access of information
— Efficient dynamic storage and routing of information

— Decentalization of ALL network functions

Architecture

Freenet is like a peer—to—peer network

Files are named by keys

Each node has its own datastore and routing table
Routing 1s driven by ’key’

Each request has a unique 1D

— prevent loop

Keys and Searching Files — KSK (1/4)

Keyword—signed key (KSK) 1s derived from

Descriptive Text String

public/private key pair

(DTS)

The file key 1s yielded by hashing the public part

The file 1s encrypted wi

The private part 1s usec

th DTS

| to sign the file

Problem - Different fi

es have the same DTS

Keys and Searching Files = SSK (2/4)

* Signed—subspace key

* Personal namespace is enabled, and generated

randomly

* Files key = hash(XOR(hash(namespace),
hash(DT?)))

* File is encrypted with DTS as KSK

* Private key is needed when storing the file

Keys and Searching Files—CHK (3/4)

* Content—hash key
* File key 1s derived by hashing the file content

* Files are encrypted by randomly—generated keys
* CHK is usually conjucted with SSK

— Indirect file
— Version updating

- file splitting

Keys and Searching Files (4/4)

* Problem - How to get the file key ?

— Through Web Server
— Lightweight indirect files

e Multiple indirect files may have the same key

— Still an open problem

Retrieving File (1/2)
A Request.Data message 1s sent, with transaction

ID, hops—to—live, depth, and search key
A Send.Data message and the desired file will be

sent back after successtul request

In the nodes on the path, file is cached, and
routing table 1s updated

A Reply.NotFound message would be sent back
it tailed

Files with similar keys would be cached in some

oroup of nodes

Retrieving File (2/2)

Data Request

Data Reply

) 1
oo @

Request Falled

This reguast failsd
because 4 nods will
rafuse 4 Data Raguest
that 1iE has alraachy

Example of retrieving a file (DFS)

Storing and Inserting File

A Request.Insert message is sent

If inserting sucesses, a Reply.Insert message 1s
sent back, and a Send.Insert is then sent by the

requestor

If tailed, a Send.Data message with the existing
data or a Reply.NotFound message 1s sent back

In the nodes on the path, file 1s cached, and
routing table is updated

New nodes can use 1serts to announce their

existence

Managing File

* Storages have finite capacity
* LRU algorithm is used to manage files

* Entries in routing table are deleted only when the

routing table 1s full

Adding Nodes

All nodes have to be consistent in deciding the

new node key (Address Resolution Key)

The new node sends its address and hash(rand())

out first

Nodes in the path send hash(rand() XOR prehash)

to the next one

The final hash value becomes the key of the new

node

Security (1/3)

* Anonymity of sender, receiver, and the key

* Key anonymity 1s impossible since routing

depends on the key

* For malicious nodes, sender anonymity 1is

preserved beyond suspicion

Systbem

Attacker

sender anony mity

fey anonyimity

Basic Freenet

local eavesdropper

e posed]

e posed

collaborating nodes

Levond suspicion

e posed

Freenet + pre-routing

local eavesdropper

ex posed

bevond suspicion

collaborating nodes

beyond suspicion

ex posed

Security (2/3)

* IFreenet + pre—routing

— For key anonymity and sender anonymity

— Messages are encrypted by a succession of public

keys, and pre-routed first

— After pre—routing, the message is injected into the

normal Freenet network

* The data source field can be resetted in the path

* A hops—to—live of 1 doesn’t reveal an endpoint

— Finite probability

Security (3/3)

* Modification of requested files by malicious nodes
— Not feasible under CHK or SSK

* Displace existing files by malicious nodes
— Not feasible under CHK or SSK

* Prevent DoS attack

— Use 2 part of datastore
* Established files

* New files

Performance Analysis (1/5)

* Network for sitmulation

— 1000 nodes

— Datastore size of 50 items per node

— Routing table size of 250 addresses per node

Performance Analysis (2/5)

* Network Convergence

1000 E I | | I I I

first quartile’ -——— -]
: median 7
'''' ™ third quartile —-—-—--

100 F

Request pathlength (hops)

10 |

1 1 1 1 1 1 1 1 1 1

0 500 1000 1500 2000 2600 3000 3500 4000 4500 5000
Tirme

300 random requests per probe, hops—to—live = 500, every 100 timestemps

Performance Analysis (3/5)
Scalability

100

e first quartile
median
——————— third quartile
B0
q'.
i
]
_."
— I
2
g- G0 - r;'
£
c ;
E i
g
& f,f
B anl !
S’ Moor
& Y
A
."F“r
20
D L M L PR R R T | L L M PR S S T H | L L M PR R T T |
100 1000 10000 100000

Meatwork size (nodes)

Probing as previous simulation

Performance Analysis (4/5)

e Fault—tolerance — Because of small-world network

I first quartllle ------- T
madian -
third quartile —------ |
1000 | |
=
[N
£
=
2100 | |
T H
=
@
W
(]
o |
o
E -
10 .
'1 1 1 I : : I I
0 10 20 20 40 50 - i i

Mode failure rate (%)

Performance Analysis (5/5)

e Small-world network

01

0.01

Proportion of nodes

0.001

0. o001

10 100 1000
Mumber of links

