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1	
   Chih-Chung Chou is a new member of the team to participate in RoboCup 2012. He significantly 
contributed to this team report.  	
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1 Introduction 

This is the team research report describing the work of Team NTU RoboPAL for 
RoboCup 2011 SPL. Team NTU RoboPAL has been participated in the RoboCup 
Standard Platform League (SPL) competitions since 2009. We were in the top 8 teams 
in 2009, in the top 16 teams in 2010, and won the 3rd place in 2011.  

 
The members of Team NTU RoboPAL. From left to right: Chieh-Chih Wang, Bo-Wei Wang, 

Shao-Chen Wang, Chun-Hua Chang and Hsin-Cheng Chao. 

 
Our RoboCup software system used in RoboCup 2011 consists of three parts: 
Perception, Motion, and Behavior. As our system was developed based on the 
B-Human code release 2010 [1], only the newly developed modules and 
functions are described in this team report. The codes of these modules and 
functions are available in the NTU RoboPAL code release2. 
 

2 Perception 

Localization and tracking are two key capabilities in the RoboCup competition. 
Knowing self-location in the field is essential for a robot to perform reasonable 
behaviors such as kicking the ball toward the goal. Accurately tracking the 
opponents and the ball is the basis for the robot to exhibit intelligent behaviors 
such as high-level planning and cooperative strategies. 
 
However, in the RoboCup SPL games the performance of self-localization can 
degrade when the robot cannot collect adequate information from onboard sensors 
Fig. 1 and Fig. 2 illustrate these challenging scenarios. Fig. 1 demonstrates that 
only a couple of map features can be observed by a robot near the field boundary, 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2	
   http://www.csie.ntu.edu.tw/~bobwang/RoboCupSPL/NTURoboPAL_CodeRelease2011.rar	
  



	
   3	
  

and Fig. 2 shows that a robot is asked to look at the ball for preparing a kick but 
unable to observe sufficient map features for localization. 

 

 

Fig. 1 The Boundary Case: the robot indicated by the red rectangle detects only one field line and two 

corners. The bottom images are a sequence of images captured during a right to left head motion in 2 

seconds. 

 

 
Fig. 2 The Ball Gazing Case: the robot indicated by the red rectangle only detects the ball without any 

map feature. The bottom images are a sequence of images captured during the task. 

 
Motivated by the self-localization challenges and stimulated by the importance of 
both localization and tracking in the RoboCup games, we designed and 
implemented a Cooperative Localization And Tracking (CLAT) module [3] based 
on our simultaneous localization, mapping and moving object tracking framework 
[2]. In the CLAT module, localization and tracking are performed simultaneously 
to get the assistance from teammate robots and exploit the information of moving 
objects. When the robot observes the moving object, the moving object 
information can be utilized for localization if his teammates can also observe that 
moving object. 
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In the next section, the overview of our perception system is firstly demonstrated 
and the details of each perception module are described from Sec. 2.2 to Sec. 2.5. 

 
2.1 Perception System Overview 
 
Fig. 3 shows the overview diagram of our perception system. The core of our 
perception system is the CLAT module [3], which is an EKF-based algorithm that 
exploits the assistance of the teammate robots and the information of moving 
objects by augmenting the states of all the teammate robots and the moving 
objects into one state vector. Localization and tracking are performed 
simultaneously. As the correlations among all the robots and the moving objects 
are maintained through the covariance matrix, localization and tracking are 
mutually beneficial. 
 
 

 
Fig. 3 Overview of our cooperative and perception system 
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Compared with traditional self-localization approaches, CLAT additionally 
utilizes relative measurements among robots and moving objects to achieve better 
estimation performance. Therefore, we have designed a Nao robot detection 
module to retrieve information between the robots on the field. The details of the 
detection algorithm and its performance evaluation are addressed in Sec. 2.2. 
 
The goal of CLAT is to achieve accurate estimation by integrating information 
from all the teammate robots, so during the game, each teammate robot constantly 
shares its motion command, self-localization measurements, and the ball and robot 
detection measurements to the others through Wi-Fi. After the robot receiving the 
motion and measurements from the teammates, the information is integrated to 
improve the state estimates. The details of the CLAT algorithm are described in 
Sec. 2.3.  
 
The position of the ball is undoubtedly the most critical information in soccer 
games. Although the CLAT algorithm can estimate the ball position once the ball 
is observed by at least one of the teammate robots, there are still cases that the ball 
is not detected by any teammate robot. Therefore, based on the CLAT algorithm, 
we additionally design a module to incorporate the negative observation of the 
ball. More specifically, when the ball is not observed, we also improve the ball 
position estimation by eliminating the impossible ball positions. The negative ball 
information integration algorithm is detailed in Sec. 2.4. 
 
In addition, we also designed the vision-based short-range obstacle detection 
module, which is currently not yet connected to the other perception modules but 
directly reports information to the behavior module. The main purpose of this 
module is to compensate the instability and inaccurate obstacle detection by sonar. 
The details are described in Sec. 2.5 
 
 
2.2 Nao Robot Detection 
 
Th CLAT module requires relative measurements between the robot itself and the 
teammates and the moving objects. In the RoboCup scenario, the Nao robot 
detection is the basis of the robot-to-robot and robot-to-moving-object 
measurements.  
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Our Nao robot detection module works as follows:  
1. The part of image above the field border (depicted as the black dashed line in 

Fig. 4) is ignored because the colors in the background above the field border 
are basically unpredictable and cannot be reliably used to infer the existence 
of the robot. 

2. Based on the color segmentation module in [1], samples are drawn from the 
non-line white segments (depicted as the yellow dots in Fig. 4) and are then 
clustered by pixel distance in the image space.  

3. The extracted clusters are classified as Nao robots if all of the following three 
criterions are satisfied:  

i. The number of segments in the cluster should be larger than 3.  
ii. The width-to-height ratio, where the height is defined in the longest 

direction of the cluster, should be larger than 0.2. This threshold is 
important to distinguish the robot from the field lines. 

iii. The highest point of the cluster should be close to the border line within 
10 pixels as the observed robot should intersect with the field border in 
the camera view if both of the observing and observed robots are 
standing in the field.  

 
Fig. 4 illustrates an example detection result from our Nao robot detector. After 
the robot has been detected, the lowest-center point of the robot in the image is 
determined in order to compute the relative range and bearing of the robot in 2D 
based on the assumption that all the map features and the robots are on the same 
ground plane. This calculation procedure is illustrated in Fig. 5.  
 

 

Fig. 4 The robot detection example. The robot detection results are indicated by cyan lines. The black 

dashed line indicates the field border and yellow dots are pixels sampled from non-line white segments. 
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Fig. 5 Illustration for the procedure of computing the relative range given the lowest-center point of an 

object in the image 

 
[Code Release] 
Our Nao robot detection algorithm is implemented in the module named 
RobotPerceptorNtu in the files Modules/Perception/RobotPercepterNtu.h and 
Modules/Perception/RobotPercepterNtu.cpp. The module provides the 
representation RobotPerceptNtu defined in the file 
Representations/Perception/RobotPerceptNtu.h. Note that module and 
representation are programming structures following the definitions in the 
B-Human system architecture (Sec. 3.3 of [1]). 
 
 

The performance of our Nao robot detection module is summarized in Table 1 and 
Fig. 6. The recall rate is higher when the target is in the front view than it is in the 
side view or the back view. As the proposed detection module is simply based on 
the detected white region, the detection performance degrades in either the side 
view or the back view compared to that in the front view. The samples of the 
observations from different views are shown in Fig. 6. The recall rate is above 0.6 
within 2 meter in average and it decreases as the target gets farther. The range 
accuracy is around 30 centimeters when the target is closer than 2 meters but 
grows to around 60 centimeters as the target gets farther. The bearing accuracy is 
around 7.5 degrees. The overall detection precision is 0.92 where the false 
positives are mainly arising from the misclassifications of the field lines. 

 

 
Table 1 Standard deviation of our robot detector in different ranges 
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Fig. 6 Recall rates of our robot detector in different robot views and at different distances 

 

Fig. 7 Photos of different views of the Nao robot 

 
2.3 Cooperative Localization and Tracking (CLAT) 

 
Our cooperative localization and tracking module is an EKF-based algorithm with 
the augmented state vector consisting of all the teammate robots and the moving 
objects. Aiming at providing accurate estimates, CLAT plays as an information 
fusion center that aggregates the motion commands and three types of 
measurements, including the robot-to-map measurements, the robot-to-robot 
measurements, and the robot-to-moving-object measurements, from all the 
teammate robots.  
 
The main components of CLAT are described in the following: 
 
I. Augmented State Vector 

 
In order to simultaneously estimate the states of both the robots and the moving 
objects in one coherent framework, we augment them all into the state vector: 
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where t denotes the time index and R and O represent the teammate and the 
moving object respectively. The main difference between R and O is whether the 
motion control information is known. In the RoboCup scenarios, R is the 
teammate robot and O can be the opponent robot or the ball.  

  
II. The Motion Model 

 
For teammate robots, as the motion commands and the feed backs from the joint 
encoders are known, the odometry motion model is used. For moving objects, as 
the odometry information is not available, the constant velocity (CV) model is 
applied for predicting the motion of the moving objects. 

 
With the assumption that the motion of robots and tracked objects are independent, 
the propagation matrix of the whole system can be written as: 

 

where GR and GO are the Jacobian matrices of the motion models of the teammate 
robots and the moving objects, respectively. The mean and covariance of the state 
after the prediction stage can be calculated through the standard EKF procedure. 

 
III. Data Association 

 
Before updating with the incoming measurements, data association must be 
determined first. The purpose of data association is to establish the 
correspondences between the incoming detection measurements and the tracked 
objects in the state vector.. Here, we apply the maximum likelihood data 
association algorithm with a threshold gating on the Mahalanobis distance 
between the incoming measurement and the expected measurement. Then the state 
is updated according to the three sensor models defined in the following 
subsection.  

 
IV. The Sensor Model 

 
In the case that the ith robot detects a moving object and associates it with the jth 
moving object, the sensor model for robot-to-moving-object measurements is 
computed as: 
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where hRO ( · ) is the function that transforms the expected jth moving object 
position in the global coordinate system to the local coordinate system of the ith 
robot. The Jacobian matrix of this function is 
 

 
with 

 
and  

 

where       is the ith  and       is the (M + j)th element of the matrix, M is 
the number of teammate robots involved in the state vector. For the other two 
types of measurements, the measurement function and the Jacobian matrix can 
also be defined similarly. Accordingly, the state vector and the covariance matrix 
can be updated with new retrieved measurements following the standard EKF 
procedure. 

 
V. Track Management 

 
It is also necessary to infer the existences of the moving objects because the tracks 
of moving objects should be initialized when new ones have been detected and 
should be pruned when they have not been observed for more than a few seconds. 
In our work, a binary Bayes filter is applied here to infer the existence of the 
tracked moving objects, which is a counter-based approach to accumulate the 
probability of the existence of the tracked moving objects. The existence 
probability of a tracked object increases as more measurements have been 
associated with it and vice versa, where the increment is an experimental 
determined parameter.  
 
The example results of our CLAT algorithm is shown in Fig. 8, which 
demonstrates that our CLAT algorithm is capable of simultaneously estimating the 
poses of the teammate robots and the opponent robots. The magenta crosses and 
ellipses show the pose estimates and the corresponding uncertainties of the 
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teammate robots, the cyan ones are the position estimates and uncertainties of the 
opponent robots, the red lines are the relative robot detection measurements, and 
the black crosses are the ground truth robot positions. This figure shows a general 
3-by-3 case and our CLAT algorithm successfully estimates the states of all the 
robots on the field. Fig. 9 shows the case that the striker, T2, that CLAT improves 
the estimate by incorporating the moving object information.  
 

 

 
Fig. 8 An example result of CLAT, where three teammate robots and three opponent robots are 

correctly estimated. 

	
  
	
  
[Code	
  Release]	
  
The	
  CLAT	
  algorithms	
  are	
  implemented	
  in	
  the	
  StateEstimator	
  module	
  in	
  the	
  files	
  
Modules/Modeling/StateEstimator.h	
  and	
  Modules/Modeling/StateEstimator.cpp.	
  
The	
  state	
  estimator	
  provides	
  the	
  representation	
  StateEstimate	
  which	
  contains	
  the	
  
current	
  belief	
  of	
  the	
  state	
  estimates	
  of	
  the	
  robots	
  and	
  the	
  moving	
  objects.	
  
StateEstimate	
  is	
  defined	
  in	
  the	
  file,	
  Representations/Modeling/StateEstimate.h. 
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(a) EKF-based Self-Localization 

 
(b) Cooperative Localization and Tracking 

Fig. 9 Comparison for trajectories estimated by self-localization and cooperative localization and 

tracking 

 
As the particle filter (PF) based algorithm designed by B-Human [1] has already 
fused the robot-to-map measurements into a self-pose estimate, we presently 
directly integrate this self-pose estimate from PF as our self-localization 
measurement in CLAT. We found that PF can naturally adopt multiple hypotheses 
and makes the estimates more robust, especially for the robot falling and 
penalization cases.  
 
For the moving objects, we only added the ball into the state vector as the moving 
object in the competition version. The reasons are: (1) adding the opponent robots 
into the state vector could make the algorithm suffer from the potential failure 
when data association accidently makes wrong associations between the teammate 
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robot and the opponent robot, (2) in RoboCup 2011, we have not yet designed the 
game strategy that considers the opponent positions, so the attraction for 
estimating the opponent positions degrades, and (3) for exploiting the advantages 
of improving localization using moving object tracking, putting the ball into the 
state vector is sufficient as most of the cases that require moving object tracking 
for improving localization happen when the striker is gazing and approaching the 
ball.  
 
Aiming at developing more intelligent strategies that consider all the robots on the 
field, we are now developing a multiple hypothesis tracking (MHT) based version 
of the CLAT algorithm to enhance the robustness in data association by explicitly 
modeling the data association uncertainty for the RobCup 2012 competitions. 
 
2.4  Negative Ball Information Integration 

 
The main purpose of the negative ball information integration module is to 
improve the ball location estimation not only when the ball is observed but also 
when the ball is not observed. The idea is that in addition to increase the ball 
existence probability of a place when the ball is observed, the probability 
decreases when the ball is not observed at that place. Fig. 10 illustrates the 
approach. 
 

 
Fig. 10 Illustration for the negative ball information integration 

 
For this purpose, an additional grid data structure is maintained on the top of 
CLAT, and the robot head poses are also shared with the teammates in order to 
infer the visible area of the teammates. The pseudo code of the proposed 
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algorithm is summarized below: 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

[Code Release] 
The related functions and data structures are implemented and added in the files 
Modules/BehaviorControl/BH2010StableBehaviorControl/Symbols/ 
BH2010StableBallSymbols.h and 
Modules/BehaviorControl/BH2010StableBehaviorControl/Symbols/ 
BH2010StableBallSymbols.cpp.  
 
Though this module can be designed and implemented straightforwardly, this 
module serves as the basis to significantly improve the ball searching efficiency 
when the ball is presently not visible by any of the teammate robots according to 
our experiences at RoboCup 2011. 
 
 
2.5  Vision-based Short-Range Obstacle Detection 

 
The necessity of the vision-based short-range obstacle detection stemmed from the 
fact that the sonar readings are unstable and inaccurate for obstacle detection. The 
sonar-based obstacle detector has to deal with a large amount of false positives 
and false negatives due to the unstableness of the sonar readings. It is also difficult 
to determine the precise position of the short-range obstacle as the obstacle near in 
front usually makes both of the left and right sonar readings short. Without more 

Algorithm Negative Ball Information Integration 
 
Let p(X) be the grid structure maintaining the ball existence 
probability at each location 
 
for each grid x 
 for each teammate robot R 
  if ball is detected by R at x 
   increase p(x) 
  else if x is visible by R 
   decrease p(x) 
  end 
 end 
end 
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accurate obstacle location estimates, obstacle avoidance would be difficult.  
 
As pushing other robots violates the rule and makes the robot penalized, we do not 
either want the robot bumping into another robot or becoming too conservative to 
miss the chance to approach the ball. Therefore, the vision-based short-range 
obstacle detection module is designed to compensate the flaw of the sonar sensor 
and to provide more precise estimates of the short-range obstacle in front of the 
robot. Our vision-based short-range obstacle detector is based on the percentage of 
the green pixels in the image. Note that it is designed only for short-range 
obstacles and is enabled only when the robot looks down in front. The algorithm 
works as follows:  
 
a. When the ball is not in view, the image is firstly equally split into the left and 

right parts, and then the green pixel percentages are respectively computed. If 
one of the percentages is below a threshold, it is deemed that there is an 
obstacle in front, and both of the percentages will be exported to the behavior 
module in order to determine which side to move the robot to avoid the 
detected obstacle.  

b. When the ball is in view, in addition to the above two ratio values, we also 
compute the ratios for the image part below the ball in order to determine 
whether and how the robot can approach the ball even when there are other 
obstacles in view. 
 

Fig. 11 shows an example in which the algorithm reports there is an obstacle in 
front, but the robot can still approach the ball because it is free between the robot 
and the ball. Therefore, the robot will not conservatively stop and will keep 
fighting against the opponent for the ball.  
 
 
[Code Release] 
The related functions for are implemented and added in the files 
Modules/BehaviorControl/BH2010StableBehaviorControl/Symbols/ 
BH2010StableObstacleSymbols.h and 
Modules/BehaviorControl/BH2010StableBehaviorControl/Symbols/ 
BH2010StableObstacleSymbols.cpp.  
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To summarize our perception system, the robot detector provides the 
measurements containing the spatial relations between the robots on the field. The 
CLAT module integrates the motion commands and three types of measurements, 
including the robot-to-map measurements, the robot-to-robot measurements, and 
the robot-to-moving-object measurements, from all the teammate robots, to 
estimate the states of the teammate robots and the moving objects. For further 
improving the ball estimation, the negative ball information is incorporated. 
Additionally, a vision-based short range obstacle detector is developed to 
compensate the unstable and inaccurate sonar readings. 
 

 
Fig. 11 Image from the Nao robot’s view when looking down, for illustrating the vision-based 

short-range obstacle detection 
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3 Motion 

 
Prompt kicking and blocking motions contributed significantly to our games in 
RoboCup 2011. In this section, several important motions we designed are 
introduced including three different kicking motions for the striker and a 
defensive diving motion for the keeper. As our walking engine is based on the 
B-Human Code Release, the readers are referred to Sec. 5.2.3 in [1] for more 
information. 
 
3.1 Special Actions with Parameter Passing 

 
Based on the B-Human framework [1], it is feasible to command the robot to 
execute the hand-coded fixed motions, which are called special actions (Sec. 5.2.4 
of [1]). To design a special action, we manually make the robot act and record all 
of its joint angle values at the key frames in a mof file. The process of executing a 
special action is depicted in Fig. 12. When a special action is called from the 
behavior state machine, the SpecialAction module will receive the call, read the 
corresponding mof file, and send the joint angle values recorded in the mof file to 
the servo motors on the Nao robot. 
 

 
Fig. 12: Original process of executing a special action 
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However, it is not allowed to pass parameters to dynamically change the joint 
values of the special actions, which could be very inconvenient for specific 
situations. For example, we have to write a number of mof files for the robot to 
kick the ball to different directions, one for a certain angle. Therefore, we modify 
the working flow of the special action slightly, and by letting some values in the 
mof file become variables, we can design only one mof file and perform different 
motions by passing different parameters. 
 

There are three steps for achieving parameter parsing in executing special actions 
and the modified procedure is illustrated in Fig. 13. 
 
1. Define new symbols in the mof files. Therefore, instead of coding constant 

joint values in the mof file, we can let some joints be the variables that will 
be determined online. 

2. During the game, determine the parameters online by the behavior engine, 
and pass the values to the SpecialActions module.  

3. Accordingly, the SpecialActions module can replace the values of the 
variables in the mof file by the online-determined parameters from the 
behavior engine, and thus achieves the special action with parameter passing. 

 

 
Fig. 13: Process of executing a special action with online-determined parameters 

 

2. Define New Symbols, X 

1. Set the Value of X online 
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3.2  Wide-Angle Kick 

 
Based on the functionality of parameter passing to the special action, we can develop 
the motion enabling the robot to kick toward different angles without spending a long 
time to adjust its body orientation, and we call this motion wide-angle kick. The most 
important insight for this wide-angle kick motion is that the kicking direction can be 
changed by just setting different values on the hip, knee and ankle joints. Therefore, 
the joint angle data of kicking toward different angles were collected offline, and the 
proper joint angle values can be computed online using linear interpolation.  
 
Using the proposed wide-angle kick action, the striker can kick the ball to a direction 
with a range of -50 to 50 degrees. Fig. 14 shows the snapshots of a wide-angle kick 
motion toward the direction of 45 degrees. The main moving directions of the parts of 
the robot are depicted by the arrows.  
 
[Code Release] 
This special action is coded in the rotkick.mof file. 
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Fig. 14: Wide kick action, red arrows depict the moving direction of parts and joints. 

 
 

3.3  Fast-Kick 
 

Although the wide-angle-kick could be a powerful action, it takes about 3 seconds to 
make the shot. In some situations, the robot should just make the kicking as quickly as 
possible. For examples, when the striker and the ball are very close to the opponent’s 
goal, the striker only has to touch the ball lightly and quickly. Otherwise, the 
opponent keeper may come and block the ball. Accordingly, we designed this 
fast-kick motion based on moving the robot’s joints minimally to touch the ball 
lightly and quickly. With this fast-kick action, the robot can quickly move the ball and 
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be ready for the next kicking. Fig. 15 shows the snapshots of the fast-kick action. The 
fast-kick action can be completed in 1 second which is three times faster than the 
wide-angle kick action.  
 
[Code Release] 
This special action is coded in the lightkick.mof file. 

 

 
 
 
 

  

  
Fig. 15: Fast kick action, red arrows depict the moving direction of parts and joints. 



	
   22	
  

3.4  Side-Kick 
 

The goal of the side-kick action is to directly kick the ball to left or right without 
asking the robot to circle around the ball. It is especially important for situations 
that there are opponents blocking in the way from the ball to the opponent’s goal. 
Our side-kick action is almost as fast as the fast-kick action. Fig. 16 shows the 
snapshots of the side-kick action.  
 
[Code Release] 
This special action is coded in the sidekick.mof file. 

  

  
Fig. 16: Side kick action, red arrows depict the moving direction of parts and joints. 
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3.5 Diving 
Diving is a special action for the keeper. When the keeper finds that the 
approaching ball is too fast to be blocked by walking, the keeper will actively lie 
down for fast blocking. To minimize the harm brought by falling, we let the robot 
relax the hardness of all the joints before it bumps into the ground. In practice, 
this action has saved us from many strong shots.  
 
[Code Release] 
This special action is written in the dive.mof file. 
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Fig. 17: Diving action, red arrows depict the moving direction of parts and joints. 
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4 Behavior 
 

We have designed four different roles: the striker, the offensive supporter, the 
defensive supporter, and the keeper. Each robot is assigned as one of the four roles 
at the beginning of the game. As the game situation changes, the role assignment 
is changed accordingly. In this section, we will first overview the tasks for 
different roles, and then introduce the role switching conditions and the behaviors 
for the four different roles. 

 
4.1 Task Overview of the Different Roles 

 
For not making the robots hinder each other, we only allow one robot to be the 
striker and to kick the ball. The task of the striker is to reach the ball and make 
the kick as efficiently as possible. The other two robots should be supporters. 
Two types of supporters are designed, offensive and defensive. The main task of 
the offensive supporter is to reach the position where the ball is likely to be after 
the striker kicks, and therefore it can become the next striker quickly. The keeper 
and the defensive supporter focus on blocking the ball kicked from the opponents. 
The keeper stays in the penalty area for most of the time, and the defensive 
supporter stands on the line between the ball and our own goal. An example of 
role assignment is shown in Fig. 18. 
 

 

Fig. 18 An example of our role assignment 
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4.2 Role Switch 
 
During the game, the striker, the offensive supporter and the defensive supporter 
change their roles according to their current poses and the ball location. The robot 
which can reach the ball in the shortest time will be the striker. Other than the 
striker, the robot which is nearer to the opponent’s goal will become the offensive 
supporter and the other one will become the defensive supporter. If the distances 
between the ball and two robots are approximately equal, the two robots may 
interchange their roles frequently and then act unstably. A counter to record the 
time passed after the previous role changing is added. The role switch cannot 
happen again in a too short period of time in order to make the role assignments 
stable. 
 
[Code Release] 
The role-switching related functions are implemented and added in the files 
Modules/BehaviorControl/BH2010StableBehaviorControl/Symbols/ 
BH2010StableBallSymbols.h, 
Modules/BehaviorControl/BH2010StableBehaviorControl/Symbols/ 
BH2010StableBallSymbols.cpp, and 
Modules/BehaviorControl/BH2010StableBehaviorControl/Options/Soccer/body_
control.xabsl. 

 
4.3 Striker 

 
The striker is the one with the most complicated behavior design in our system. 
We use two primary modules to hierarchically design its behavior. 

 
4.3.1  Top level behavior 

 
Fig. 19 shows the first module: playing_striker. It is used to navigate the striker 
to the ball. In this module, if the striker hasn’t seen the ball for a long time, it will 
enter the search state and start to search the ball using a simple behavior in which 
the striker stands at the same place and turns around until it finds the ball. If the 
ball is seen, the striker will go to the ball_found state and start to move toward 
the ball. The striker will firstly turn to the direction of the ball and then walk to it 
with the full speed. During walking, the striker still adjusts its orientation when it 
finds that the ball direction changes.  

If there are obstacles, e.g. opponent robots, on the path, the striker will enter 
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the far_avoid state to do obstacle avoidance. For reaching the ball earlier, the 
striker will not stop or move back. It avoids obstacles by moving laterally or 
moving forward with a rotational speed depending on the direction and distance 
of the obstacle in front. Once the ball is near enough, the striker will change to 
the striker_kick module and prepare to kick. 

 
[Code Release] 
The top level behavior of our striker is implemented in the file 
Modules/BehaviorControl/BH2010StableBehaviorControl/Options/Soccer/Strike
r/playing_striker2.xabsl. 

 

 
Fig. 19: State machine: playing_striker 
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4.3.2  Bottom level behavior 
 

Fig. 20 shows the second module: striker_kick. It is used to kick when the ball is 
near. Considering the spatial relations between the robot itself and opponent’s 
goal, the ball, and the obstacles, we delicately classify the situations in to different 
cases, and design the corresponding actions. A pre-designed action is chosen by 
considering the three questions: 

a. The neighborhood of the striker is occupied by the other robots or not? 
If yes, where are the opponent robots? 

b. Where is the opponent’s goal? 
c. Where is the ball? 

 
Fig. 21 shows the behavior of striker_kick under different situations. When the 
neighborhood is not crowded and the opponent’s goal is distant, the striker will 
use the wide-angle kick to make a strong shot. If the opponent’s goal is near, the 
striker will use fast-kick or side kick to make a quick shot for preventing the 
opponent keeper’s blocking. 
 
On the other hand, if the neighborhood is crowded, the striker will use the 
fast-kick action or the side-kick action to kick the ball quickly. If possible, it will 
select a kicking which can make the ball free from bumping into the obstacles 
and move toward the opponent’s goal. The crowded_front and crowded_side 
cases in Fig. 21 show two examples of the kicking selection. So far this module is 
implemented by the multiple-layered conditional rules. It will be our future work 
to design a more general planning method. 
 
[Code Release] 
The bottom level behavior of our striker is implemented in the file 
Modules/BehaviorControl/BH2010StableBehaviorControl/Options/Soccer/Strike
r/striker_kick.xabsl. 
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Fig. 20: State machine: striker_kick 

  
 

4.4 Offensive Supporter 
 

Fig. 22 illustrates the target position where our offensive supporter tries to reach. 
Our offensive supporter always tries to walk to a position next to and near the line 
connecting the ball and the goal, which is the assumed direction along which the 
striker kicks. We choose this position for three reasons: (1) the offensive supporter 
can easily reach the ball after striker’s kicking, and thus becomes the next striker 
quickly, (2) the offensive supporter can observe the ball, the opponent’s goal, and 
the striker, in order to assist the CLAT module, and (3) standing on this place will 
not hinder the striker’s shot.  
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Fig. 21: Examples of situations and reactions of our striker 

 
Once the striker starts the kick action, a message will be sent to the offensive 
supporter and the offensive supporter will actively track the ball in which the role 
switching can be done promptly if the offensive supporter should become the next 
striker. 

 
[Code Release] 

The offensive supporter behavior is implemented in the file 
Modules/BehaviorControl/BH2010StableBehaviorControl/Options/Soccer/Suppo
rter/playing_supporter.xabsl. 

 
 

4.5 Defensive Supporter 
 

A defensive supporter helps with blocking the ball, so it always walks to the 
position between ball and our own goal. For not entering the penalty area and 
hinder the keeper, the defensive supporter will just stand on a position near our 
own goal when the ball is very near to our own goal. The desired position of a 
defensive supporter is also shown in Fig. 22. 
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Fig. 22: Supporter positions 

 
[Code Release] 
The defensive supporter behavior is implemented in the file 
Modules/BehaviorControl/BH2010StableBehaviorControl/Options/Soccer/Suppo
rter/playing_defense_supporter.xabsl. 

 
 
 

4.6 Penalty Area Avoidance 
 
Only our keeper can stay in our penalty area. This module is used to prevent the 
robots, except for the keeper, from entering	
   the penalty area. This module firstly 
checks the position to see if the robot is going to be in the penalty area. If so, the 
robot will be asked to step away from the penalty area. Our striker and two 
supporters have to do the position checking using this module before performing 
their individual behaviors. Fig. 23 shows an example of combining this penalty 
area avoidance module for the striker, and this is done in the same way for the 
supporters. 
 
[Code Release] 
The penalty-area avoidance behavior is implemented in the file 
Modules/BehaviorControl/BH2010StableBehaviorControl/Options/Soccer/Strike
r/ playing_striker_illdef.xabsl. 
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Fig. 23: State machine: playing_striker_illdef 

 
4.7 Keeper 

 
The keeper should just stay in the penalty area and keep tracking the ball. When 
the keeper finds that the ball moves too quickly to be blocked by just walking, it 
will dive to stop the ball. When the keeper finds that the ball stops nearby or just 
moves slowly without the chance to enter our goal, the keeper will perform the 
striker behavior temporarily to kick the ball away.  

 
[Code Release] 
The defensive supporter behavior is implemented in the file 
Modules/BehaviorControl/BH2010StableBehaviorControl/Options/Soccer/Keepe
r/playing_keeper.xabsl. 
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