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Abstract— Localization and mapping are fundamental tasks
in mobile robotics. State-of-the-arts often rely on the static
world assumption using the occupancy grids. However, the real
environment is typically dynamic. We propose the feasibility
grids to facilitate the representation of both the static scene and
the moving objects. The dual sensor models are introduced to
discriminate between stationary and moving objects in mobile
robot localization. Instead of estimating the occupancy states,
the feasibility grids maintain the stochastic estimates of the
feasibility (crossability) states of the environment. Given that
an observation can be decomposed into stationary objects and
moving objects, incorporating the feasibility grids in localization
yields performance improvements over the occupancy grids,
particularly in highly dynamic environments. Our approach is
extensively evaluated using real data acquired with a planar
laser range finder. The experimental results show that the
feasibility grid is capable of rapid convergence and robust
performance in mobile robot localization by taking into account
moving object information. A root mean squares accuracy
of within 50cm is achieved, without the aid of GPS, which
is sufficient for autonomous navigation in crowded urban
scenes. The empirical results suggest that the performance
of localization can be improved when handling the changing
environment explicitly.

I. INTRODUCTION

Mapping is widely considered the most important problem
in robotics whose progress can impact a wide range of
perceptual problems, such as localization, navigation, explo-
ration and so forth. A most representative mapping method is
the occupancy grid mapping algorithm [1] which represents
maps by a collection of fine-grained grid cells that model
the occupancy states of the environment. Occupancy grid
mapping representation has been used in a great number
of robotic algorithms [2–4]. However, most existing robotic
mapping algorithms assume the world is static and maintain
the states of the obstacles in the environment [5]. The tech-
niques used in conjunction with these mapping algorithms
can only use the static parts of the environment, wherein
the dynamic parts of the environment are considered noise
and filtered out [2,6]. Localization in consequence becomes
less accurate and can diverge while navigating a highly
dynamic environment. Specifically, algorithms presuming a
static world assumption can be unreliable in the real envi-
ronment, which is typically dynamic. Instead of modeling
only the static part of the environment and filtering out the
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counterpart, taking into account moving object information
is critical for mobile robots to act autonomously in the real
environment.

Moving object detection is the problem of determining
if an object is moving, which is a subset of the detection
and tracking of moving objects (DATMO) problem that also
estimates object’s motion states. While the DATMO problem
has been extensively studied [7], mapping and localization
can also take advantage of these techniques to improve
upon the state-of-the-arts. Comparing to the conventional
approaches focusing on the space that is occupied by an
obstacle, we take a different perspective on the mapping
problem by considering the feasibility (crossability) of the
space. Given the a priori moving object detection based on
our previous work [8, 9], we propose to represent the map
using the feasibility states of the environment. Specifically,
the stationary parts and the moving parts of the environment
are assumed to be separated given the sensory data. The
objective is that the probabilistic sensor models for stationary
objects and moving objects are complementary in both
mapping and localization. The higher the probability that a
grid cell is feasible (crossable), the more probable that the
location is free space and temporarily occupied by a moving
object. On the other hand, the lower the probability that a
grid cell is feasible, the more probable that the location is
occupied by a stationary object.

The basic idea is to model the feasibility of the environ-
ment as a collection of grid cells, just like the occupancy
grid mapping algorithm, by making use of both moving
object information and stationary object information. Dual
probabilistic sensor models are applied for moving objects
and stationary objects, respectively. In mapping, a grid cell
is feasible only if it was ever occupied by a non-stationary
object. On the other hand, a grid cell is infeasible if it was
occupied by a stationary obstacle. In localization, moving
objects should probably be seen at grid cells which are
feasible. In contrast, stationary objects should be observed
at infeasible grid cells. In addition to modeling explicitly the
stationary environment and the dynamic objects, the use of
feasibility grids permits a straightforward use of the sensor
model in localization and results in improvement, particularly
in dynamic urban scenes.

II. RELATED WORK

The last decade has seen many developments towards
mapping and localization in dynamic environments. We draw
on the work from two major bodies of researches – redesign-
ing the sensor (or observation) model for localization, and



TABLE I
RANGE DATA INTERPRETATION

Occupancy Feasibility DescriptionMoving Stationary
Preceding Free Unknown Unknown Seeing through cells does not implies their feasibility. e.g., out-of-plane motion, uneven terrain
Corresponding Occupied Feasible Infeasible The feasibility state depends on the observed. i.e., moving–feasible, stationary–infeasible
Succeeding Unknown Unknown Unknown The unobserved cells remain unknown. c.f., analogous to the occupancy grid

mapping environments temporally.
The occupancy grid map representation has demonstrated

its powerfulness in mobile robot localization. One of the key
challenge in applying sequential Monte Carlo methods, such
as Monte Carlo localization (MCL), lies in the design of
the sensor model which can lead to the so-called particle
depletion or particle deprivation problem [10]. Thrun et al.
[5] addressed the side effect of using an over-peaked sensor
model. Limketkai et al. [11] derived conditional random
field filters (CRF-filters) to learn the motion model and
the sensor model for Monte Carlo localization. Levinson
and Thrun [12] proposed the use of a probabilistic map to
improve upon GPS/IMU systems by taking into account the
infrared reflectivity of the observations. These approaches
essentially based on the occupancy grid cannot take into
account the moving object information and could fail in
dynamic environments.

While the occupancy grid has been widely used in robotic
perception, mapping dynamic environments was rarely ad-
dressed. Arbuckle et al. [13] proposed to maintain collections
of occupancy grids representing the occupancy states of
the environment among different time intervals. Mitsou and
Tzafestas [14] proposed to store all occupancy probabilities
of each grid cell and arrange them for each grid cell
with a B+ tree. However, these approaches modeling the
environment as collections of grid cells are computational
demanding. On the other hand, they are tailored towards
representing environments in distinct time scales using so-
phisticated data structures, which can be difficult to integrate
into the state-of-the-art localization algorithms.

Our approach estimating the feasibility states of the envi-
ronment is practicable in modeling dynamic environments
and can subsequently be used in a Bayesian estimation
framework, such as Monte Carlo localization. The robustness
of probabilistic localization approaches can be improved
through the use of moving object information, particularly
in highly dynamic environments.

III. FEASIBILITY GRIDS

This section firstly establishes the basic mathematical
notation and derives the feasibility grid in the way analogous
to the occupancy grid mapping algorithm [1]. Let m =
{mx,y}x,y be the feasibility grid map where mx,y denotes
the feasibility probability of the grid cell with index (x, y).
Let {z1, z2, · · · , zT } be the collection of observations up to
time T where zt denotes the observation at time t. Just as the
occupancy grid, the feasibility grid is modeled as a Markov
random field (MRF) and the probability of each grid cell can
be estimated independently. Mapping is thus the problem of

determining the probability of feasibility of each grid cell
mx,y given the collection of observations Zt up to some
time t, which can be expressed as

p(mx,y|z1, z2, · · · , zt)

=
p(mx,y|zt) p(zt) p(mx,y|z1, z2, · · · , zt−1)

p(mx,y) p(zt|z1, z2, · · · , zt−1)
(1)

The log odds ratio commonly applied for computational
efficiency is calculated instead of estimating the posterior
directly, which can be defined and led to a recursive expres-
sion as

ltx,y = log
p(mx,y|zt)

1− p(mx,y|zt)
+ log

1− p(mx,y)

p(mx,y)
+ lt−1x,y (2)

where m̄x,y denotes the complement of mx,y .
The occupancy grid map representation provides a

straightforward approach to sensor integration. Regarding
feasibility, there are de facto two sensory modalities available
for updating the states of the grid cells: sensor update –
the perceptual sensors, and trivial update – the robot itself.
Specifically, feasible grids are probably crossed over by
the robot or some moving object. Stationary obstacles are
supposed to appear in infeasible grids. On the other hand,
the robot itself acts just as a proximity, specifically touch,
sensor identifying the feasibility of the ground plane crossed
over. The feasibility grid involves summing the evidence
for each grid cell from multiple sensory information. Let
z1, z2, · · · , zT in general denote the collection of compound
observations up to time T where zt is a composition of sensor
readings ∨izit at time t. The formulation of the feasibility
grid following from Eq. 1 can be expressed as

p(mx,y|z1, z2, · · · , zt)

=
∏

i,zi
t∈zt

p(mx,y|zit) p(zit)
p(mx,y)

p(mx,y|z1, z2, · · · , zt−1)

p(zt|z1, z2, · · · , zt−1)

The log odds ratio at each time t estimated recursively via
Bayes rule, following from Eq. 2, can be derived as

ltx,y =
∑
i

log
p(mx,y|zit)
p(m̄x,y|zit)

+N log
p(m̄x,y)

p(mx,y)
+ lt−1x,y (3)

where N is the number of sensors.
Note that the vehicle pose is implicit in the observation

in the above derivation of the mapping. In this work, there
are two sensory modalities available at each time t: zt – the
laser range scan, and zrt – the dummy observations obtained
from crossing over grid cells. The formulation following
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(a) Feasibility grids – stationary ob-
ject model zst
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(b) Feasibility grids – moving object
model zmt
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(c) Occupancy grids
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(d) Feasibility grids – vehicle model

Fig. 1. Sensor model for mapping. (a) Sensor model of the feasibility grid for stationary objects. (b) Sensor model of the feasibility grid for moving
objects. (c) Sensor model of the occupancy grid. (d) Vehicle model of the feasibility grid. In (a)–(c), r denotes the range reading. In (d), the robot is at
the origin of the x-y plane.

from Eq. 3 can be subsequently rewritten as

ltx,y = log p(mx,y|zt)− log[1− p(mx,y|zt)]︸ ︷︷ ︸
Sensor Update

+ log p(mx,y|zrt)− log[1− p(mx,y|zrt)]︸ ︷︷ ︸
Trivial Update

+η + lt−1x,y

where η is a constant depending on the environment.

A. Sensor Update

The sensor model p(mx,y|zt) is used to represent the
likelihood of having the laser range scan zt given the map. To
interpret the sensor reading obtained, a probabilistic density
function relating the range reading is used to determine the
feasibility probabilities, just as the occupancy grid mapping
algorithm.

Tab. I describes the feasibility profile derived and com-
pares to the occupancy grid. Given a range measurement
from a moving object, the corresponding grid cell has the
highest feasibility probability. On the contrary, the corre-
sponding grid cell has the lowest feasibility probability if
the range measurement comes from a stationary object. The
succeeding grid cells whose distance to the sensor is greater
than the range reading are unknown as they are unobserved.
However, comparing to the occupancy grid deducing that
the preceding grid cells are free (with a low occupancy
probability), we cannot infer much about the feasibility of
the grid cells which are not ever crossed over. A feasibility
probability slightly higher than 50% is assigned to these
grid cells. In other words, feasibility infers unoccupancy, but
on the contrary it does not necessarily hold. The feasibility
grid also eliminates the side effect of the occupancy grid
that commonly happens in the presence of the robot’s pitch
or roll motion. Specifically, once the sensor sees through
obstacles due to the out-of-plane motion, the information of
the nearer obstacles can subsequently be lost upon updating
the occupancy states for the measurements of the farer
obstacles, given that the sensor is located above ground.
The sensor model p(mx,y|zt) of the feasibility grid can be
expressed as

p(mx,y|zt) = p(mx,y|zst) p(mx,y|zmt )

where zt = zst ∨ zmt in which zst ⊆ zt and zmt ⊆ zt are
the stationary part and the moving part, respectively, of the
observation zt. The sensor models for stationary objects
and moving objects are illustrated in Fig. 1(a) and 1(b),
respectively, whereas the sensor model for occupancy grids
is depicted in Fig. 1(c).

B. Trivial Update

A vehicle model p(mx,y|zrt) is additionally used to de-
scribe the effect of the robot’s pose with respect to the
feasibility grids. The feasibility of the grid cells can be
inferred subsequently when crossed over by the robot. The
shape of the robot can be easily taken into account in the
vehicle model. In this paper, we assume a circular robot
body in the experiments. The vehicle model is illustrated
in Fig. 1(d).

C. Implementation

In order to construct the map of the environment, a non-
linear least squares approach [15] is used for solving the
SLAM problem, also known as GraphSLAM [16]. A graph
representation is used to optimize an objective function
wherein the vertices denote to robot poses and the edges
corresponds to the non-linear constraints extracted from the
odometric data and the observations. In brief, robot poses
are linked to their estimated location estimated using scan
matching [17], and consecutive robot poses are linked by the
odometric data. In the preprocessing stage, the motions of the
robot, and the moving object detection of the observations
are estimated [8, 9]. Given the displacements between the
observations and the stationary parts of the observations, the
globally consistent robot poses are estimated and used to
create the map of the environment of which the grid size is
20cm×20cm.

Fig. 2(a) shows the occupancy grid map of the environ-
ment, parts of which are enlarged in Fig. 2(b) and 2(c),
whereas Fig. 2(d) shows the feasibility grid map of the
environment, parts of which are enlarged in Fig. 2(e) and
2(f). As can be seen in Fig. 2(f), the boundaries of the side-
walk and the building at different heights above ground are
both seen by the robot. The robot can frequently see objects
at different heights due to the slight pitch or roll motion
caused by the slippage of the vehicle or the uneven terrain.
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(e) Feasibility grid map
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(f) Feasibility grid map

Fig. 2. Grid maps. Note that the color codes are different. (a) Occupancy grid map. The darker the color a grid cell, the higher its occupancy probability.
(b) The enlargement of the lower left rectangle in (a). (c) The enlargement of the upper right rectangle in (a). (d) Feasibility grid map. The lighter the
color of a grid cell, the higher its feasibility probability. (e) The enlargement of the lower left rectangle in (d). (f) The enlargement of the upper right
rectangle in (d).

In the occupancy grid mapping framework, the sidewalk
boundary can be omitted while updating the grid cells for
the measurements from the farer boundary of the building.
Some details of the environment are consequently neglected,
as shown in Fig. 2(c). While maintaining the feasibility states
of the environment, our approach can also retain finer details
of the static scene, as depicted in Fig. 2(f).

IV. LOCALIZATION WITH FEASIBILITY GRIDS

The feasibility grids describe the dynamic environment
facilitating the representation of both the stationary object
and moving object information. In this section, localization
with the feasibility grid is described based on sequential
Bayesian estimation. Both the static scene and the moving
objects are subsequently used to localize the robot, given a
feasibility grid map.

A. Bayesian Filters

Localization is the problem of estimating the pose xt of
a robot relative to a given map, which can be expressed as

p(x0:t|z1:t, u0:t−1,m)

∝ p(zt|xt,m) p(xt|ut−1, xt−1) p(x0:t−1|z1:t−1, u0:t−2,m)

where u0, · · · , ut−1 is the control inputs up to time t−1, m
is the map, p(xt|ut−1, xt−1) is the motion model for motion
prediction, and p(zt|xt,m) is the sensor model for sensor
update.

Gaussian filters, such as extended Kalman filters (EKFs),
can be limited since they requires Gaussian mixture models
to deal with multi-modality or ambiguity in the location

of the robot [18]. Relying on the design of the likelihood
function of the sensor model, sampling-based approaches,
such as particle filters [10], handle multi-modality by approx-
imating the posterior probability density with a collection
of particles and weights. Monte Carlo localization [3] is
a specialization of particle filtering tailored towards mobile
robot localization. In this work, the Monte Carlo localization
algorithm is used to evaluate the robustness of our approach,
though it can pose no problems to integrate with Gaussian
filters, such as EKF localization.

B. Likelihood Models

In Monte Carlo localization with occupancy grids, the
sensor model is used to correct the weights of the particles
by a likelihood function whereas the motion model draws
for particles with probabilities proportional to their weights.
The likelihood p(zt|xt,m) of the observation zt given the
location xt and the map m is generally expressed as

p(zt|xt,m) =
∏

i,zi
t∈zt

p(zit|xt,m)

where zit denotes the i-th range reading of the observation zt,
assuming conditional independence between the individual
range readings.

Typical likelihood models can be categorized into beam
models [2] and likelihood fields [4]. Beam models calculate
the likelihoods by simulating the way rays of light travel
through the environment. The likelihood function is deter-
mined relying on the ray casting operation which is closely
related to the physics of the sensor but suffers from lack



of smoothness and high computational expense. In addition,
the beam-based sensor models excluding the seeing through
problem described in Sec. III-A can degrade the effectiveness
of the feasibility grids. The likelihood fields on the contrary
measuring the correlation between the observation and the
map overcome the limitations and work well in practice
[16]. The likelihood function is derived by projecting the
end points of an observation into the Cartesian coordinates
of the map. While the likelihood field sensor model lacks a
physical explanation in the occupancy grids, it is appropriate
and works ideally for the feasibility grids.

C. Dual Sensor Models

The sensor model for feasibility grids is designated to
make use of the stationary and moving object information in
the map and the sensor observations. The idea is that moving
objects are supposed to traverse in crossable space, such as
traffic lanes and sidewalks. On the other hand, stationary
obstacles are presumed to appear in non-crossable space,
such as buildings, bushes and traffic islands. Given that the
observation zt is decomposed into stationary objects zst and
moving objects zmt , we at first define the sensor models for
stationary objects and moving objects respectively based on
the likelihood fields sensor model, which can be expressed
as

p(zt|xt,m) =
∏

i,zi
t∈zm

t

pm(zit|xt,m)
∏

i,zi
t∈zs

t

ps(z
i
t|xt,m)

where pm(·) and ps(·) denotes the likelihood function for
moving objects and stationary object, respectively. As the
feasibility grids represent the crossability states of the en-
vironment, the likelihood fields of the feasibility grids are
ideally adequate for deriving the likelihood function for
moving objects, just as the likelihood fields of the occupancy
grids are used to obtain the likelihood function for stationary
objects. On the other hands, the complements of the feasi-
bility grids are used to obtain the likelihood function for
stationary objects. The sensor model for stationary objects
can then be expressed as the dual function of the sensor
model for moving objects, which can be written as

ps(z
i
t|xt,m) = 1− pm(zit|xt, m̄)

where m̄ representing the non-feasibility states is the comple-
ment of the feasibility grid map m. By substituting the term
ps(·), the sensor model for feasibility grids can be expanded
as

p(zt|xt,m) =
∏

i,zi
t∈zm

t

p(zit|xt,m)
∏

i,zi
t∈zs

t

(
1− p(zit|xt, m̄)

)
(4)

where p(·) ≡ pm(·) is the likelihood field sensor model
directly derived from the feasibility grids.

In comparison with the conventional localization algo-
rithms considering only the free space and the occupied space
based on the occupancy grid, our approach further takes into
account the crossable space wherein moving objects travel
through. This allows our approach to further make use of

the moving object information, instead of filtering out or
neglecting the moving object information. It is particularly
crucial when the robot navigates a highly dynamic scene.

V. EXPERIMENTAL RESULTS

We quantitatively evaluate our approach to mobile robot
localization using real data [19] acquired in a crowded
urban scene. The workspace about 600m×800m in size is
highly dynamic comprising stationary obstacles, vehicles,
trailers, pedestrians, etc. A loop of approximately 3km is
traversed twice, and the data can thus be used to cross-
validate the comparative approaches. In addition, the ground
truth moving objects were manually annotated over the entire
data set so that an accurate, globally consistent trajectory of
the vehicle can be obtained for evaluation by eliminating the
non-stationary parts of the data. In the data set, 16.13% of
the data are dynamic with a standard deviation of 15.4%. The
moving objects inhabit 93.91% of the measurements in the
most dynamic case. While it can be a common configuration
of data acquired in a crowded urban scene, the performances
of comparative approaches are tested using the data set.
The robustness against non-stationary objects can also be
evaluated by inspecting the performance with respect to the
dynamics of the data.

Our approach is evaluated against Monte Carlo local-
ization with occupancy grids in terms of convergence and
accuracy. The convergence is firstly experimented under
global localization in which the initial pose of the robot
is unknown. The presence of dynamic objects can result in
serious problem in convergence. We show that our approach
achieves improvements by explicitly considering the moving
object information. Secondly, the accuracy is assessed by
comparing the root mean squares errors (RMSEs) under
position tracking assuming that the initial robot pose is
known. Specifically, we compared the performance of the
following approaches.
OG Occupancy grids. Mapping and localization using

entire observations containing stationary and mov-
ing objects. Specifically, moving objects are ne-
glected and treated as stationary objects.

OGS Occupancy grids. Mapping with only stationary ob-
ject information, and localization using entire obser-
vations. Specifically, moving objects are filtered out
in mapping.

OGSS Occupancy grids. Mapping and localization us-
ing only stationary object information. Specifically,
moving objects are filtered out in mapping and
localization.

OGSD Occupancy grids presuming free space is crossable.
Mapping with only stationary objects, and local-
ization using entire observations in which the dual
sensor model of occupancy grids is applied for
range readings from moving objects. Specifically,
moving objects are filtered out in mapping, and
discriminated in localization.

FG Feasibility grid. Mapping and localization using
entire observations. Specifically, moving objects are
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Fig. 3. Comparison of convergence. (a) Convergence rate in percentage. (b) Average and standard deviation of convergence time in second.

discriminated in mapping and localization.

A. Global Localization

We first evaluate the performance of the localization
approaches in terms of global localization. This experiment is
designated to investigate the effectiveness of the representa-
tion of the environment and the sensor model in localization.
Without a known initial robot pose, a rapid convergence
within a vicinity of the true robot location is crucial for
mobile robots to achieve autonomous tasks. As the vehicle
navigated through the loop twice in the data set, the 2-fold
cross validation is used to evaluate the convergence of the
approaches, wherein one part of the data is retained as the
validation data for localization with the map created using
the other part of the data as the training data. An arbitrary
time step is chosen as the initial time step from the validation
data at each run for testing the map built using the training
data.

In order to inspect whether an estimate has converged, the
standard deviations along x and y axes of the particle set is
calculated at each time step. It is defined that a particle set
converges when its standard deviations shrink to a vicinity
of the true location within a 5m×5m circle. Ideally, the
particle set should converge towards the solution if these
exists some particles initially within the neighborhood of the
true location. However, ambiguity for which particles are
deprivated can lead to divergence, particularly in dynamic
scenes that lack of sufficient static landmarks. Our approach
can be thought of as a variation of the conventional Monte
Carlo localization algorithm in which the ambiguous situa-
tions can be eliminated by additionally taking into account
the non-static landmarks.

In this experiment, the localization procedure processed
the data at 7.5 Hz and was repeated 100 times for each
configuration. Fig. 3 shows the convergence rate, and the
mean and the standard deviation of the convergence time.
Note that the statistics of the convergence time is taken
over the converged runs. As can be seen, our approach,
denoted FG, yields a convergence rate of over 95%, as well
as rapid convergences with a low variance. The occupancy
grids, denoted OG, on the contrary is unreliable and can be
hardly applicable in an urban scene without a known initial
pose. Localization with the occupancy grids created using
only stationary object information, denoted OGS and OGSS,

results in slight improvements, particular in the convergence
time. Localization with the occupancy grids using the dual
sensor models, denoted OGSD, leads to further improve-
ments over OGS by considering moving object information,
instead of filtering out. It is observed that the more the
information properly modeled, the more the effectiveness
of the approach. Our approach in particular outperforms
the alternatives, in which moving object information can be
beneficial for resolving the ambiguous situations in global
localization.

B. Position Tracking

In addition to the convergence, we also evaluate the
accuracy of our approach quantitatively. Due to the absence
of the ground truth locations, we use the offline Graph-
SLAM algorithm described in Sec. III to obtain a reliable
trajectory for benchmarking by aligning the range scans
against the existing map. As the offline method is supposed
to yield highly accurate estimates, the residual errors of
the comparative approaches are calculated with respect to
the trajectory estimate from the GraphSLAM algorithm.
In this experiments, a set of 5000 particles is employed.
The first part of the data is used for evaluation using the
map created with the second part of the data. The initial
particle set is normally distributed around the true location
with a standard deviation of 5m, whereas the orientation is
uniformly distributed.

Fig. 4 shows the RMSEs in the longitudinal and lateral
directions. To facilitate the interpretation of the assessment,
the RMSEs are calculated with respect to each time step
interval, whereas the overall RMSEs are also presented, as
shown in Fig. 4(a) and 4(b). The dynamics of the data
within each time step interval represented by the ratio of
measurements from moving objects are given in Fig. 4(c). As
can be seen, the occupancy grid, denoted OG, is unreliable
and bears large offsets. Localization using entire observa-
tions with the occupancy grids created using only stationary
object information, denoted OGS, performs fairly but the
RMSEs are even worse because of the presence of highly
dynamic scenes in the data set which bias the estimates
significantly. Furthermore, localization using only stationary
observations, denoted OGSS, and with dual sensor models,
denoted OGSD, achieves improvements as the non-stationary
objects are removed or discriminated. Our approach, denoted
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(b) Lateral RMSE
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Fig. 4. Comparison of accuracy. (a) Longitudinal RMSE. (b) Lateral RMSE. (c) Moving object ratio for each time step interval

FG, outperforms the alternatives, wherein the RMSEs are
reduced from meters to within around 50cm. In either lon-
gitudinal or lateral error, the feasibility grid demonstrates its
robustness for localization in highly dynamic environments.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel variant of the grid-based
representation of the map. The feasibility grid is introduced
realizing the integration of moving object information in
robotic mapping. The feasibility grid permitting a straightfor-
ward use of the dual sensor models also facilitates the process
of incorporating moving object information in mobile robot
localization. As shown in the extensive experiments, our
approach which improves upon the alternatives is capable
of rapid convergence and robust performance by handling
dynamic objects explicitly. Without a known initial robot
pose, the convergence of over 95% can be achieved in
the urban environment. The RMSEs in the longitudinal
and lateral directions have been reduced from meters to
within 50cm in the dense and dynamic data set, which was
acquired using a planar laser range finder. To the best of
our knowledge, we have also presented the first detailed
analysis of the merit of discriminating moving objects for
mobile robot localization in terms of convergence and ac-
curacy. Localization consequently can be benefited from,
rather than degraded by, the moving objects. Our approach is
subsequently able to reliably localize a vehicle with sufficient
accuracy for navigating crowded urban scenes.

A promising future direction is to incorporate the 3D range
data into the feasibility grids by analyzing the crossability
directly from terrain smoothness and infrared intensity. It
is in particular useful to create a feasibility grid map with
increased coverage of the crossable areas of the environment.
In addition, the implementation of the experiments employs
a very smooth sensor model to ensure against particle de-
pletion. It is also of interest to reason about the conditional
dependence among the range readings, particularly for the
moving objects, to further improve the dual sensor models.

REFERENCES

[1] A. Elfes, “Uncertain geometry in robotics,” IEEE Journal of Robotics
and Automation, vol. 3, no. 3, pp. 249–265, June 1987.

[2] D. Fox, W. Burgard, and S. Thrun, “Markov localization for mobile
robots in dynamic environments,” Journal of Artificial Intelligence
Research, vol. 11, no. 3, pp. 391–427, February 1999.

[3] F. Dellaert, D. Fox, W. Burgard, and S. Thrun, “Monte Carlo local-
ization for mobile robots,” in Proceedings of the IEEE International
Conference on Robotics and Automation, vol. 2, Detroit, MI, USA,
May 1999, pp. 1322–1328.

[4] S. Thrun, “A probabilistic online mapping algorithm for teams of
mobile robots,” The International Journal of Robotics Research,
vol. 20, no. 5, pp. 335–363, April 2001.

[5] S. Thrun, D. Fox, W. Burgard, and F. Dellaert, “Robust Monte Carlo
Localization for Mobile Robots,” Artificial Intelligence, vol. 128, no.
1-2, pp. 99–141, 2000.

[6] D. Fox, W. Burgard, S. Thrun, and A. B. Cremers, “Position Estima-
tion for Mobile Robots in Dynamic Environments,” in Proceedings of
the National Conference on Artificial Intelligence, Madison, Wiscon-
sin, July 1998.

[7] Y. Bar-Shalom, T. Kirubarajan, and X.-R. Li, Estimation with Applica-
tions to Tracking and Navigation. New York, NY, USA: John Wiley
& Sons, Inc., 2002.

[8] S.-W. Yang and C.-C. Wang, “Multiple-Model RANSAC for Ego-
Motion Estimation in Highly Dynamic Environments,” in Proceedings
of the IEEE International Conference on Robotics and Automation,
Kobe, Japan, May 2009, pp. 3531–3538.

[9] S.-W. Yang, C.-C. Wang, and C.-H. Chang, “RANSAC Matching:
Simultaneous Registration and Segmentation,” in Proceedings of the
IEEE International Conference on Robotics and Automation, Anchor-
age, Alaska, May 2010.

[10] A. Doucet, N. de Freitas, and N. Gordon, Sequential Monte Carlo
Methods in Practice. Heidelberg: Springer, 2001.

[11] B. Limketkai, D. Fox, and L. Liao, “CRF-Filters: Discriminative
Particle Filters for Sequential State Estimation,” in Proceedings of the
IEEE International Conference on Robotics and Automation, Roma,
Italy, April 2007.

[12] J. Levinson and S. Thrun, “Robust Vehicle Localization in Urban
Environments Using Probabilistic Maps,” in Proceedings of the IEEE
International Conference on Robotics and Automation, Anchorage,
Alaska, May 2010.

[13] D. Arbuckle, A. Howard, and M. Matarić, “Temporal Occupancy
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