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Abstract— The iterative closest points (ICP) algorithm is
widely used for ego-motion estimation in robotics, but subject
to bias in the presence of outliers. We propose a random
sample consensus (RANSAC) based algorithm to simultaneously
achieving robust and realtime ego-motion estimation, and multi-
scale segmentation in environments with rapid changes. Instead
of directly sampling on measurements, RANSAC matching
investigates initial estimates at the object level of abstraction
for systematic sampling and computational efficiency. A soft
segmentation method using a multi-scale representation is
exploited to eliminate segmentation errors. By explicitly taking
into account the various noise sources degrading the effective-
ness of geometric alignment: sensor noise, dynamic objects and
data association uncertainty, the uncertainty of a relative pose
estimate is calculated under a theoretical investigation of scor-
ing in the RANSAC paradigm. The improved segmentation can
also be used as the basis for higher level scene understanding.
The effectiveness of our approach is demonstrated qualitatively
and quantitatively through extensive experiments using real
data.

I. INTRODUCTION

Ego-motion estimation in dynamic environments is one of
the most fundamental problems in mobile robotics, which is
the problem of determining the pose of a robot relative to
its previous location. It is not easily achievable as there are
two motions involved: the motions of moving objects and the
motion of the robot itself. A large body of work in computer
vision over the last decade has been concerned with the
extraction of ego-motion information from image sequence
[1–3]. The performance of ego-motion estimation depends
on the consistency between observations at successive time
steps, and can be degraded in the presence of outliers. The
motivation of this work is intended to provide a robust
realtime solution to the problem of relative pose estimation
in non-rigid scenes.

The iterative closest points (ICP) algorithm [4, 5], which
is based on least squares minimization, has been widely
used for aligning range images. However, conventional least
squares approaches are subject to bias in the presence of
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outliers. Since the introduction of the ICP algorithm, many
variants have been proposed upon the basic ICP concept.
Rusinkiewicz and Levoy [6] proposed a combination of ICP
variants optimized for high speed with a point-to-plane error
metric. Pfister et al. [7] introduced a weighted matching
algorithm to estimate the transformation by matching succes-
sive range scans. Pfister and Burdick [8] described a multi-
scale point and line-based representation of range scans to
improve efficiency of scan matching. Minquez et al. [9] used
a new metric distance in the robot’s configuration space.
Bosse and Zlot [10] presented an iterative scan matching
technique using an extended Kalman filter maintaining all
the vehicle poses. More recently, we proposed a RANSAC-
based segment matching approach [11] to estimate a robot’s
ego-motion in dynamic environments. However, conventional
approaches cannot deal with dynamic objects. Segment-
based approaches are subject to imperfect segmentation.

As the key development in robotics has been the adop-
tion of probabilistic approaches, many recent state-of-the-art
robotic systems employ probabilistic techniques for robotic
perception. However, in developing a practical relative pose
estimation algorithm, it can be difficult to quantify the effec-
tiveness of a relative pose estimate. Gutmann and Schlegel
[12] described a comparison on the covariances from several
scan matching approaches in indoor environments. These
approaches work fine in office-like environments, particularly
with orthogonal or rectilinear walls, but are infeasible for
unstructured environments. Lu and Milios [13] have shown
how a covariance matrix for the ICP algorithm can be
estimated directly from the corresponding pair of points.
Unfortunately, the uncertainty estimates are too conservative
and do not correspond to reality. Bengtsson and Baerveldt
[14] presented to calculate the covariance matrix by esti-
mating the Hessian matrix of the error function minimized
by the iterative dual correspondence (IDC) algorithm. The
approximation mandates predefined constant offsets in trans-
lation and rotation for evaluating the minimization error.
Wang and Thorpe [15] proposed a hierarchical object based
representation for simultaneous localization and mapping
(SLAM) which estimates the uncertainty using a sampling-
based approach. The registration process is performed repet-
itively with random initial estimates. Censi [16] proposed a
Laplace approximation to calculate the covariance matrix for
scan matching algorithms.

In the computer vision literature, random sample consen-
sus (RANSAC) [17] is one of the most effective algorithms
for model fitting to data containing a significant percentage of
gross errors. It is an iterative method to estimate parameters
of a mathematical model from a set of observed data which



contains outliers. A theoretical investigation of scoring under
a simple inlier-outlier model is performed to discriminate
outliers from the inlier model. The RANSAC paradigm
which is capable of fitting data containing a significant
percentage of gross errors is advanced in its effectiveness
and efficiency, and particularly applicable to scene analysis.
RANSAC-based approaches in the computer vision literature
mainly focus on segmenting a range image by feature extrac-
tion and parameter fitting [18,19]. Chen et al. [20] applies a
rigidity constraint for feature search in a data set. A random-
selection strategy is repeated until a solution is found. These
approaches can fail to reliably compute a robot’s relative
pose, particularly when registering range scans in unknown
environments, which are rather impoverished in the localized
landmarks [5].

Based on the RANSAC-based segment matching approach
[11], the paper introduces the RANSAC matching algorithm
utilizing a multi-scale representation of range images. To
provide robustness against poor segmentation and moving
objects, RANSAC matching solves the problem of relative
pose estimation at the object level of abstraction, in which
data association uncertainty and segmentation uncertainty are
tackled simultaneously. The uncertainty of a relative pose
estimate is calculated under a theoretical investigation of
scoring in the RANSAC paradigm. The multi-scale seg-
mentation can also supply a significant preprocessing step
for many robotics applications, such as modeling of non-
stationary environments [21] and moving entity tracking
from a moving vehicle [22]. RANSAC matching does not
employ any geometric features which are often environment
dependent. It also inherits the computational efficiency and
probabilistic robustness from the RANSAC paradigm. The
proposed approach is implemented and tested in the context
of ego-motion estimation and SLAM using laser range
data. Experimental results demonstrate the effectiveness and
robustness of our algorithm.

II. RANDOM SAMPLE CONSENSUS

First of all, we review the foundation and probabilistic
formulation of RANSAC. Classical techniques for parameter
estimation optimize the fit of a functional description to all
of the presented data. The RANSAC procedure is opposite
to that of conventional smoothing technique. Rather than
using as much of the data as possible to obtain an initial
solution and then attempting to eliminate the invalid data
points, RANSAC uses as small an initial data set as feasible
and enlarges this set with consistent data when possible [17].

RANSAC uses the geometric distribution in statistics
which models the discrete distribution: the probability distri-
bution of the number X of Bernoulli trials needed to get one
success, supported on natural numbers N. If the probability
of success on each trial is b, then the probability that the
k-th trial is the first success is

Pr(X = k) = (1− b)k−1b (1)
= (1− wn)k−1wn (2)

where w is the probability that any selected data point is
within the error tolerance of the model, and n is the number
of good data points required to determine the model, for all
k ∈ N. To ensure with probability p that at least one of the
random selections is an error-free set of n data points, we
must expect to make k selections, where

(1− b)k ≤ (1− p), (3)
k ≥ log(1− p)/ log(1− b). (4)

RANSAC is effective for model fitting, particularly when
a significant percentage of data are outliers. It is ideally
suited for applications in range image analysis. A detailed
derivation and a comprehensive description can be found in
Fischler and Bolles [17]. The RANSAC formulation contains
two remaining unspecific parameters n and w which are
highly relevant to characteristics of data. In the next section,
we will derive the parameters for the ego-motion estimation
problem where non-static objects can be rejected as outliers.

III. RANSAC SEGMENT MATCHING

Ego-motion estimation can be performed using range im-
age registration algorithms in the computer vision literature.
To ensure against the possibility of the final consensus set
being compatible with an incorrect model, the size of data
points per selection should be greater than or equal to three
for determining the pose transformation, including translation
and rotation. However, one of the most difficult problems
in range image processing is data association. Every single
measurement is featureless. Researchers usually apply the
closest point association rule to register data points with
unknown data association, such as the ICP algorithm [5].

A. Segmentation

In the RANSAC paradigm, a number of random samples
consisting of small sets are taken from an observation. A
first attempt is to generate random samples directly from all
measurements of an observation. Closest point association
often yields good estimate for data containing a mass of
points. However, registration performs very poorly on data
containing few points and often results in ambiguity. Sam-
pling directly on all measurements also requires compara-
tively large size of data points to preserve sufficient shape
information for registration. For example, if w = 0.5 and
n = 5, then b = 0.03125. To obtain a 99% assurance of
making at least one error-free selection, by Equation 4 we
have k ≥ 146. It is time-consuming and computationally
intractable for realtime applications, even though five points
are still insufficient for obtaining a good registration result.

Instead of direct sampling on measurements, we pro-
pose to use a higher level data representation – segment
– to achieve reliable registration and realtime performance.
An observation is segmented and further split into sets
of measurements representing objects. Specifically, objects
are extracted by segmenting a range image into densely
sampled parts. Here, we use a distance criterion to segment
measurements into objects.



B. Matching

In the classical RANSAC paradigm, letting o be a feature
and h be some hypothesis, the effectiveness of each (o, h) is
examined and represented using a binary score. Specifically,
if (o, h) is an inlier pair, the score sh of the hypothesis
h is incremented. As segments might be of significantly
different sizes, a binary score is insufficient to describe the
quantity of an association between two segments. Let z be
an observation and zi be the i-th segment in z. Comparing to
the classical RANSAC process, the score sih of each segment
zi is supported on N and the effectiveness of the pair (zi, h)
is represented by a natural number.

1) Sampling: To build consensus sets, z is segmented
and represented as a collection of segments z = ∪izi.
First, segments are randomly selected with probabilities
proportional to their sizes. A hypothesis h is generated by
matching the selected n segments with the reference model
z̄.

2) Scoring: To obtain the score sih of a segment zi, the
effectiveness of (zi, h) is examined by checking if (y, h) is
an inlier pair for all y ∈ zi. The score sih of a segment
zi is defined as the number of measurements y ∈ zi

which are located within neighborhoods of measurements
in the reference model z̄. Here, (y, h) is judged as an inlier
pair if and only if the measurement y transformed to the
global coordinate by the hypothesis h is located within a
neighborhood d of some measurement in the reference model
z̄. Specifically, the score sih is incremented if the pair (y, h)
is judged as an inlier pair. Therefore, we have

sh =
∑

{i|zi⊆z}

sih (5)

=
∑
zi⊆z

∑
y∈zi

1h(y) (6)

where 1h(y) is an indicator function indicating whether
or not (y, h) is an inlier pair. When the process finishes,
the hypothesis with the highest score is output as the best
transformation ψ. In this work, d is 0.3 meter.

The parameter n should be carefully determined and take
into account the tradeoff between efficiency and reliability,
and the characteristics of the data. For matching segments
with the reference model, one segment is usually sufficient
to preserve the shape information of the environment unless
an environment is composed of line segments which result
in ambiguity. It is clear that the higher the value n, the
higher the probability at least one hypotheses is an inlier, and
thus the reliability increases. Letting n = 2 and w = 0.5,
according to Equation 4, to obtain a 99% assurance of
making at least one error-free selection, the number k of
selections must be greater than or equal to 17, which is
computationally sufficient for realtime applications.

However, the present segmentation approach can fail as
the characteristics of an environment are subject to change
over time. Objects may be mis-merged with a high threshold,
while using a too low threshold results in over-segmentation.
Figure 1 gives an example illustrating the segmentation issue

and Figure 2(c) shows the visual image. On the top of these
figures, a static object and a moving object are very close to
each other. In Figures 1(b), 1(c) and 1(d), the two objects are
mis-segmented and merged together as they are not spaced
far enough apart from each other, whereas, in Figures 1(e),
1(f) and 1(g), the two objects are properly segmented but
most of the objects are split into fragmented segments.

IV. MULTI-SCALE RANSAC MATCHING

In this section, we describe the proposed RANSAC match-
ing algorithm in which segmentation issues are resolved
using a multi-scale representation. As segmentation is used
as a preprocessing step in segment-based approaches, the
segmentation errors introduced by the hard decisions bring
difficulties to the segment matching algorithm. A scale tree
representing objects of varying sizes in a range image is
proposed to eliminate the segmentation errors.

A. Multi-scale Representation

We define a scale tree comprising collections of segments
extracted from a range image at multiple scales. Edges inher-
iting parent-child relationships on the tree are established for
segments at different scales for which the child segment at
a finer scale is subsumed in the parent segment at a coarser
scale. A scale tree is constructed in a top-down manner. The
process is started by extracting segments at the coarsest scale
and then iteratively extracting finer segments by splitting
from the coarser segments. Let zj,i denote the i-th segment
extracted at the j-th scale. The vertex set of a scale tree can
then be defined as ∪j ∪i zj,i. Figure 1 illustrates an example
of the multi-scale representation of a range image. In this
work, the segmentation thresholds are 12, 9, 6, 3, 1.5, and
0.75 meter respectively.

B. Multi-scale Matching

To avoid under-segmentation and over-segmentation, we
take advantage of the multi-scale representation wherein an
observation z is represented as collections of segments ex-
tracted at multiple scales. Instead of making hard decisions in
segmentation, we propose a soft segmentation method using
the multi-scale representation to simultaneously deal with
data association uncertainty and segmentation uncertainty.
All segments in a scale tree are taken into account in the
sampling stage of the RANSAC process. Comparing to the
segment matching approach, the consensus set is generated
from randomly selected n segments from all segments within
the scale tree.

Constructed in this manner, the uncertainty in segmenta-
tion is modeled directly in the process of building consensus
sets. It is assumed that the probability of a measurement be-
longing to a segment at some scale is uniformly distributed,
which can be expressed as

p(zj,i|y) ∼ U(`), ∀zj,i 3 y (7)

where U(`) denotes the uniform distribution on N`
1, and ` is

the number of scales used for constructing the scale tree.



(a) Scale tree
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(b) Threshold = 12m
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(c) Threshold = 9m
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(d) Threshold = 6m
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(e) Threshold = 3m
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(f) Threshold = 1.5m
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(g) Threshold = 0.75m

Fig. 1. Multi-scale representation. In (a), the scale tree of the range image is depicted. The segmentation result at each scale is visualized in (b), (c),
(d), (e), (f) and (g), in which the observation is shown in red dots, the segments are shown in rectangles, and segments with less than four points are not
depicted for clarity. The green rectangle indicates that a static object and a moving object are mis-merged in (b), (c) and (d), and properly segmented in
(e), (f) and (g).

A hypothesis is then generated by aligning the sampled
segments with the reference model z̄. To obtain the score sh
of a hypothesis h, the effectiveness of (z, h) is examined by
accumulating the effectiveness of each measurement in the
observation z. Thus, we can rewrite Equation 6 in a more
general form as

sh =
∑
y∈z

1h(y) (8)

where 1h(y) is an indicator function indicating whether
or not (y, h) is an inlier pair. The same as previously,
the RANSAC process then outputs the hypothesis with the
highest score as the ego-motion estimate ψ.

In the RANSAC process, the multi-scale representation
is utilized for hypothesis generation. In addition to the
assumption that at least 50% of the measurements in an
observation are static, to cope with the segmentation issue,
we further take into account the segmentation uncertainty
which is assumed uniformly distributed. We define that a
segment is consistent if and only if its measurements undergo
the same motion. Let v be the probability a measurement
is consistently segmented. Observe the segmentation results
given in Figure 1 that the objects on the top which are
mis-merged in Figures 1(b), 1(c) and 1(d), and consistently
segmented in Figures 1(e), 1(f) and 1(g). As a result, for
each measurement of an observation, there exists some scale

such that scales below yield a consistent segment whereas
thresholds above do not. Hence, according to Equation 7, we
assume v = 0.5, without loss of generality. By Equation 4,
to obtain a 99% assurance of making at least one error-free
selection, we have

k ≥ log(1− p)/ log(1− b)
= log(1− p)/ log(1− (w · v)n)

= log(1− 0.99)/ log(1− 0.0625)

≥ 72 (9)

where the probability of success on each trial b = (w · v)n

takes into account the segmentation uncertainty, as segments
at multiple scales are employed in the RANSAC process.

C. Multi-scale Segmentation

To achieve better segmentation, we further perform edge
deletion on the scale tree to remove inconsistent segments.
The tree is split in a bottom-up manner. Each segment
zj,i in the observation z is transformed into the global
coordinate with the transformation ψ. We define ω(zj,i) as
the effectiveness of the association between the segment zj,i

and the reference model z̄, which is evaluated by calculating
the percentage of measurements in zj,i within neighborhoods
of measurements in z̄. Specifically, if a segment is static, it
is probably associated with some segment in the reference
model in a relative great proportion, unless it be moving or
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(b) Multi-scale RANSAC matching

(c) Visual Image
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(d) ICP
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(e) Multi-scale RANSAC matching

(f) Visual Image

Fig. 2. Multi-scale RANSAC matching. The ICP results are shown in (a) and (d) while the corresponding RANSAC matching results are shown in (b)
and (e). Visual images for these two examples are depicted in (c) and (f), respectively. In (a), (b), (d) and (e), the observation is shown in red dots and the
reference model is shown in gray dots. In (b) and (e), the segments are shown in blue rectangles, and the uncertainty ellipse at around the origin is shown
in cyan. Regarding the segmentation results only the root vertices of scale trees are depicted for clarity.

occluded. Thus, if ω(zj,i) is less than some proportion φ, the
vertex corresponding to ω(zj,i) and its descendants are split
from the scale tree and forms a new tree. The split operation
is performed from the leaf vertices of a scale tree, and cuts
all edges connecting to the split vertex from the scale tree.
In our implementation, the value of φ is 50%, which is the
only parameter has to be chosen in this work, in addition to
RANSAC parameters.

Figure 2 demonstrates the effectiveness of the proposed
RANSAC matching algorithm and the multi-scale segmen-
tation. Figures 2(a) and 2(d) show the ICP results, Fig-
ures 2(b) and 2(e) depict the RANSAC matching results,
and Figures 2(c) and 2(c) present the corresponding visual
images. The most pressing issue of the conventional scan
matching algorithms is that they do not explicitly cope
with outliers. It can be seen that the RANSAC matching
algorithm outperforms the ICP algorithm. The ICP algorithm
can possibly converge to local minima in the presence of
moving objects, particularly in dynamic scenes. This is
typical for least squares approaches in which the quadratic
penalty allows a outlier far apart from the true solution to
bias the final result [17]. Specifically, the ICP algorithm uses

the whole observation to obtain a solution of the relative
pose, whereas the RANSAC matching algorithm samples
as few static objects within a range image as feasible, and
evaluates hypotheses by checking the consistency between
the sampled objects and the reference model. The multi-scale
segmentation can also supply a significant preprocessing step
for a variety of robotics applications, and be used as the basis
for higher level scene understanding.

V. UNCERTAINTY ESTIMATION

Covariance estimation is necessary to quantify the uncer-
tainty of a relative pose estimate. Most probabilistic pro-
cesses, such as extended Kalman filters (EKFs) and particle
filters (PFs), should be aware of the level of confidence in
the state estimates. A realistic covariance estimate is also
necessary for further combining the relative pose estimates
with additional odometric or inertial measurements [23]. For
example, in a Kalman filter framework, the contribution of
measurements from different sensors to the state estimate is
weighted by the Kalman gains whose values depend on the
covariances of all the sources of information contributing to
the filter.
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(f) Alternative methods

Fig. 3. Uncertainty estimation. The uncertainty estimates of the examples
given in Figures 2(b) and 2(e) are visualized in (a) and (d), respectively. The
projections of (a) and (d) onto the x-y coordinates are shown in (b) and (e).
The ellipse shows 99% confidence bound of the covariance estimate and
the RANSAC hypotheses are shown in gray dots. The uncertainty estimates
from other methods are shown in (c) and (f).

Let H be the set of hypotheses generated by the RANSAC
process. We calculate the weight wh for each RANSAC hy-
pothesis h ∈ H by normalizing the scores of all hypotheses,
which can be expressed as

wh =
sh∑

h∈H sh
(10)

such that wh ∈ [0, 1] and
∑

h∈H wh = 1. For clarity, let
h? ∈ H denote the hypothesis selected by the RANSAC
process which yields the highest score. The covariance
matrix C is estimated by measuring the statistical dispersion
about the hypothesis h? with the highest score. Specifically,
statistical dispersion is variability or spread in a variable or
a probability distribution in statistics. Each entry Ci,j of a
covariance C on row i and column j can thus be calculated
as

Ci,j =

∑
h∈H wh (ψh,i − ψh?,i) (ψh,j − ψh?,j)

1−
∑

h∈H w2
h

(11)

where ψh is the transformation generated by hypothesis h,
and ψh,i is the i-th element of ψh.

Figures 2(b) and 2(e) also visualize the mean and the co-
variance estimates. Enlargements of the uncertainty ellipses
are shown in Figures 3(a) and 3(b), and Figures 3(d) and

3(e), respectively, in which the RANSAC hypotheses are also
depicted. It can be seen that while moving forward along a
straight road, as illustrated in Figures 2(b), 3(a) and 3(b),
the estimated relative pose is more uncertain in the forward
direction. In Figures 2(e), 3(d) and 3(e), while making a left
turn, a strong correlation is evident between the forward and
sideward directions.

VI. EXPERIMENTAL RESULTS

The RANSAC matching algorithm was evaluated exten-
sively using real range data [24]. The travel distance of
the data set is approximately 5 kilometers. We compare
the relative pose estimates from the ICP algorithm and
the RANSAC matching algorithm with the ground truth,
which is provided from the onboard inertial measurement
system of the vehicle [15]. Though either the odometric
or inertial data are actually not the ground truth, they can
still provide sufficiently locally accurate information of the
vehicle’s motion to some degree within a short period of
time. In our implementation, the data are processed at around
7.5 Hz. Table I shows the performance improvements of
RANSAC matching. The ICP algorithm used is similar to the
high-speed variant introduced by Rusinkiewicz and Levoy
[6] with a point-to-plane error metric, constant-weighting,
a distance threshold for rejecting pairs, and the standard
select-match-minimize ICP iterations. As can be seen, the
improvement of segment-based matching is subject to imper-
fect segmentation. The use of the multi-scale representation
is particularly effective to simultaneously deal with objects of
significantly sizes. The soft segmentation method is robust
to errors in segmentation at any particular resolution. Our
approach yields a 20% improvement in translation and a 8%
improvement in rotation.

TABLE I
IMPROVEMENT OVER ICP

Threshold 12m 9m 6m 3m 1.5m 0.75m multi
Translation 6% 9% 15% 12% 13% 13% 20%
Rotation -11% -11% 0% 8% 8% 8% 8%

Furthermore, we show the effectiveness and convergency
of RANSAC matching. In Figure 3, the uncertainty estimates
using different methods are shown. Figures 3(a), 3(b), 3(d),
and 3(e) show the uncertainty estimates using our method,
and Figures 3(c) and 3(f) show the uncertainty estimates
using alternative methods [13–15]. It can be seen that the
uncertainty estimates from Bengtsson and Baerveldt’s and Lu
and Milios’ methods are too optimistic and do not correspond
to reality, in which covariance matrices are estimated from
the residuals of the corresponding points. Wang and Thorpe’s
method can provide reasonable estimates as it takes into
account the uncertainty in data association, which perform
scan matching repetitively using random initial estimates.
Figure 4 demonstrates the effectiveness and convergency of
RANSAC matching. The RANSAC matching algorithm is
performed on the same data with varying number of samples
to estimate the distribution of the relative pose estimate.



0 64 128 256 512 1024

1

1.5
m

et
er

(a) Uncertainty in forward direction

0 64 128 256 512 1024
−0.5

0

0.5

m
et

er

(b) Uncertainty in sideward direction

0 64 128 256 512 1024

0

0.5

de
gr

ee

(c) Uncertainty in rotation

0 64 128 256 512 1024
−0.5

0

0.5

1

1.5

m
et

er

(d) Uncertainty in forward direction

0 64 128 256 512 1024
−1

−0.5

0

0.5

1

m
et

er

(e) Uncertainty in sideward direction

0 64 128 256 512 1024
−50

0

50

de
gr

ee

(f) Uncertainty in rotation

Fig. 4. Effectiveness and convergency. The x-axis denotes the number of samples used in the RANSAC process. The red line and the blue dashed line
show the mean and the 99% confidence bound, respectively, of a relative pose estimate. The green line shows the ground truth obtained from the inertial
measurement system. The uncertainty estimate of the example given in Figure 2(b) is shown in (a), (b) and (c), and the uncertainty estimate of the example
given in Figure 2(e) is shown in (d), (e) and (f). Note that the vertical scales of (c) and (f) are considerably different.

In both of the examples, there are about 100 segments at
multiple scales in total. Enumerating all combinations of
segments at multiple scales is computationally infeasible
for realtime applications. It can be seen that the significant
property of RANSAC matching is the trade-off between
increased representation power and computational overhead.
Initially, the accuracy of the method increases with the
number of samples. As increased number of samples, the
estimate tends to converge to a specific steady state within
a neighborhood of the ground truth. The property ensures
the convergency and efficiency of our algorithm. Figure 5
shows an empirical analysis of accuracy and convergency for
RANSAC matching. We assumed that an estimate is accurate
if it differs by at most 0.1 meter in forward and sideward
directions, and 1 degree in rotation from the ground truth, and
an uncertainty estimate is converged if it differs by at most
0.1 meter in forward and sideward directions, and 1 degree
in rotation from the estimate obtained from using 1024
samples. The ample experimental results in consequence
are consistent with the theoretical derivation of multi-scale
RANSAC matching given in Equation 9. Along with the
processing rate, the feasibility of RANSAC matching for
realtime estimation is also confirmed.

In summary, the experiments indicate that our algorithm
provides robust relative pose estimates in terms of ego-
motion estimation and uncertainty estimation. In comparison
with the alternative approaches [13–15], our algorithm yields
more accurate relative pose estimates and also provides more
consistent uncertainty estimates.

VII. CONCLUSION AND FUTURE WORK

We introduced a novel approach to solve the problem of
registration and segmentation of range images. RANSAC
matching solves the problem at the object level of abstraction
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Fig. 5. Success rate. The x-axis denotes the number of samples used in
the RANSAC process.

by exploiting a multi-scale representation to model objects
of varying sizes. The main contribution of this paper is
to propose a robust realtime algorithm which takes into
account data association uncertainty and segmentation un-
certainty simultaneously in the RANSAC paradigm. Instead
of applying random initial estimates, the RANSAC process
can investigate initial estimates systematically and score
hypotheses statistically. By representing a range image as
segments at multiple scales, our approach overcomes a range
of limitations possessed by least squares approaches, such
as the inability to consistently estimate the uncertainty of
a relative pose estimate, and poor degradation to outliers.
RANSAC matching does not employ any geometric features
which are often environment dependent. It also inherits the
computational efficiency and probabilistic robustness from
the RANSAC paradigm. The feasibility and effectiveness of
the proposed approach have been demonstrated using real
data collected in urban environments without incorporating
odometry. Experimental results show that our approach out-
performs alternative approaches.

In the future, we plan to integrate spatial and temporal



information into a unified theoretical framework to deal
with the occlusion problem. Furthermore, theoretically, the
proposed approach can be extended to the matching problem
for 3D point clouds without much difficulty. Practically, the
computation time perhaps can be far from realtime due to the
explosion of data points and the multi-scale tree nodes. We
are investigating possibilities to integrate additional informa-
tion from a 3D laser range finder or a stereo camera, such
as intensity and color. Future investigation will also include
applying the framework of RANSAC matching to a broader
range of problems.
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