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Abstract— Robust ego-motion estimation in urban environ-
ments is a key prerequisite for making a robot truly au-
tonomous, but is not easily achievable as there are two motions
involved: the motions of moving objects and the motion of
the robot itself. We proposed a random sample consensus
(RANSAC) based ego-motion estimator to deal with highly
dynamic environments using one planar laser scanner. Instead
of directly sampling on individual measurements, the RANSAC
process is performed at a higher level abstraction for systematic
sampling and computational efficiency. We proposed a multiple-
model approach to solve the problems of ego-motion estimation
and moving object detection jointly in a RANSAC paradigm.
To accommodate RANSAC to multiple models – a static
environment model for ego-motion estimation and a moving
object model for moving object detection, a compact represen-
tation models moving object information implicitly is proposed.
Moving objects are successfully detected without incorporating
any grid maps, that are inherently time and space consuming.
The experimental results show that accurate identification of
static environments can help classification of moving objects,
whereas discrimination of moving objects also yields better ego-
motion estimation, particularly in environments containing a
significant percentage of moving objects.

I. INTRODUCTION

The simultaneous localization and mapping (SLAM) prob-

lem asks if it is possible for a mobile robot to build a

consistent map of the environment and at the same time

determine its location within this map [1]. The solution to the

SLAM problem has been seen as the fundamental in making

a robot truly autonomous [2]. Most researchers on SLAM

assume that the unknown environment is static containing

only rigid, stationary objects. Non-rigid or moving objects

are processed as outliers and filtered out.

The detection and tracking of moving objects (DATMO)

problem has also been extensively studied for several decades

[3]. In surveillance applications, even though the sensors are

mounted on stationary platforms, changes of the environ-

ment still make the DATMO problem difficult. Solving the

DATMO problem in urban environments from a moving ve-

hicle is much harder. One of the most important, yet difficult,

issues of the DATMO problem is to discriminate moving

objects from stationary objects. A common approach is to

identify moving objects from the portion of an observation

that differs significantly from a reference model. Background

subtraction is a widely used approach for detecting moving
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objects from static sensors by comparing each observation

to a predetermined model of the scene background [4].

There are many challenges in developing a good moving

object detector as well as an ego-motion estimator. First, it

must be robust against changes in robot pose. Second, it

should avoid detecting stationary objects which are partially

or even fully occluded. Finally, its internal model should

be capable of tackling environments dominated by moving

objects, especially for robots at high speeds.

Future robots will be required to act autonomously in

environments where people are involved. Robotic vehicles

should be capable of autonomous driving or driver assistance.

Service robots are asked to interact with people in a variety

of environments where people are usually moving. Detecting

and handling changes of environments are essential for

the successful achievement of autonomous tasks [5]. The

DARPA Urban Challenge also aims at dealing with dynamic

urban scenes. Maneuvers that were specifically required for

the Urban Challenge included merging into fast-moving

traffic, left turns across oncoming traffic and the execution

of U-turns in situations in which a road is completely

blocked. These tasks are about to deal with environments that

change or contain non-static entities. Boss [6] and Junior [7],

the autonomous vehicles in the DARPA Urban Challenge,

achieved these tasks by analyzing dense 3D scans from a

number of costly 2D and 3D laser scanners for situational

awareness in urban scenes.

In the robotics literature, the last decade has seen more

and more researchers take moving object information into

account and solve the SLAM and the DATMO problems

concurrently. Wang et al. [8] proposed a consistency-based

moving object detector and provided a joint framework to

solve the SLAM and the DATMO problems simultaneously.

The multiple hypothesis tracking (MHT) method is applied

to accomplish data association among moving objects. Bibby

and Reid [9] proposed a method that combines sliding win-

dow optimization and least-squares together with expectation

maximization (EM) to do reversible model selection and

data association that allows dynamic objects to be included

directly into the SLAM estimate. Zhao et al. [10] uses GPS

data and control inputs to achieve global consistency in

dynamic environments. As a result, establishing the spatial

and temporal relationships among the robot, stationary ob-

jects and moving objects in the environment serves as the

basic for scene understanding. The solutions to the SLAM

and the DATMO problems are known to be at the core for

mobile robots to act autonomously in real environments. The

solution to the moving object detection problem provides a



bridge between the SLAM and the DATMO problems.

In the computer vision literature, random sample consen-

sus (RANSAC) [11] is one of the most effective algorithm for

model fitting to data containing a significant percentage of

gross errors. It is an iterative method to estimate parameters

of a mathematical model from a set of observed data which

contains outliers. A theoretical investigation of scoring under

a simple inlier-outlier model is performed to discriminate

outliers from the inlier model. The RANSAC paradigm

which is capable of smoothing data containing a significant

percentage of gross errors is particularly applicable to scene

analysis. RANSAC is advanced in its effectiveness and

efficiency, but unable to extract multiple models due to its

exclusivity in nature.

This paper focuses on the problems of ego-motion estima-

tion and moving object detection in urban environments. We

developed an online ego-motion estimation algorithm in a

RANSAC paradigm using planar laser scans. The RANSAC

process is applied at a higher level abstraction such that

sampling of consensus sets can be performed systematically

and the computational complexity can also be reduced. A

multiple-model extension is introduced for RANSAC to fit

multiple models at the same time. Moving object information

is extracted and seamlessly integrated into the RANSAC

process such that the robustness of ego-motion estimation

can be considerably improved, particularly in highly dynamic

environments where surroundings of robots are dominated

by non-stationary objects. The proposed algorithm does not

employ any geometric features which are often environment

dependent. It is also a non-delayed algorithm without incor-

porating any grid maps, that are inherently time and space

consuming. Experimental results show that our algorithm

works robustly in highly dynamic environments even when

more than 50% of the environment seen by the robot are

dynamic.

The rest of this paper is organized as follows. In Section

II, we present the recent literature regarding ego-motion

estimation in urban environments. In Section III, we briefly

review the theoretical foundation of RANSAC. In Section

IV, a RANSAC-based ego-motion estimator is described. In

Section V, to deal with real urban environments, a motion

modeling technique is proposed which enables RANSAC to

fit data of multiple models simultaneously. The feasibility

and tractability of the proposed approach are demonstrated

in Section VI. Finally, we conclude with a summary of this

work and suggest future extensions in Section VII.

II. RELATED WORK

Both the SLAM problem and the DATMO problem have

been widely studied for decades. The performance of a

SLAM algorithm can be improved if moving object infor-

mation is filtered out. On the contrary, the performance of a

DATMO algorithm can be more accurate if the environment

map is available and the robot is capable of localize itself

using the map. However, for robots acting in crowded urban

environments containing a variety of objects, solving the
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(a) The ICP result at scan 111
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(b) The RANSAC result at scan 111
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(c) The MM-RANSAC result at scan 111

(d) The visual image at scan 111

Fig. 1. Ego-motion estimation results in which the environments seen by
the laser scanner is dominated by moving objects

SLAM problem and the DATMO problem concurrently is

essential, particularly for safe driving [8].

Schulz et al. [12] and Montemerlo et al. [13] proposed to

localize a robot and track dynamic objects using a previously

generated map. This is reliable when robots act in environ-

ments that do not change. Moving object detection can be

done by taking the differential of each scan with the envi-

ronment map. However, maps are usually not affordable as

environments always change, particularly in urban environ-

ments. Wang et al. [8] applied a motion-based moving object

detector in a divide-and-conquer manner. Spatio-temporal



information is accumulated using a stationary object map and

a moving object map [14]. Inconsistent parts from SLAM

are divide into two categories: approaching and leaving.

A stationary object map and a moving object map are

accumulated and used for moving object detection. Zhao et

al. [10] applied a delayed mapping and tracking approach

in which geometric features are employed. Mendes et al.

[15] proposed a voting scheme in which geometric features

including shape, size, and other geometric properties are also

used.

RANSAC, which has been widely used for outlier rejec-

tion in the computer vision literature, is a robust multiple

hypothesis estimator in the presence of many outliers. Nistér

[16] proposed an ego-motion estimator for perspective cam-

eras in a rigid scene. Some structure of the scene is also

estimated which is highly related to structure from motion

(SFM). Sharma et al. [17] uses RANSAC for change detec-

tion in remote sensing. The transformation in the dynamic

range of the images is estimated. Pixels not satisfying this

transformation are classified as changes. Both of the works

reject moving objects as outliers which are inconsistent with

the inlier model.

In this work, the RANSAC paradigm is utilized to ex-

tract inlier measurements from planar laser scans. To build

consensus sets systematically and achieve tractability for

online applications, a RANSAC-based segment matching

algorithm is proposed. In case of environments lack of

stationary objects for ego-motion estimation, a motion mod-

eling technique for RANSAC to apply multiple models

is introduced. To facilitate the access to data of multiple

models, a compact representation is used to maintain spatio-

temporal information between successive observations. As a

result, the proposed multiple-model extension for RANSAC

can be performed without any modification of the conven-

tional RANSAC paradigm and seamlessly integrated into the

RANSAC process.

III. RANDOM SAMPLE CONSENSUS

In this section, we review the foundation and probabilistic

formulation of RANSAC. Classical techniques for parameter

estimation optimize the fit of a functional description to all

of the presented data. The RANSAC procedure is opposite

to that of conventional smoothing technique. Rather than

using as much of the data as possible to obtain an initial

solution and then attempting to eliminate the invalid data

points, RANSAC uses as small an initial data set as feasible

and enlarges this set with consistent data when possible [11].

RANSAC uses the geometric distribution in statistics

which models the discrete distribution: the probability distri-

bution of the number X of Bernoulli trials needed to get one

success, supported on natural numbers N. If the probability

of success on each trial is b, then the probability that the

k-th trial is the first success is

Pr(X = k) = (1 − b)k−1b (1)

= (1 − wn)k−1wn (2)

where w is the probability that any selected data point is

within the error tolerance of the model, and n is the number

of good data points required to determine the model, for all

k ∈ N. If we want to ensure with probability p that at least

one of the random selections is an error-free set of n data

points, we must expect to make k selections, where

(1 − b)k ≤ (1 − p), (3)

k ≥ log(1 − p)/ log(1 − b). (4)

RANSAC is effective for model fitting, particularly when a

significant percentage of data are outliers. It is ideally suited

for applications in range image analysis. The RANSAC

formulation contains two remaining unspecific parameters n
and w which are highly relevant to characteristics of data.

A detailed derivation and a comprehensive description can

be found in Fischler et al. [11]. In the next section, we will

derive the parameters for the ego-motion estimation problem

where non-static objects can be rejected as outliers.

IV. RANSAC-BASED SEGMENT MATCHING

Ego-motion estimation can be performed using range im-

age registration algorithms in the computer vision literature.

To ensure against the possibility of the final consensus

set being compatible with an incorrect model, the size of

data points per selection should be greater than or equal

to three for determining the pose transformation, including

translation and rotation. However, one of the most difficult

problem in laser sensing is data association. Every single

laser measurement is featureless. Researchers usually apply

the closest point association rule to associate data points with

unknown data association, such as the iterative closest points

(ICP) algorithm [18].

A. Scan Segmentation

In the RANSAC paradigm, a number of random samples

consisting of small sets are taken from an observation. A

first attempt is to generate random samples directly from all

measurements of an observation. Closest point association

often yields good estimate for data containing a mass of

points. However, registration performs very poorly on data

containing few points and often results in ambiguity. Sam-

pling directly on all measurements also requires compara-

tively large size of data points to preserve sufficient shape

information for registration. For example, if w = 0.5 and

n = 5, then b = 0.03125. To obtain a 99% assurance of

making at least one error-free selection, by Equation 4 we

have k ≥ 146. It is time-consuming and computationally

intractable for online applications, even though five points

are still insufficient for obtaining a good registration result.

Instead of direct sampling on measurements, we propose

to use a higher level data representation – a segment –

to achieve reliable registration and online applications. An

observation is segmented and further split into sets of

measurements representing objects. Specifically, objects are

extracted by segmenting the scan into densely sampled parts.

Here, we use a distance criterion to segment measurements

into objects. Although the distance thresholding method
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(b) The RANSAC result at scan 12366
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(c) The MM-RANSAC result at scan 12366

(d) The visual image at scan 12366

Fig. 2. Ego-motion estimation results in which the environments seen by
the laser scanner is highly dynamic

cannot produce perfect segmentation, it is plausible to use

such distance gaps to find distinct objects and perform

moving object detection. More precise segmentation can

be accomplished using spatial and temporal information

from the map or a multi-scale representation [19]. However,

experimental results show that the proposed algorithm works

well even if the segmentation is not perfect.

B. Segment Matching

In the classical RANSAC paradigm, letting o be a feature

and h be some hypothesis, the effectiveness of each (o, h) is

examined and represented using a binary score. Specifically,

if (o, h) is an inlier pair, the score sh of the hypothesis

h is incremented. As segments might be of significantly

different sizes, a binary score is insufficient to describe the

quantity of an association between two segments. Let z be a

observation and zi be the i-th segment in z. Compared to the

classical RANSAC process, the score si
h of each segment zi

is supported on N and the effectiveness of the pair (zi, h) is

represented by a natural number.

1) Sampling: To build consensus sets, z is segmented

and represented as a collection of segments z = {zi}i. The

system randomly permutes the segments firstly. A hypothesis

h is generated from randomly selected n segments with

probabilities proportional to the sizes |zi| of the segments

zi by matching the n segments with the reference model z̄,

which is the scan obtained at the previous time step.

2) Scoring: To obtain the score si
h of a segment zi, the

effectiveness of (zi, h) should be examined by checking if

(y, h) is an inlier pair for all y ∈ zi. The score si
h of a

segment zi is defined as the number of measurements y ∈ zi

which are located within neighborhoods of measurements in

the reference model z̄. Here, (y, h) is judged as an inlier

pair if and only if the measurement y transformed to the

global coordinate by the hypothesis h is located within a

neighborhood d of some measurement in the reference model

z̄. Specifically, the score si
h is incremented if the pair (y, h)

is judged as an inlier pair. Therefore, we have

sh =
∑

{i|zi∈z}

si
h (5)

=
∑

zi∈z

∑

y∈zi

1h(y) (6)

where 1h(y) is an indicator function indicating whether

or not (y, h) is an inlier pair. When the process finishes,

a hypotheses with the highest score is output as the best

transformation ψ. In this work, d is 1.5 meter, which is the

same as the segmentation threshold.

The parameter n should be carefully determined and take

into account the tradeoff between efficiency and reliability,

and the characteristics of the data. For matching segments

with the reference model, one segment is usually sufficient

to preserve the shape information of the environment unless

an environment is composed of line segments which result in

ambiguity. It is clear that the higher the value n, the higher

the probability at least one hypotheses is an inlier, and thus

the reliability increases. Letting n = 2 and w = 0.5, ac-

cording to Equation 4, to obtain a 99% assurance of making

at least one error-free selection, the number k of selections

must be greater than or equal to 17, which is computationally

sufficient for online and realtime applications.

Figures 1 and 2 show that RANSAC outperforms ICP

in urban environments. In Figures 1(a) and 2(a), it is clear

that ICP converges to local minimums as the environments

seen by the laser scanner are dominated by moving objects.

Figures 1(b) and 2(b) demonstrate the effectiveness of the

proposed RANSAC-based segment matching approach. The

ego-motion estimates are more accurate as outliers are fil-



tered out in the RANSAC process. The static parts of the

environment are aligned nicely.

Here, we assume at least w = 50% of the measurements

from the laser scanner are stationary objects. However, in

urban environments, it is often implausible to make this

assumption. It is possible for a robot to be almost fully sur-

rounded by moving objects. As illustrated in Figure 1(b), for

robots in highly dynamic environments, RANSAC still fails.

To obtain better ego-motion estimates, instead of filtering out

moving objects as outliers, taking into account the moving

object information is necessary. In the next section, we will

propose a multiple-model extension for RANSAC to solve

the problems of ego-motion estimation and moving object

detection simultaneously.

V. MULTIPLE-MODEL RANSAC

RANSAC always finds the most consistent hypothesis and

rejects inconsistent parts as outliers because of its exclusivity

in nature. In environments where robots cannot collect suffi-

cient static environment information, the output hypotheses

can be far from the ground truth. To accommodate RANSAC

to multiple models – a static environment model for ego-

motion estimation and a moving object model for moving

object detection, a compact representation models moving

object information implicitly is proposed. It is seamlessly

integrated into the RANSAC process. In addition, a seg-

ment classifier is introduced to discriminate moving objects

from static environments. By introducing multiple-model

RANSAC (MM-RANSAC), ego-motion estimation can be

performed robustly in highly dynamic urban scenes. The

false positive rate can also be reduced as multiple models

are fitted at the same time, rather than filtered out.

A. Data Representation

To represent multiple models simultaneously in a

RANSAC paradigm, we construct a scan maintaining spatio-

temporal information – a virtual scan. Virtual scans simplify

data access by compressing moving object information into

one single scan. Constructed in this manner, a virtual scan

provides a compact description of moving objects around the

robot. The proposed MM-RANSAC process performs at each

time step the additional two stages – segment classification

and virtual scan generation.

B. Segment Classification

To integrate virtual scans into the RANSAC process,

segments of an observation are classified into three cate-

gories: static, unknown, and moving. To clarify, at each time

step, there are three scans available, the observation z, the

reference model z̄, and the virtual scan z̃. The observation

z and the reference model z̄ are the scans collected at the

current time step and the previous time step, respectively.

The virtual scan z̃ is generated in accordance of the reference

model and the temporal information at the previous time step.

Initially, the virtual scan is the same as the reference scan.

Each segments zi in the observation z is associated with

segments in both the reference model z̄ and the virtual scan

z̃. Let ω̄(zi) and ω̃(zi) be the percentage of measurements

in zi which are within neighborhoods of measurements in z̄
and z̃, respectively, and z̄i ∈ z̄ and z̃i ∈ z̃ be the associated

segments of zi ∈ z.

The classification of zi can be expressed as

ϕ(zi) =















moving if ω̃(zi) ≥ φ̃, ϕ(z̄i) = moving

or ω̄(zi) < φ̄, ϕ(z̄i) = unknown

unknown if ω̄(zi) < φ̄, ϕ(z̄i) = static

static if otherwise

(7)

where ϕ(z̄i) indicates the class of the associated segment z̄i

of zi, and φ̄ and φ̃ are predefined parameters for determining

the effectiveness of an association between segments, which

is the only parameters have to be chosen in this work, in

addition to RANSAC parameters. Specifically, if a segment

zi is static, it is probably associated with some segment

in the reference model z̄ in a relatively great proportion

φ̄, unless it be either moving or occluded. In the case that

ω̄(zi) is less than some proportion, it is probably moving and

firstly marked as unknown. Later on, consistency between

the observation z and the virtual scan z̃ is further verified. If

the associated segment z̃i of a segment zi is also classified

as moving previously and ω̃(zi) is greater than or equal to

some proportion φ̃, it is then classified as moving. As virtual

scans represented estimated moving object information, to

have MM-RANSAC free of uncertainties of these estimates,

φ̃ should be far less than φ̄. In our implementation, the values

of φ̄ and φ̃ are 70% and 30%, respectively.

C. Virtual Scan Generation

To generate the virtual scan for ego-motion estimation in

the upcoming time step, for each segment zi with ϕ(zi) 6=
moving, the virtual segment z̃i is the same as the segment zi.

Conversely, the transformation ψi from z̄i to zi is calculated

by matching these two segments using the ICP algorithm.

The linear and angular velocity υi for each segment zi is

estimated accordingly. Hence, assuming a constant linear and

angular velocity model, zi is further transformed with the

estimated linear and angular velocity υi and assigned to z̃i.

The virtual scan generation process can be expressed as

ϕ(zi) 6= moving, ∀y ∈ zi ⇒ y = ỹ ∈ z̃i (8)

ϕ(zi) = moving, ∀y ∈ zi ⇒ y + υi∆t = ỹ ∈ z̃i (9)

where y is a measurement and υi is the estimated linear and

angular velocity of the segment zi. Then, we can obtain the

virtual scan z̃ = {z̃i}i for the next time step. With the use of

the virtual scan technique, motion modeling can be naturally

integrated into the RANSAC process. MM-RANSAC builds

consensus sets on the observation z and scores hypotheses

with respect to the virtual scan z̃ in which multiple models

are implicitly maintained.

In the MM-RANSAC process, the virtual scan z̃ is utilized,

instead of using the reference model z̄ directly. Comparing

to Section IV, we do not assume at least 50% of the

measurements in a laser scan are stationary objects anymore.

The meaning of the parameter w changes as virtual scans are
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(a) The virtual scan at scan 111
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(b) The virtual scan at scan 12366

Fig. 3. Virtual scans overlaid with observations

introduced, for which multiple models are fitted simultane-

ously. As virtual scans are employed and used by the MM-

RANSAC process, w = 0.5 stands for at least 50% of the

measurements within an observation are properly modeled,

in which both stationary objects and moving objects are

included. As a result, moving object information can help

ego-motion estimation while multiple models are taken into

account at the same time. It is particularly critical for mobile

robots to act autonomously in highly dynamic environments.

Figures 1 and 2 show that MM-RANSAC outperforms

RANSAC in urban scenes where environments are highly

dynamic. In Figures 1(b) and 2(b), it is clear that the best

hypotheses selected by RANSAC are still inconsistent with

the real environments. The exclusivity of RANSAC make it

unable to obtain good ego-motion estimates in such circum-

stances. Figures 1(c) and 2(c) demonstrate the superiority

of MM-RANSAC which utilizes moving object information

for ego-motion estimation. By modeling motions of moving

objects implicitly with virtual scans, both the results of ego-

motion estimation and moving object detection are much

more accurate.

VI. EXPERIMENTAL RESULTS

The proposed approach is demonstrated using data from

Wang et al. [20]. The travel distance of the data set is

approximately 5 kilometer. The average processing time of

the proposed ego-motion estimator is 63ms, implemented

using MATLAB, running on a desktop PC with Intel Core2

Quad CPU 2.40GHz and 4.0GB RAM, which is sufficient

for realtime applications. Figures 1 and 2 depict the results

of ego-motion estimation using ICP, RANSAC, and MM-

RANSAC, respectively. Though RANSAC outperforms ICP,

it fails when environments change significantly from scan to

scan. As can be seen that MM-RANSAC which takes into ac-

count moving object information is robust to highly dynamic

environments. Figure 3 visualizes the virtual scans. Figures

3(a) and 3(b) depict the observations overlaid with the virtual

scans for the MM-RANSAC results given in Figures 1(c)

and 2(c), respectively. In these experiments, RANSAC and

MM-RANSAC apply a common sampling stage at each time

step, for a fair comparison. A sequence of MM-RANSAC

results are shown in Figure 4. The ample experimental

results show that the proposed algorithm performs robustly

for ego-motion estimation and moving object detection in

urban environments. The issue of imperfect segmentation,

as addressed in Section IV-A, is also presented here. In the

MM-RANSAC paradigm, the problem is resolved naturally

by the segment classifier. The values of φ̃ and φ̄ are essential

in the presence of segmentation error, as described in Section

V-B.

TABLE I

A QUANTITATIVE COMPARISON FOR RESULTS IN FIGURES 1 AND 2

Score
Scan 111 Scan 12366

ψ̄ ψ̃ ψ̄ ψ̃

z̄ 191 > 181 153 > 147

z̃ 160 ≪ 183 172 ≪ 198

Table I gives a quantitative comparison presenting the

scores of the hypotheses applied by RANSAC and MM-

RANSAC in Figures 1 and 2. Letting ψ̄ and ψ̃ be the

hypotheses output by RANSAC and MM-RANSAC, re-

spectively, to demonstrate the robustness of MM-RANSAC,

we show the scores of (z̄, ψ̄), (z̃, ψ̄), (z̄, ψ̃), and (z̃, ψ̃).
Going through the table row-by-row, the reference model

z̄ contributes similar scores for both hypotheses. As a result,

RANSAC cannot give the inlier hypothesis ψ̃ the highest

score due to the presence of moving objects. Conversely,

MM-RANSAC outperforms RANSAC as it fits multiple

models simultaneously using the virtual scan z̃. By introduc-

ing the virtual scan z̃, the score of the hypothesis ψ̃, which

is more consistent with the environment, shows significant

difference from other hypotheses. We also note that in our

experiments there are 1750 out of 7554 time steps in which

RANSAC and MM-RANSAC select different hypotheses.

That is to say, RANSAC and MM-RANSAC give different

hypotheses the highest scores 23.17% of the time, in which

the surroundings of the robot might be highly dynamic and

RANSAC does not work well. While RANSAC and MM-

RANSAC output different hypotheses, MM-RANSAC often

provides better ego-motion estimates, as illustrated in Figures

1 and 2, and sometimes other hypotheses which are very

similar to that of RANSAC are output.



−40 −30 −20 −10 0 10 20 30 40
0

5

10

15

20

25

30

35

40
MM−RANSAC

x−axis

m
e

te
r

(a) Scan 2051
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(b) Scan 2056
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(c) Scan 2061

(d) The visual image at scan 2061
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(e) Scan 2066
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(f) Scan 2071
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(g) Scan 2076

(h) The visual image at scan 2076
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(i) Scan 2081
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(j) Scan 2086
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(k) Scan 2091

(l) The visual image at scan 2091

Fig. 4. MM-RANSAC results from scan 2051 to scan 2091. In these figures, grey dots are reference models, red dots are static objects, green dots are
unknown objects, and blue dots and rectangles show moving objects.

VII. CONCLUSION AND FUTURE WORK

A. Conclusion

In this paper, we address the problems of ego-motion

estimation and moving object detection in highly dynamic

environments which is of essence for mobile robots to act

autonomously in real environments. The main contribution

of this paper is to propose a robust ego-motion estima-

tion algorithm which handles moving object information

implicitly in a RANSAC paradigm. Consensus sets are

built at the segment level such that measurements can be

sampled systematically to achieve reliable registration. A

higher level data representation also make it feasible for

realtime applications, especially for robots at high speeds.

Though RANSAC is robust to data containing a significant

percentage of outliers, it is still infeasible for data of multiple

models due to its exclusivity. MM-RANSAC, a multiple-

model extension of RANSAC, is thus introduced, in which

the problems of ego-motion estimation and moving object

detection can be solved jointly in a RANSAC paradigm.

The proposed algorithm does not employ any geometric

properties which are unreliable in urban scenes. It is also a

non-delayed algorithm without incorporating any grid maps

which are inherently time and space consuming. The ample

experimental results show that accurate identification of

static environments can help classification of moving objects,

whereas discrimination of moving objects also yields better

ego-motion estimation. The feasibility and effectiveness of

the proposed approach has been demonstrated using real data

collected in a crowded urban scene without incorporating

odometry.

B. Future Work

In urban environments, there are mainly two sources of

outliers. First, robots do not know whether surrounding

objects are stationary or not. Thus, while robots navigate in

unmapped areas, moving object information should be dis-

criminated to obtain reliable ego-motion estimation. Second,

ground terrains are usually not flat. Pitch motions result in

false positive estimates and will severely affect the accuracy

of ego-motion estimation. The solution to the first one is

the main contribution of this paper and we believe that

the second one can also be tackled using only one planar

laser scanner. Virtual scans can be naturally generalized into

3D Cartesian coordinate by applying an assumption that

environments are composed of vertical planes, and used to

provide ego-motion estimates in the pitch motion of a robot.



Yet another concern is the use of nearest neighbor as-

sociation among segments in the MM-RANSAC approach.

Data association can be problematic due to merge and

split of objects and temporal occlusion. Comparing to the

data association problem in computer vision, the poverty

of laser scanner information make data association difficult.

Though nearest neighbor association performs well in many

applications such as the ICP algorithm, it fails when ini-

tial estimates are considerably inaccurate or environments

change significantly. As can be seen from Figure 4, MM-

RANSAC can misdetect splitting moving objects or objects

undergoing different motions. Future work will also include

incorporating discriminative models to reason about the

joint association between objects, rather than measurements.

Instead of using a distance threshold or defining shape and

appearance features manually, we plan to solve the data

association problem at a higher level abstraction.
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